万有引力及应用知识点总结
高中物理万有引力知识点总结

高中物理万有引力知识点总结1. 牛顿的万有引力定律:任何两个物体间都存在引力,这个引力与它们的质量成正比,与它们之间距离的平方成反比。
这就是牛顿的万有引力定律。
公式表示为:F=G(m1m2)/r^2,其中F是两个物体间的引力,m1和m2分别是两个物体的质量,r是它们之间的距离,G是万有引力常量。
2. 万有引力定律的应用:天体运动:万有引力定律为解释和预测天体运动提供了基础。
例如,行星绕太阳的运动,卫星绕地球的运动等。
重力加速度:在地球表面,万有引力定律可以用来解释重力加速度的存在。
重力加速度是由地球的质量产生的万有引力引起的。
3. 开普勒三定律:第一定律(轨道定律):所有行星绕太阳的轨道都是椭圆,太阳在其中一个焦点上。
第二定律(面积定律):对于任何行星,它与太阳的连线在相同的时间内扫过的面积相等。
第三定律(周期定律):所有行星绕太阳一周的周期的平方与它们轨道半长轴的立方之比是一个常数。
4. 万有引力定律与天体运动的关系:通过万有引力定律和牛顿第二定律(F=ma),我们可以推导出天体运动的规律。
例如,行星的轨道周期与其轨道半径的三次方和质量的二次方之间的关系,这就是开普勒第三定律的来源。
5. 人造卫星:人造卫星是利用万有引力定律进行设计和操作的。
通过调整卫星的轨道和速度,可以实现各种任务,如通信、气象观测、导航等。
6. 逃逸速度:逃逸速度是指一个物体从某天体表面发射出去,要逃离该天体的引力束缚所需要的最小速度。
逃逸速度的计算涉及到万有引力定律和动能定理。
以上就是高中物理中万有引力知识点的主要内容。
掌握这些知识,可以帮助我们更好地理解和预测天体运动,以及设计和操作人造卫星等任务。
万有引力定律知识点总结

万有引力定律知识点总结引力是自然界中一种普遍存在的力量,它负责维持着行星、恒星和其他天体之间的相互作用。
而万有引力定律则是描述了引力的基本规律,由英国科学家牛顿在17世纪提出。
万有引力定律可以简洁地表述为:任何两个物体之间的引力大小与它们的质量成正比,与它们之间的距离的平方成反比。
下面将详细介绍这个定律的几个重要知识点。
1. 引力的大小与质量成正比:根据万有引力定律,两个物体之间的引力与它们的质量成正比。
这意味着质量越大的物体之间的引力越强。
例如,地球的质量远远大于一个苹果的质量,因此地球对苹果的引力要比苹果对地球的引力大得多。
2. 引力的大小与距离的平方成反比:万有引力定律还指出,两个物体之间的引力与它们之间的距离的平方成反比。
这意味着物体之间的距离越近,它们之间的引力越强。
例如,当我们离地球表面更近时,我们能感受到的地球引力也更强。
3. 引力的方向:根据万有引力定律,引力的方向始终指向两个物体之间的中心。
例如,地球对一个物体的引力指向地球的中心,而物体对地球的引力也指向地球的中心。
这解释了为什么物体会朝着地球的中心下落。
4. 引力的公式:万有引力定律的数学表达式为F = G * (m1 * m2) / r^2,其中F表示引力的大小,G是一个常数,m1和m2分别表示两个物体的质量,r表示它们之间的距离。
这个公式可以用来计算任意两个物体之间的引力大小。
5. 引力的应用:万有引力定律不仅可以解释地球上物体的运动,还可以解释行星绕太阳的运动、卫星绕地球的运动等。
它是天体力学的基础,对于研究宇宙的结构和演化具有重要意义。
总结起来,万有引力定律是描述引力作用的基本规律,它告诉我们引力的大小与物体的质量成正比,与它们之间的距离的平方成反比。
这个定律的发现对于我们理解宇宙的运行机制和天体运动具有重要的意义。
通过应用这个定律,我们可以解释和预测天体的运动,深入探索宇宙的奥秘。
(完整word版)高中物理万有引力定律知识点总结和典型例题

万有引力定律人造地球卫星『夯实基础知识』1.开普勒行星运动三定律简介(轨道、面积、比值)丹麦天文学家第必定律:全部行星都在椭圆轨道上运动,太阳则处在这些椭圆轨道的一个焦点上;第二定律:行星沿椭圆轨道运动的过程中,与太阳的连线在单位时间内扫过的面积相等;第三定律:全部行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.即r3k T 2开普勒行星运动的定律是在丹麦天文学家弟谷的大批观察数据的基础上归纳出的,给出了行星运动的规律。
2.万有引力定律及其应用(1)内容:宇宙间的全部物体都是互相吸引的,两个物体间的引力大小跟它们的质量成积成正比,跟它们的距离平方成反比,引力方向沿两个物体的连线方向。
MmF G(1687年)r 2G 6.67 10 11 N m 2 / kg 2叫做引力常量,它在数值上等于两个质量都是1kg 的物体相距1m 时的互相作使劲, 1798 年由英国物理学家卡文迪许利用扭秤装置测出。
万有引力常量的测定——卡文迪许扭秤实验原理是力矩均衡。
实验中的方法有力学放大(借助于力矩将万有引力的作用见效放大)和光学放大(借助于平面境将渺小的运动见效放大)。
万有引力常量的测定使卡文迪许成为“能称出地球质量的人”:对于地面周边的物体m,有mg G m E mR E2(式中 R E为地球半径或物体到地球球心间的距离),可获得m E gR E2。
G(2)定律的合用条件:严格地说公式只合用于质点间的互相作用,当两个物体间的距离远远大于物体自己的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于平均的球体,r 是两球心间的距离.当两个物体间的距离无量凑近时,不可以够够再视为质点,万有引力定律不再合用,不可以够够依公式算出 F 近为无穷大。
(3) 地球自转对地表物体重力的影响。
ωF 心NO′mOF引mg甲重力是万有引力产生的,因为地球的自转,因此地球表面的物体随处球自转时需要向心力.重力其实是万有引以以以下图,在纬度为 的地表处, 万有引力的一个分力充任物体随处球一同绕地轴自转所需的向心力F向=mRcos ·ω2(方向垂直于地轴指向地轴) ,而万有引力的另一个分力就是平常所说的重力mg ,其方向与支持力 N 反向,应竖直向下,而不是指向地心。
万有引力定律知识点

万有引力定律知识点万有引力定律(Universal Law of Gravitation)是牛顿在1687年发表的《自然哲学的数学原理》(Principia Mathematica Philosophiae Naturalis)中提出的重要物理定律之一、该定律描述了任何两个物体之间存在的引力。
1.引力的定义2.引力公式根据万有引力定律,两个物体之间的引力可以用以下的公式来表示:F=G*(m1*m2)/r^2其中,F是两个物体之间的引力,G是一个常量,被称为万有引力常量,m1和m2分别表示两个物体的质量,r表示两个物体之间的距离。
3.万有引力常量4.引力的力学效应根据牛顿的第三定律,两个物体之间的引力大小相等,方向相反。
这意味着,一个物体对另一个物体施加的引力与另一个物体对第一个物体施加的引力大小相等。
根据万有引力定律,如果其中一个物体的质量增加,或者两个物体之间的距离缩小,引力将增大。
相反,如果其中一个物体的质量减小,或者两个物体之间的距离增加,引力将减小。
5.引力的运动效应根据万有引力定律,任何两个物体之间的引力不仅存在于静止状态下,还会影响它们的运动。
根据万有引力定律,如果两个物体之间存在引力,它们将相互吸引并朝向彼此移动。
这就是为什么我们在地球上可以感受到重力,因为地球对我们施加引力,将我们拉向地面。
6.引力的应用万有引力定律在多个领域都有广泛的应用。
在天文学和宇宙物理学中,它被用来解释天体之间的运动和行星、卫星轨道的形成。
在生物学和运动力学中,它被用来研究运动物体之间的相互作用和力的平衡。
在工程学中,它被用来计算和设计建筑物结构的稳定性和地震活动的影响。
7.万有引力定律的限制万有引力定律是牛顿提出的近似定律,适用于中等大小的物体和相对较小的距离。
当涉及到极端条件,如黑洞或超大质量天体时,它的适用性会受到限制。
在这些极端条件下,需要使用更复杂的理论,如爱因斯坦的广义相对论来描述引力。
物理万有引力知识点总结

物理万有引力知识点总结物理万有引力是指物体之间存在的吸引力或引力的力量。
以下是物理万有引力的一些主要知识点总结:1. 万有引力定律:万有引力定律是描述物体之间引力关系的公式,它由牛顿提出。
定律表明,两个物体之间的引力大小与它们质量的乘积成正比,与它们之间的距离的平方成反比。
万有引力定律的公式为F = G * ((m1 * m2) / r^2),其中F表示引力的大小,m1和m2表示两个物体的质量,r表示它们之间的距离,G为引力常数。
2. 引力的性质:物理万有引力具有以下性质:- 引力具有吸引性,它总是指向两个物体之间的中心。
- 引力大小与物体质量成正比,质量越大,引力越大。
- 引力大小与物体距离的平方成反比,距离越近,引力越大。
- 引力作用力对是相互的,即每个物体对另一个物体都有一个相等大小但方向相反的引力。
3. 重力:重力是地球对物体产生的引力。
重力是物体的质量与地球质量之间的吸引力。
重力的大小可以使用万有引力定律计算。
重力使物体朝着地面方向下落,并使物体保持在地球表面。
地球上的物体之间的重力也可以用牛顿的万有引力定律来计算。
4. 行星运动和轨道:根据万有引力定律,行星在太阳的引力作用下绕太阳旋转。
行星的轨道呈椭圆形,太阳位于椭圆的一个焦点上。
行星轨道上离太阳近的部分称为近日点,离太阳远的部分称为远日点。
5. 引力与质量的关系:根据万有引力定律,引力的大小与物体质量成正比。
更大质量的物体将具有更大的引力。
这解释了为什么地球的引力比月球的引力大,因为地球的质量比月球大。
以上是物理万有引力的一些重要知识点总结。
物理万有引力定律是物理学中一个重要的基本定律,它解释了宇宙中物体之间相互吸引的原因,并在天体运动和宇宙学研究中起到关键作用。
万有引力定律及其应用知识点总结

万有引力定律及其应用知识点总结
1、万有引力定律:,引力常量G=6.67×
N·m2/kg2
2、适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的
距离r小得多时,可以看成质点)
3、万有引力定律的应用:(中心天体质量M, 天体半径R, 天体表面重力加速度g )
(1)万有引力=向心力 (一个天体绕另一个天体作圆周运
动时,下面式中r=R+h )
(2)重力=万有引力
地面物体的重力加速度:mg = G g = G ≈9.8m/s2 高空物体的重力加速度:mg = G g = G <9.8m/s2
4、第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运
动的卫星中线速度是最大的.
由mg=mv2/R或由 = =7.9km/s
5、开普勒三大定律
6、利用万有引力定律计算天体质量
7、通过万有引力定律和向心力公式计算环绕速度
8、大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)。
高中物理万有引力知识点总结

高中物理万有引力知识点总结万有引力是物理中的一个重要概念,它是描述质点之间相互作用的力。
下面是高中物理万有引力的一些基本知识点总结:1. 万有引力的定义:万有引力是质点之间由于引力的作用而产生的相互吸引力。
2. 牛顿万有引力定律:牛顿在1666年提出了万有引力定律,它表述为“两个物体之间的引力与它们质量的乘积成正比,与它们距离的平方成反比”。
具体公式为F=G(m1*m2/r^2),其中F为引力大小,G为万有引力常量,m1和m2分别为两个质点的质量,r为它们之间的距离。
3. 万有引力的特点:万有引力是一种普遍存在的力,质点之间的作用力始终存在,无论它们之间的距离有多远。
它是一种吸引力,方向始终指向两个质点之间的连线上。
4. 万有引力的质点模型:为了简化计算,我们可以将物体近似为质点,即忽略物体的大小和形状,只考虑其质量和位置。
5. 万有引力和距离的关系:根据万有引力定律,引力与距离的平方成反比。
当两个质点之间的距离加倍时,引力减少到原来的四分之一;当距离减半时,引力增加到原来的四倍。
6. 万有引力和质量的关系:引力与质量的乘积成正比。
质量越大,引力也越大;质量越小,引力也越小。
7. 万有引力常量G:G是一个常量,它的值为6.674 × 10^-11 N·m^2/kg^2。
这个常量是通过实验测量得出的,它决定了万有引力的大小。
8. 地球上物体的重力:地球的质量很大,所以其对地球表面上的物体产生的引力非常强大,我们称之为重力。
重力是物体下落的原因,它与物体的质量成正比。
地球上任何物体的重力公式为F=mg,其中F为物体的重力,m为物体的质量,g为重力加速度。
9. 使万有引力为零的情况:如果两个物体之间的距离趋于无穷远,它们之间的引力会趋于零,这时不存在任何相互作用。
10. 万有引力的应用:万有引力是天体运动的重要力学基础。
它解释了行星绕太阳的椭圆轨道、天体潮汐现象、小行星带和宇宙的膨胀等现象。
高考物理万有引力公式必背知识点

高考物理万有引力公式必背知识点
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N
m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:
V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度:V1=(g地r地)1/2=(GM/r
地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星:GMm/(r地+h)2=m4π2(r地
+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变
大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:万有引力定律总复习(人造天体(卫星)的运动)
万有引力及应用:与牛二及运动学公式
1思路(基本方法):卫星或天体的运动看成匀速圆周运动, F 心=F 万 (类似原子模型)
2方法:F 引=G 2r Mm = F 心= m a 心= m
ωm R
v =2
2 R 地面附近:G
2R
Mm
= mg ⇒GM=gR 2 (黄金代换式) 轨道上正常转:G 2r Mm = m R v 2
⇒ r
GM
v =
【讨论(v 或E K )与r 关系,r 最小
时为地球半径,
v 第一宇宙=7.9km/s (最大的运行速度、最小的发射速度);T 最小=84.8min=1.4h 】
G
2
r Mm =m 2
ωr = m r T 224π ⇒ M=2324GT r π ⇒ T 2
=2
3
24gR r π⇒
2T 3G πρ=
(M=ρV 球=ρ
π3
4
r 3) s 球面=4πr 2 s=πr 2 (光的垂直有效面接收,球体推进辐射) s 球冠
=2πRh
3理解近地卫星:来历、意义 万有引力≈重力=向心力、 r 最小时为地球半径、 最大的运行速度=v 第一宇宙=7.9km/s (最小的发射速度);T 最小=84.8min=1.4h 4同步卫星几个一定:三颗可实现全球通讯(南北极有盲区)
轨道为赤道平面 T=24h=86400s 离地高h=3.56x104km(为地球半径的5.6倍) V=3.08km/s ﹤V 第一宇宙=7.9km/s ω=15o
/h (地理上时区) a=0.23m/s 2
5运行速度与发射速度的区别 6卫星的能量:(类似原子模型)
r 增⇒v 减小(E K 减小<E p 增加),所以 E 总增加;需克服引力做功越多,地面上需要的发射速度越大
7. 应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s, 地球表面半径6.4x103km 表面重力加速度g=9.8 m/s 2 月球公转周期30天
一、卫星的绕行角速度、周期与高度的关系
(1)由()
()
22
mM
v G
m r h r h =++,得v =h ↑,v ↓
(2)由G
()
2
h r mM
+=m ω2(r+h ),得ω=
()
3
h r GM
+,∴当h ↑,ω↓
(3)由G ()2
h r mM
+()224m r h T π=+,得T=()GM h r 3
24+π ∴当h ↑,T ↑
二、三种宇宙速度:
① 第一宇宙速度(环绕速度):v 1=7.9km/s ,人造地球卫星的最小发射速度。
也是人造卫星绕地球做匀速圆周运动的最大运行速度。
② 第二宇宙速度(脱离速度):v 2=11.2km/s ,使卫星挣脱地球引力束缚的最小发射速度。
③ 第三宇宙速度(逃逸速度):v 3=16.7km/s ,使卫星挣脱太阳引力束缚的最小发射速度。
三、第一宇宙速度的计算.
方法一:地球对卫星的万有引力就是卫星做圆周运动的向心力. G
()2
h r mM
+=m ()h r v +2,v=h
r GM
+。
当h ↑,v ↓,所以在地球表面附近卫星的速度是它运行的最大速度。
其
大小为r >>h (地面附近)时,1V =
=7.9×103m/s 方法二:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆周运动的向心力.
()
2
1v mg m
r h =+.当r >>h 时.g h ≈g 所以v 1=gr =7.9×103m/s 第一宇宙速度是在地面附近h <<r ,卫星绕地球做匀速圆周运动的最大速度.
四、两种最常见的卫星 ⑴近地卫星。
近地卫星的轨道半径r 可以近似地认为等于地球半径R ,由式②可得其线速度大小为v 1=7.9×103m/s ;由式③可得其周期为T =5.06×103s=84min 。
由②、③式可知,它们分别是绕地球做匀速圆周运动的人造卫星的最大线速度和最小周期。
神舟号飞船的运行轨道离地面的高度为340km ,线速度约7.6km/s ,周期约90min 。
⑵同步卫星。
“同步”的含义就是和地球保持相对静止,所以其周期等于地球自转周期,即T =24h 。
由式G
2
h r mM
+=m ()h r v +2= m 224T π(r+h )可得,同步卫星离地面高度为 h =3224π
GMT -r =3·58×107 m 即其轨道半径是唯一确定的离地面的高度h =3.6×104km ,而且该轨道必须在地球赤道的正上方,运转方向必须跟地球自转方向一致即由西向东。
如果仅与地球自转周期相同而不定点于赤道上空,该卫星就不能与地面保持相对静止。
因为卫星轨道所在平面必然和地球绕日公转轨道平面重合,同步卫星的线速度
v=
h
r GM
+=3.07×103m/s 通讯卫星可以实现全球的电视转播,从图可知,如果能发射三颗相对地面静止的卫星(即同步卫星)并相互联网,即可覆盖全球的每个角落。
由于通讯卫星都必须位于赤道上空3.6×107m 处,各卫星之间又不能相距太近,所以,通讯卫星的总数是有限的。
设想在赤道所在平面内,以地球中心为圆心隔50放置一颗通讯卫星,全球通讯卫星的总数应为72个。
五.了解不同高度的卫星飞行速度及周期的数据
卫星飞行速度及周期仅由距地高度决定与质量无关。
设卫星距地面高度为h ,地球半径为R ,地球质量为M ,卫星飞行速度为v ,则由万有引力充当向心力可得v=½。
知道了卫星距离地面的高度,就可确定卫星飞行时的速度大小。
不同高度处人造地球卫星的环绕速度及周期见下表:
六、卫星的超重和失重
(1)卫星进入轨道前加速过程,卫星上物体超重.(2)卫星进入轨道后正常运转时,卫星上物体完全失重.
七、人造天体在运动过程中的能量关系
当人造天体具有较大的动能时,它将上升到较高的轨道运动,而在较高轨道上运动的人造天体却具有较小的动能。
反之,如果人造天体在运动中动能减小,它的轨道半径将减小,在这一过程中,因引力对其做正功,故导致其动能将增大。
同样质量的卫星在不同高度轨道上的机械能不同。
其中卫星的动能为r
GMm E K 2=,由于重力加速度g 随高
度增大而减小,所以重力势能不能再用E k =mgh 计算,而要用到公式r
GMm
E P -
=(以无穷远处引力势能为零,M 为地球质量,m 为卫星质量,r 为卫星轨道半径。
由于从无穷远向地球移动过程中万有引力做正功,
所以系统势能减小,为负。
)因此机械能为r
GMm
E 2-
=。
同样质量的卫星,轨道半径越大,即离地面越高,卫星具有的机械能越大,发射越困难。
八、相关材料
I .人造卫星做圆轨道和椭圆轨道运行的讨论
当火箭与卫星分离时,设卫星的速度为v (此即为发射速度),卫星距离地心为r,并设此时速度与万有引力垂直(通过地面控制可以实现)如图所示,则2
Mm
F G
r
万
,若卫星以v 绕地球做圆周运动,则所需要的向心力为:F 向=2
v
m r
① 当F 万=F 向时,卫星将做圆周运动.若此时刚好是离地面最近的轨道,则可求出此时的发射速度 v =7.9 km/s.
②当F 万<F 向时,卫星将做离心运动,做椭圆运动,远离地球时引力做负功,卫星动能转化为引力势能.(神州五号即属于此种情况)
③当F 万>F 向时,卫星在引力作用下,向地心做椭圆运动,若此时发生在最近轨道,则v <7.9 km/s ,卫星将坠人大气层烧毁。
因此:星箭分离时的速度是决定卫星运行轨道的主要条件. 2.人造卫星如何变轨
卫星从椭圆轨道变到圆轨道或从圆轨道变到椭圆轨道是卫星技术的一个重要方面,卫星定轨和返回都要用到这个技术.
以卫星从椭圆远点变到圆轨道为例加以分析:如图所示,在轨道A 点,万有引力F A >2
v
m r
,要使卫
星改做圆周运动,必须满足F A =2
v
m r
和F A ⊥v ,在远点已满足了F A ⊥v 的条件,所以只需增大速度,让速
度增大到2
v
m r
=F A ,这个任务由卫星自带的推进器完成.
这说明人造卫星要从椭圆轨道变到大圆轨道,只要在椭圆轨道的远点由推进器加速,当速度达到沿圆轨道所需的速度,人造卫星就不再沿椭圆轨道运动而转到大圆轨道.“神州五号”就是通过这种技术变轨的,地球同步卫星也是通过这种技术定点于同步轨道上的.
1、处理人造天体问题的基本思路
由于运行中的人造天体,万有引力全部提供人造地球卫星绕地球做圆周运动的向心力,因此所有的人造地球卫星的轨道圆心都在地心.解关于人造卫星问题的基本思路:①视为匀速圆周运动处理;②万有引力充当向心力;③根据已知条件选择向心加速度的表达式便于计算;④利用代换式gR 2=GM 推导化简运算过程。
注意:①人造卫星的轨道半径与它的高度不同.②离地面不同高度,重力加速度不同,
说明:可以看出,绕地球做匀速圆周运动的人造卫星的轨道半径r 、线速度大小v 和周期T 是一一对应的,其中一个量确定后,另外两个量也就唯一确定了。
离地面越高的人造卫星,线速度越小而周期越大。