钯加氢催化剂及其应用

合集下载

pd催化加氢机理

pd催化加氢机理

pd催化加氢机理
PD催化加氢是指使用钯(Pd)作为催化剂进行加氢反应的机理。

具体的机理如下:
1. 吸附:加氢反应开始时,氢气(H2)和底物分子(通常是
含有不饱和键的有机物)被钯表面吸附。

2. 前向加氢:吸附的氢气将与底物发生反应,使底物分子的不饱和键与氢原子结合,形成饱和键,同时释放出一部分热量。

3. 解吸附:经过反应后,加氢产物和一部分未反应的底物从钯表面解吸附,脱离催化剂。

4. 后向反应:解吸附的底物和加氢产物在反应溶液中仍然可以与氢气反应,使加氢产物重新转化为底物。

5. 循环:加氢产物和底物不断吸附和解吸附于催化剂表面,通过前向加氢和后向反应不断循环,在催化剂的作用下,底物的不饱和键逐渐被氢原子替换为饱和键,实现加氢反应。

请注意,上述机理只是PD催化加氢的一般机理,实际的加氢
反应机理可能会有所不同,具体取决于底物的性质和反应条件。

钯系催化剂加氢反应及应用开发

钯系催化剂加氢反应及应用开发
[ 关键词 ] Pd/ C ; 催化剂 ; 加氢反应 ; 应用 [ 中图分类号 ] TQ426. 95 [ 文献标识码 ] A [ 文章编号 ] 1006 - 7906 ( 2000) 05 - 0008 - 04
1 引 言
212 炔烃加氢
加氢还原是有机合成的一个重要单元操作。还 原催化剂主要有贵金属 ( Pt ,Rh , Pd) 催化剂 ,镍系催 化剂 ,铜系催化剂和钴系催化剂等 。贵金属催化剂 具有反应条件温和 , 活性高 , 选择性好等优点 , 得到 广泛的应用 。贵金属催化剂又分为固体催化剂和均 相催化剂 。固体催化剂不溶于反应介质 , 与产物易 分离 ,可循环使用 ,如 Pd/ C 催化剂 。均相催化剂溶 于反应介质 , 如威尔金森催化剂〔RhCl ( PPh 3 ) 3 〕 。 本文主要讨论 Pd/ C 催化剂在加氢反应中的开发应 用。 2 钯系催化剂加氢反应类型[ 1 ]
HO
θ
HO
CH = CHCOOH + H Pd/ C 2
θ
HO
CH2 CH2 COOH
OC4 H9 3 - 硝基 - 4 - 丁氧基苯甲酸 NO2 + H2
Pd/ Al2O3
OC4 H9 3 - 氨基 - 4 - 丁氧基苯甲酸 NHOH
3 ,4 —二羟基肉桂酸
3 ,4 —二羟基苯丙酸
硝基环己烷
・8 ・
专论与综述
化学工业与工程技术
2000 年第 21 卷第 5 期
钯系催化剂加氢反应及应用开发
吴鹤麟 ,朱新宝 ,张金龙 ,陆长峰
( 江苏省化工研究所 ,江苏 南京 210024)
[ 摘要 ] 将钯系催化剂催化加氢反应分成 11 个类型 , 分别作了简介 。Pd/ C 催化剂已应用于蒽醌 法双氧水 、 精对苯二甲酸及己内酰胺生产 。认为我国亟待开发的技术包括间苯二胺及同系产品 、 对氨基 苯甲醚及同系产品与对氨基酚 。指出 Pd/ C 催化剂催化加氢技术开发过程中 ,应注意解决氢气源及催化 剂开发与回收利用的问题 。

钯碳催化剂的应用和失活原因及再生

钯碳催化剂的应用和失活原因及再生

钯碳催化剂的应用和失活原因及再生摘要:对钯碳催化剂在精细化工中加氢的应用、催化剂失活的多种原因和再生进行了分析,把催化剂的失活原因归纳为活性组分流失、中毒、堵塞、烧结四大类,文章提出了对催化剂的再生,利用甲醛溶液还原可以有效再生失活钯碳催化剂。

关键词:钯碳催化剂加氢应用催化剂失活再生钯碳催化剂是一种常用的加氢催化剂,广泛应用双键加氢、硝基和亚硝基加氢、芳香族化合物加氢等领域。

钯碳催化剂的制备一般采用浸渍法,一般包括载体碱化预处理,活性金属通常是氯化钯溶液或醋酸钯溶液浸渍、还原、蒸馏水洗去杂质离子、真空密封包装等步骤,还原过程一般采用氢气、肼、甲醛溶液、次磷酸纳,硼氢化纳还原。

一、钯炭催化剂在精细化工中加氢主要有如下应用1.双键加氢双键加氢在石油化工及精细化工中很常见。

收率依据不同的分子有些不同,一般收率多在90%以上,有的收率会在99%,双键加氢的实例有:甲基顺丁烯二酸加氢声成甲基丁二酸,顺T烯二酸酮:加氢生成丁二酸,3一烯基一2一甲氧基一苯酚加氖生成二氖丁香酚。

以及在VE生产巾的中间品法尼基丙酮加氢。

王碧玉[1]等人研究使用钯炭催化剂加氖还原一蒎烯工艺,文献显示在采用钯炭为催化剂,常压,120℃条件下,蒎烯经3 h反应,蒎烷的收率为98%以上。

2.硝基加氢绝大多数芳胺来自相应的硝基化合物,主要芳胺工业制法有三种,①铁粉、硫化碱或水合肼还原:②磺化氨基反应;③催化加氖还原。

,周尽花等[2]人详细研究了5一硝基一1.10一邻菲罗啉还原合成5一氨基一l,l0一邻菲罗啉的化学还原丁岂和用钯炭催化剂氢化还原T岂的区别,其中氯化亚锡一盐酸还原产率为l0.8%,使用铁粉一硫酸还原的收率为36.9%,使用5%钯炭一水合肼的相转移加氢还原的收率为90.2%,收率得到了极大的提高。

3.芳香族化合物加氢芳香族加氢包括苯环加氢以及稠环加氢,其中包括芳香族加氢生成环烷,芳香族化合物部分加氢,上成部分加氢芳香族化合物,毗啶加氢生成哌啶。

钯催化剂的应用

钯催化剂的应用

钯催化剂的应用
钯催化剂是以钯为主要活性组分制成的贵金属催化剂,是化学和化工反应过程经常采用的一种催化剂,具有催化活性高,选择性强,催化剂制作方便,使用量少,可以通过制造方法的变化和改进,与其他金属或助催化剂活性组分复配,优化性能。

钯催化剂的应用
1.Pd催化偶联反应
钯用于催化偶联反应可以解决传统的均相催化体系所造成的反应产物的分离困难、催化剂不能重复使用等问题,有非常好的应用。

最具有代表性的钯催化的偶联反应是Heck反应和Suzuki偶联反应。

2.Pd催化环加成反应
钯配合物催化的[4+2]环加成反应具有催化剂用量少、产率高、选择性好、反应条件温和等显著特点,成为在[4+2]环加成反应中研究的热点。

钯手性Lewis酸催化的[4+2]环加成反应,在研究上取得了突破性的进展。

3.Pd催化重氮化合物反应
重氮化合物在过渡金属催化剂作用下的分解以及后续反应在有机合成上得到了非常广泛的应用。

钯基催化剂的催化加氢详解

钯基催化剂的催化加氢详解

钯基催化剂的催化加氢详解钯基催化剂金属钯是催化加氢的能手。

在石油化学工业中,乙烯、丙稀、丁稀、异戊二稀等稀烃类是最重要的有机合成原料。

由石油化工得到的稀烃含有炔烃及二稀烃等杂质,可将它们转化为稀烃除去。

由于形成的稀烃容易被氢化成烷烃,必须选择合适的催化剂。

钯催化剂具有很大的活性和极优良的选择性,常用作稀烃选择性加氢催化剂,如Lindlar催化剂(测定在BaSO4上的金属钯,加喹啉以降低其活性)。

从乙烯中除去乙炔常用的催化剂是0.03% Pd/Al2O3[1]。

文献报道[2],在乙烯中加入CO可以改进Pd/Al2O3对乙炔的加氢选择性,并已工业化。

甚至有工艺可将稀烃中的乙炔降至1%以下[3]。

常用的加氢反应钯催化剂有Pd、Pd/C、Pd/BaSO4、Pd/硅藻土、PdO2、Ru-Pd/C等。

迄今为止,钯催化剂制备的方法有浸渍法、金属蒸汽沉淀法、溶剂化金属原子浸渍法[11]、离子交换法、溶剂—凝胶法等。

钯催化剂一般都为负载型催化剂,载体一般为活性炭、γ-Al2O3及目前研究较多的高分子载体和钯基金属膜催化剂。

以下主要介绍几类目前研究较多的钯催化剂及相应的催化剂反应现状。

1、Pd/CPd/C催化剂是催化加氢最常用的催化剂之一。

因为活性炭具有大的表面积、良好的孔结构、丰富的表面基团,同时有良好的负载性能和还原性,当Pd负载在活性炭上,一方面可制得高分散的Pd,另一方面炭能作为还原剂参与反应,提供一个还原环境,降低反应温度和压力,并提高催化剂活性。

Pd/C主要用于NO2的还原及选择还原C=C。

自从1872年钯黑对苯环上的硝基加氢还原反应具有催化作用以来[1],Pd-C催化加氢以其流程少,转化率高,产率高,三废少等优点,引起了国内外极大的关注,相继有大量的专利及文献报道[2,3]。

如喻素娟[4]等以邻硝基苯胺为原料,以Pd/C为催化剂低压催化加氢还原合成邻笨二胺,收率>90%,产品质量分数>98%,并减少了“三废”污染。

常用催化剂及反应条件

常用催化剂及反应条件

常用催化剂及反应条件
催化剂是化学反应中起到催化作用的物质。

它不改变反应的热力学性质,但可以加速反应速率。

下面是一些常用的催化剂及其适用的反应条件。

1. 铂催化剂
- 催化剂:铂(Pt)
- 反应条件:常温至高温,高压下,气相或液相反应
- 适用反应:氢气的加氢反应、烃类的裂解反应、气相氯化反应等
2. 钯催化剂
- 催化剂:钯(Pd)
- 反应条件:常温至高温,大气压或高压下,溶液或气相反应- 适用反应:氢气的加氢反应、烃类的裂解反应、芳香化合物的氮化反应等
3. 钌催化剂
- 催化剂:钌(Ru)
- 反应条件:常温至高温,大气压或高压下,气相或溶液反应- 适用反应:合成氨反应、氯代烃的芳基化反应、芳香化合物的氧化反应等
4. 铜催化剂
- 催化剂:铜(Cu)
- 反应条件:常温至高温,大气压或高压下,气相或溶液反应- 适用反应:硫酸的氧化反应、芳香化合物的偶联反应、有机物的酰化反应等
5. 铂锡催化剂
- 催化剂:铂(Pt)、锡(Sn)
- 反应条件:常温至高温,大气压或高压下,气相或溶液反应- 适用反应:乙烯的加氢反应、炔烃的选择加氢反应等
6. 铂铑催化剂
- 催化剂:铂(Pt)、铑(Rh)
- 反应条件:常温至高温,大气压或高压下,气相或溶液反应- 适用反应:硝基化合物的氢化反应、有机物的氨化反应等
注意:催化剂的选择和反应条件的确定取决于具体的反应类型和所需的反应结果。

钯碳加氢反应

钯碳加氢反应

钯碳加氢反应是一种重要的有机化学反应,广泛应用于催化加氢、脱氢、脱卤、氧化等化学过程。

钯碳催化剂具有较高的活性和选择性,尤其在某些困难的加氢反应中表现出优异的性能。

钯碳加氢反应的基本原理是利用钯碳催化剂表面的钯原子提供活性位点,吸附氢气分子,形成钯氢化物。

这种催化剂通常具有高度的选择性,可以有效控制反应的深度,从而实现对特定官能团的加氢。

钯碳加氢反应的应用领域包括:
1. 有机合成:在有机合成中,钯碳加氢反应常用于引入饱和键,特别是在复杂分子的合成中,可以实现对特定位置的加氢。

2. 石油加工:在石油加工领域,钯碳催化剂用于加氢裂化、加氢脱硫等过程,以提高燃料的质量和减少环境的污染。

3. 精细化工:在精细化工生产中,钯碳加氢反应可以用于生产特定的化学品,如药物、香料等。

4. 环境保护:钯碳催化剂也用于环境保护领域,如催化转化有害物质,使其转化为无害或易于处理的物质。

钯碳催化剂在使用过程中需要保持一定的活性、选择性和稳定性,因此需要合理选择催化剂载体、调节催化剂的制备方法、使用条件和后处理方法。

同时,为了提高催化剂的性能和降低成本,研究者们一直在寻找新的催化剂载体材料和合成方法。

钯催化剂在有机合成中的应用

钯催化剂在有机合成中的应用

钯催化剂在有机合成中的应用钯催化剂是一种广泛应用于有机合成中的催化剂,具有重要的化学价值。

在有机化学领域,钯催化剂的应用已经被广泛研究,并被成功应用于合成复杂的天然产物和药物分子。

本文将探讨钯催化剂在有机合成中的应用。

一、钯催化剂的优势钯催化剂具有许多优势,例如高催化活性、较低的剂量要求、宽阔的反应适应性和化学选择性等等。

此外,钯催化剂还可以用于对手性分子的合成,这对于药物化学和材料化学领域是非常重要的。

由于这些优势,钯催化剂已被广泛应用于许多有机反应中。

二、钯催化剂在有机合成中的应用1. 交叉偶联反应钯催化的交叉偶联反应是一种常见的有机合成反应。

这种反应可以将两个不同的分子中的芳基、烯基或卤代烷基连接起来,形成一个新的分子。

该反应对于有机化学中的复杂化合物合成非常重要,尤其是在医药领域。

2. 加氢反应加氢反应是将半饱和和饱和的有机化合物进行还原,制备次级和三级醇、脱氧酸、醛气等化合物的重要方法。

钯催化的加氢反应已被广泛应用于合成重要的医药和材料分子,如β-羟基酸、腺苷、卡培他滨、丁二酸等。

此外,钯催化的选择性加氢反应还可以用于制备更有建筑价值的化合物,如乙酸等。

3. 烯烃氧化反应通过钯催化的烯烃氧化反应,可以将烯烃氧化为C—C双键的羰基化合物,在有机合成中具有重要的地位。

该反应被广泛应用于制备各种复杂的有机化合物,包括β-羟基酸、酮、醇和醛等。

此外,烯烃氧化反应还可以制备含氧杂环化合物。

4. 偶氮化反应偶氮化反应是一种将芳香胺转化为富有色彩的偶氮化合物的重要反应。

该反应不仅具有学术研究价值,还可以通过将合成的化合物应用于染料和颜料等领域中。

此外,偶氮化反应还可以用于合成其他富有应用前景的有机化合物。

三、结论综上所述,钯催化剂在有机合成中具有重要的应用价值。

该催化剂已经被广泛研究,并被成功地应用于合成天然产物和药物分子。

随着科技的不断进步和发展,钯催化剂的应用领域也将不断扩大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钯催化剂在有机加氢中通常兼有良好的活性和选择性,正是这一特性,使钯催化剂在有机催化加氢中极具实用价值。

通常钯催化剂分有载体和无载体两类。

其中无载体的钯催化剂主要有钯黑、胶态钯、氧化钯和氢氧化钯等。

基本上都用于各种有机催化加氢。

钯催化剂的载体,本身具有助催化作用,还能调变催化加氢的选择性。

相对于无载体钯催化剂,有载体的钯催化剂价格更实惠。

1. 钯/碳酸钙催化剂
钯/碳酸钙催化剂特点是用稀醋酸铅来处理钯/碳酸钙。

由于铅的毒性作用,使钯催化剂加氢活性减弱,加氢选择性加强。

还可以加喹啉进一步提高其加氢选择性。

它能控制反应固定在碳-碳三键加氢成碳-碳双键这一步上,也能使共轭二烯选择加氢成单烯。

1.1.钯/碳酸钙催化剂的实验室制备
将50ml 5%的氯化钯水溶液加入50g碳酸钙和400mL水的混合液中,室温下搅拌5 min,80℃下搅拌10min,然后通氢气。

还原氯化钯为钯。

过滤并水洗得钯/碳酸钙。

将5g醋酸铅溶于100mL水中,然后浸渍钯/碳酸钙。

20℃搅拌10min。

沸水浴上加热并搅拌40min。

滤出、水洗后40℃-50℃真空干燥得钯/碳酸钙催化剂。

1.2 钯/碳酸钙催化剂的应用
前苏联索科耳斯基等表明:在气相中,用被铅毒化的钯/碳酸钙催化剂可非常顺利地使乙炔加氢成乙烯。

在40℃-60℃和C2H2∶H2=1:2 时,乙烯产率达98%-100% 。

另外,由于钯在常态下对羰基和芳环基催化加氢无活性,故钯/碳酸钙催化剂能实现选择性加氢。

例如:用被铅毒化的钯/碳酸钙催化剂。

催化加氢去氢沉香醇成为沉香醇,该反应炔基加氢停留在烯基这一步上,而醇基并不加氢。

开发钯/碳酸钙催化剂可参考钯、碳酸钙、醋酸铅的质量比例。

工艺过程能重新设计。

试验室制备中催化剂真空干燥主要考虑到单质钯加热易吸附氧,催化剂活性会下降。

真空干燥工业生产不现实,可设计成在惰性气氛中干燥。

沸水浴上加热搅拌可设计成在红外或微波中加热。

载体也可设计成氧化铝或氧化铝球。

也有用醋酸锌作毒物处理钯/ 碳酸钙催化剂的。

现在工业中运用较多的是钯载于氧化铝上,用负载铅作毒物。

用作催化乙炔选择加氢成乙烯,丙炔选择加氢成丙烯、丁二烯,丁炔选择加氢成丁烯等。

2. 钯/碳催化剂
该催化剂的特点是制备工艺流程较简洁,但使用技术要求很高。

在某些反应中,钯/碳催化剂用95%乙醇洗净凉干,再用其它溶液洗后能套用3-4次。

2.1. 钯/碳催化剂的实验室制备
根据计算钯在催化剂中的百分含量,将固体氯化钯溶于浓盐酸和水,再用水稀释,浸渍炭,搅拌,蒸干。

使用时用氢气还原。

一般钯/碳催化剂含钯3%-5% 。

钯/碳催化剂用于腈加氢时,要用硼氢化钠还原附载在炭上的氯化钯,制成钯/碳催化剂。

这是因为金属硼化物对腈加氢有良好的活性和选择性。

2.2. 钯/碳催化剂的应用
钯/碳催化剂可用于吡啶加氢制哌啶。

将吡啶和醛或酮混合,用钯/碳催化剂加氢,可制得收率很好的N-烷基哌啶。

钯/碳(5%钯)催化剂,在乙醇中对芳香族硝基化合物进行加氢时,添加烷基环己烯或脂肪族酮可获得良好效果。

用钯/碳(5%钯)催化剂在腈加氢时,应
用适当的溶剂(如醋酸酐、冰醋酸、乙醇加HCl或H2SO4)来抑制副反应效果很好。

3. 钯/氧化铝催化剂
氧化铝有助催化作用。

在常温常压下,钯载于氧化铝上,于乙醇中催化环己烯加氢活性是无载体的钯催化活性的22倍。

钯/氧化铝催化剂制备工艺并不复杂,但不同的反应,对氧化铝载体的要求不一样。

从表1可以看出钯/氧化铝催化加氢效果远好于钯载在其它载体上。

表2 钯/氧化铝催化剂与其它钯载体催化剂效果比较
3.1. 钯/氧化铝催化剂的实验室制备
向氧化铝中加1%的氯化钯和50mL水,煮沸15min,再加20mL甲醛和15mL 1/20N的碳酸钠溶液。

继续煮沸15min后放置冷却。

用离心分离器分离出钯/氧化铝,水洗后50℃干燥得钯/氧化铝催化剂。

3.2. 钯/氧化铝催化剂的应用
己内酰胺生产中苯甲酸加氢制环己烷羧酸,在温度为120℃-200℃,压力为1-100大气压下,用钯/氧化铝作催化剂,收率非常高。

用1%钯/氧化铝催化剂,在20个大气压和低于100℃的条件下,可使丁二烯加氢得到丁烷。

用于5%钯/氧化铝催化剂,使丁烯醛加氢生成丁醛,收率很好。

但反应过于激烈会引起羰基加氢,增加正丁醇的生成量。

用6%钯/氧化铝催化剂,在温度为100℃下,萘加氢选择性生成四氢萘。

选择性达99%。

4. 钯/硫酸钡催化剂
该催化剂制备工序较多。

但如果生产该催化剂,工艺上没有难点。

钯/硫酸钡催化剂由于载体硫酸钡(BaSO4)的调变作用,使钯分散度很好。

它对苯加氢活性也较好。

而钯本身对苯加氢活性不大。

4.1.钯/硫酸钡催化剂的实验室制备
将氯化钯用浓硫酸和水化开,再将氢氧化钡[ Ba(OH)2·8H2O ]溶于水。

于80℃分次加入6N的硫酸,制得硫酸钡溶液。

向硫酸钡中加氯化钯溶液和37%的甲醛溶液,搅拌。

再加30%的氢氧化钠,使溶液呈弱碱性,搅拌5min。

洗净、滤出,80℃干燥。

使成粉密封保存。

4.2 钯/硫酸钡催化剂的应用
用钯/硫酸钡催化剂能从酰基氯化物中制得乙醛。

钯/硫酸钡催化剂也可使四取代丁烯加氢成丁烷。

钯/硫酸钡催化剂还能将四苯基环戊二烯酮加氢生成相应的环戊烯酮。

用钯/硫酸钡作催化剂,苯加氢成环己烷的转化率,在120℃-220℃的温度区间内不变。

很少依赖于苯和氢的比例。

5. 钯回收
因为钯是价格昂贵的金属。

故从废钯催化剂中回收钯一直倍受关注。

5.1废钯/碳催化剂中钯回收
废钯/碳催化剂先焙烧一下,将有机物、积炭等都烧去。

再用王水浸泡。

浓盐酸∶浓硝酸∶钯渣= 9:3:1。

于70℃-80℃反应2小时后,在70℃-75℃加过量氨水。

这时溶王水的钯生成可溶性钯盐[Pd(NH3)2]2+。

除去溶液中沉淀出的杂质,向溶有可溶性氨络合物[Pd(NH3)2]2+的溶液中加盐酸。

生成黄色Pd(NH3)2Cl2结晶析出。

其它可溶性杂质都无沉淀。

将该黄色晶
状沉淀物于550℃焙烧,脱氨可得粉末状的PdCl2。

5.2 废钯/氧化铝催化剂中钯的回收
将废钯/氧化铝催化剂加入6mol的盐酸溶液,并通入氯气,浸渍4小时。

钯的浸出率可达97.6%。

再在一定压力下向浸出液中通入CO或H2气。

通气1小时,可得到99.0%-99.7%的钯。

综上所述,可得出以下结论:
(1)钯催化剂是很好的有机加氢工业催化剂,以上四种钯催化剂各有特色。

其活性和选择性都是比较令人满意的;
(2)钯催化剂的实验室制备以及开发钯催化剂后的催化剂生产,从原料、设备到工艺控制,催化剂厂完全有能力工业生产;
(3)从废钯催化剂中回收钯,工艺并不复杂。

回收率较好。

这样不仅能解决一部分原料。

同时也可节省资金;
(4)由于石油化工、有机化工及精细化工的需要,钯/氧化铝催化剂市场容量较为可观。

钯/碳、钯/硫酸钡、钯/碳酸钙都是很好的加氢催化剂。

作为系列钯催化剂开发都有一定市场。

钯催化剂是一个可以发展的领域,其前景诱人。

相关文档
最新文档