多姿多彩的图形

合集下载

多姿多彩的图形说课稿

多姿多彩的图形说课稿

多姿多彩的图形黑龙江省哈尔滨市秋实中学武树明8.1 多姿多彩的图形尊敬的各位专家,评委老师:你们好!我是来自黑龙江省哈尔滨市秋实中学的数学教师武树明,我说课的题目是《多姿多彩的图形》,选自人教版五四学制六年级下册第八章第一节第3课时.以下我将从设计理念、教材分析、教学方法与教学手段、教学过程这四方面来阐述我对这节课的设计.一、设计理念《新课程标准》指出:在教学中,应注重所学内容与现实生活的联系, 注重培养学生动手实践的能力.注重学生是否积极主动的经历、体验、感悟.获得经验并能够解决生活中的问题.使课堂教学植根于生活世界并为生活世界服务.体现生活性和发展性.二、教材分析1.教材的地位与作用《几何图形》一章从学生身边丰富多彩的实物开始认识立体图形和平面图形,本节课从立体图形和平面图形之间的关系来研究,渗透变化和联系的观点,是对前面知识的总结和提升.对激发学生学习几何的热情,培养初步的空间观念、领悟学习方法有至关重要的作用.2.教材处理在教材中本节课内容较少,只有一个探究活动.根据教材的编写意图和新课程标准的要求,我对教材进行如下处理:这样变“折叠几种平面展开图”为“正方体的展开与折叠”,使学生活动的重点突出.原探究活动的结论是唯一的,对教材加工后探究活动的结果是多样的,学生可以得到不同的展开图,展现个性思维,增强思维的深度广度.再类比研究圆锥和直棱柱,活动内容更加丰富.从正方体这一图形入手,再迁移拓展到常见的立体图形,符合学生的认知规律,渗透从特殊到一般和类比思想.3.教学目标基于对教材的分析,着眼于学生今后的发展,我制定三维教学目标如下:知识与技能:体会直棱柱和圆锥的平面展开图的特点,并能根据平面展开图判断和制作立体图形.过程与方法:通过观察、实践、合作交流等活动,进一步研究立体图形和其平面展开图之间的关系,建立初步空间观念,培养表达能力.情感态度与价值观:通过动手实践和成功的体验,提高学生的学习热情,培养合作精神和探究意识.4.教学重点与难点教学重点:正方体的展开与折叠.教学难点:根据平面展开图来判断和制作立体图形.三、教学方法与教学手段1.教学方法我选择“引导探究体验式”教学法.以学生动手实践为主要活动形式,真正体现学生的主体地位.学生探究本课的思路为:细心观察独立思考动手实践合作交流迁移应用.2.教学手段多媒体辅助教学,自制教具.四、教学过程1.创设情境,激情引趣空间观念的建立依赖于学生积极的观察和思考,经历对图形的研究体验而得到.如何让学生主动探究呢?我这样引入:让学生观察生活中一些物品的包装盒.然后取出一个长方体的包装盒,以魔术的形式将其展开.然后再还原回立体图形.这样设计既可以让学生体会到立体图形可以转化为完整的平面图形,体现本课意图,又能激起学生的好奇心,激发学生的学习兴趣.为本课奠定良好的情感基础,使学生乐于探究.再利用多媒体和学生一起回顾:长方体和圆柱体的侧面展开图,并提出问题:“他们剩余部分是否也可以展开到侧面所在的平面中呢?”经过学生的思考和多媒体的演示,得到结论.通过引课和回顾,让学生体会立体图形平面展开图的特点.这里多媒体的使用增强了直观性,并在学生已有的知识和经验基础上构建新的知识生长点,温故而知新.2.动手操作,合作探究 活动一(正方体的展开)让学生利用手中事先准备好的正方体模型,按要求活动:把它沿棱剪开,能展开成平面图形.采取独立完成的方式进行,让每名学生都参与.在这里要给学 生充分的时间观察、不断动手尝试,最后得到平面展开图.提高了学生动手的能力,发展空间思维能力.让学生在“做”数学中学数学.设计意图:自主开放,发散思维.完成的同学到黑板展示自己的作品. 可以按完成的先后顺序自由的展示.教师要以欣赏的眼光关注孩子的作品.让孩子体验成 功,培养自信,激发探究热情.设计意图:体验成功,个性展示.很多展开图在黑板上展示出来之后,很自然的引出问题:这些展开图是否有一样的,请你仔细观察后把相同的只保留一个.学生要认真的观察黑板上的作品,通过对比、想象,选出相同的展开图,提高了学生观察能力. 渗透了旋转和平移变换的思想.并使学生学习其他人的展开方式,是一种有效的全班范围的交流,使学生参与的有效性得到保证. 设计意图:归类梳理,方法渗透.应引导学生进入数学的思考阶段,教师提出:通过刚才的研究你有哪些体会?立体图形和它的平面展开图之间存在怎样的关系?虽然经过刚才的实践和观察,但解决这个问题会有一定困难.可以让学生先独立思考,再小组交流.通过主动与他人的交流碰撞出思想的火花,并能整理成有条理的结论,培养合作意识.在这里学生的回答有这几个方面的结论:(1) 正方体的展开图是多样的;(2) 正方体的表面积等于它的平面展开图的面积; (3) 顶点、棱、面的形状、数量的变化情况.教师要关注学生表达的准确性,通过生生评价,师生评价,使直接经验得到提升,成为新的知识经验,形成解决问题的能力和方法.由于学生对问题的思考是多方面的,教师要运用随机教育能力适时点拨,保护学生思考的积极性.活动二(正方体的折叠)学生在认识了正方体的平面展开图的多样性之后,我利用多媒体演示:学生就会产生这样的疑问:由六个正方形组成的平面图形都能够折成正方体吗?什么样的图形不能折成正方体?先让学生动手画一画,再小组交流,然后在班级展示所画的图形.这时遇到了一个问题:学生所画的图形可以用实物投影展示,但不容易验证是否正确.于是我设计了一个教具,可以两个同学合作使用.解决了这个问题,增强了直观性,又提高了课堂效率.再配合多媒体的演示,帮助学生建立空间观念实现教学目标.3. 类比实践,迁移应用通过剪、示、选、思这样的展开过程和折叠的过程,学生领悟到了研究立体图形和其平面展开图间关系的方法.应用这些体会去进行新的探索,是对学生的创造能力的培养.教师可引导:我们生活中还有很多其他的立体图形,大家看下面的图形是什么立体图形的平面展开图.学生可以观察、想象得出结论.然后动手展开这些立体图形.活动三(直棱柱和圆锥的展开)动手展开手中的三棱柱、五棱柱及圆锥,以小组的形式进行研究,你能得到哪些结论?通过对正方体的展开与折叠,学生已经能够把棱柱和圆锥平面展开,通过组内分工提高效率,这样的设计是对学生能力的迁移.并且通过小组合作,增强合作意识.学生应用自己的研究体会得到新的成果的时候,教师要给学生机会展示,体会成功,感受学习的愉悦.这样能使学生在饱满的热情中完成对知识的探究.4.总结归纳,体会反思学生谈收获、体会、困惑.①常见立体图形展开图的形状;②立体图形的表面积等于它的平面展开图的面积;③其它体会和困惑.学生相互补充,教师倾听并做适当的激励评价,然后总结提升:本课学生通过用眼观察:模型、课件和同学的展示;动手实践:剪、示、选、思这样的展开过程和折叠的过程;动脑思考:立体图形与平面展开图的关系,建立了空间观念.5.延伸拓展,实践创新在总结本课的体会和收获后,学生的热情仍会很高,为了能体现本课知识的应用,我设计了一个实践作业:运用本课的知识设计并制作一个垃圾分类回收箱.这能发挥学生创造性的思维,给学生展现个性的空间,是本课不可缺少的延伸和拓展.这是我的板书设计:关于设计的几点说明:1.本课学习的内容是生动的、具体的、有意义的,能激发学生的学习兴趣;2.充分让学生动手实践,让学生在做数学中学数学,真正成为课堂的主体;3.多媒体的合理运用及自制教具,辅助教学效果显著;4.教学设计中给学生留有个性化思维的空间.最后非常感谢各位专家和同行的指导,我的设计中还存在很多不足之处,为了能更完善,请多提宝贵意见.谢谢!。

多姿多彩的图形(1)9378879087

多姿多彩的图形(1)9378879087

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 多姿多彩的图形(1)9378879087(初一数学)第四章图形认识初步(一) ------多姿多彩的图形(1)第周星期班别:姓名:学号:学习目标:1、了解什么是几何图形、立体图形、平面图形;2、了解立体图形的分类。

学习教学过程:环节一:1、生活中常见的图形,了解几何图形的概念(课件演示):2、立体图形和平面图形的概念:指出下列图形哪些是立体图形,哪些是平面图形(填编号):(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)其中立体图形是,平面图形是。

3、立体图形的分类:柱体锥体球体 4、练习:1/ 3指出下列立体图形的名称:A 组:1、练习:写出下列立体图形的名称:、下面几种图形:(1)三角形、(2)长方形、(3)正方体、(4)圆、(5)2圆锥、( 6)圆柱,其中属于立体图形的是:,平面图形是号)。

(填编3、说出与下列物体类似的几何体:(1)黑板擦;(2)茶杯;(3)漏斗;(4)苹果;(5)书本;(6)笔;(7)粉笔盒;(8)篮球;以上图形中,属于柱体的是,属于锥体的是,属于球体的是。

(只填序号) 4、下列立体图形中,称为圆柱体的是()。

(A)(B)(C)(D)、探究:怎样识别一个图形是否为多面体?图形的面是 B 组题:1围成的立体的面,像这样的立体图形,又称为多面体。

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 新年晚会,是我们最欢乐的时候.会场上,悬挂着五彩缤纷的小装饰,其中的立体图形。

宋娜 4.1 多姿多彩的图形 教学设计

宋娜  4.1 多姿多彩的图形 教学设计

课题: 4.1 多姿多彩的图形(第二课时)【教学内容】七年级上册119页多姿多彩的图形(义务教育课程标准实验教科书(人教版))【教案设计】苏州市盲聋学校:宋娜【教学对象】苏州市盲聋学校聋九年级【教材分析】本节主要是让聋生掌握从正面、左面、上面三个不同的方向观察一些简单的立体图形以及它们的组合得到的平面图形,并能画出该图形。

通过结合立体图形向平面图形的转化的学习来发展聋生的空间观念,这是图形和几何学的核心目标之一,初步培养了聋生的空间观念。

【学情分析】我班部分聋生在三、四年级已经接触并学习过观察一些简单的物体,但是由于学习的内容比较简单而且时间相隔太久,并且聋生基础比较差,特别是语言表达和想象力比较差,更加给教学增加了难度,为了顺利进行本节内容,采用了多媒体课件与大量的实物,通过小组协作让聋生亲自动手操作来辅助聋生理解。

【教学目标和要求】知识目标:1、初步体会到立体图形与平面图形之间的关系,为以后几何问题的学习打下基础;2、在立体图形与平面图形相互转换的过程中,初步建立空间观念,发展几何直觉。

能力目标:经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不同的结果,并能画出从不同方向看一些基本几何体及它们的简单组合得到的平面图形。

情感目标:经历从现实世界抽象出几何图形的过程,感受图形世界的丰富多彩,激发学生的学习兴趣,通过与其他同学交流活动,初步形成积极参与数学活动,主动与他人合作交流的意识。

【教学重点】能辨认从不同方向观察到的多个物体组合的形状,体会到物体的相对位置关系。

【教学难点】从具体实物中抽象出几何图形,能画出从正面、左面、上面观察一些立体图形及其组合的所得到平面图形。

【教学准备】教具:1.多媒体课件;2.正方体、长方体、圆柱、圆锥、棱柱、球等实物;3.图片、练习纸;学具:图画本、圆规、直尺、铅笔。

【教学安排】1、学生分为5个小组,进行分组学习;2、提前将学生练习纸分发给学生;3、学生提前预习本节内容。

人教2012版数学第四章几何图形初步第09讲多姿多彩的图形

人教2012版数学第四章几何图形初步第09讲多姿多彩的图形

第09讲多姿多彩的图形考点·方法·破译1.会识常见的几何图形,并了解它们的名称.2.会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图,会判断简单物体的三视图,以根据三视图描述基本几何体或实物原型.3.了解基本几何体与其三视图、展开图之间的关系.经典·考题·赏析【例1】根据下图回答问题(1)请说出①~⑥中几何体的名称,并简要叙述它们的一些特征.(2)将①~⑥中的几何体分类.【解法指导】认识几何体,以直观观察为主,一般特征也以观察者获得的形象加以表述即可.但对几何体尽可能地进行深入观察,全方位发现每个几何体的特征,从而逐步揭示其本质.解:(1) ①圆柱:特征如,两个底面是圆的几何体.②圆锥:特征如,像锥体,且底面是圆.③正方形:特征如,所有面都是正方形.④长方体:特征如,其侧面均为长方形.⑤棱柱:特征如,底面为多边形,侧面为长方形.⑥球:特征如,圆的实体.(2) ①③④⑤为一类,它们都是柱体.②是一类,它是锥体.⑥是一类,它是球体.【变式题组】01.下图四个几何体分别为长方体、圆柱体、球、三棱柱,这四个几何体中有三个从某个角度看到的图形都是一种几何图形,则另一个几何体是( )02.下列物体的形状类似于球体的是( )A.茶杯B.羽毛球C.乒乓球D.白炽灯泡03.用平面去截下列几何体,截面的形状不可能是圆的几何体是( )A.球B.圆锥C.圆锥D.正方体04.如图,立方体各面上的数字是连续的整数,如果相对的两个面上的两个数的和都相等,那么这三对数的总和是( )A.76 B.78 C.80 D.81 151411【例2】如图所示,仔细观察图中的两个物体,则它的俯视图是( )正面A.B.C.D.【解法指导】注意结合立体图形的形状并注意从某一方向看到图形的对应关系,抓住其主要特征,同时要分清不同视图的异同.故选择A.【变式题组】01.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是( )A.B.C.D.02.如图,这个几何体从上面看到的平面图形是( )03.如图所示,圆柱从上面看到的图形是图中的( )04.如图是由一些完全相同的小立方块搭成的几何体从正面、左面、上面看到的图形,那么搭成这个几何体所用的小立方块的个数是( )A.3个B.6个C.7个D.8个从正面看从左面看从上面看【例3】将如右图所示的Rt△ABC绕直角边BC旋转一周,所得几何体从左面看到的是( )【解法指导】以直角三角形的直角边AC、BC为旋转轴得到的都是圆锥,故选择A.【变式题组】01.将右图所示的直角梯形绕直线l旋转一周,得到的立体图形是( )02.若一个棱柱有12个顶点,则在下列说法正确的为( )A.这个棱柱有5个侧面B.这个棱柱有5条侧棱C.这个棱柱的底面是六边形D.这个棱柱的是一个12棱柱03.四棱柱的顶点数、棱数、面数分别为( )A.8,12,6 B.8,10,6 C.6,8,12 D.8,6,12 【例4】观察下列图形,其中不是正方体的展开图的为( )A.B.C.D.【解法指导】学习立体图形的展开图,要养成动手实验的好习惯,动手折一下往往会一目了然,故本题选择D.【变式题组】01.一个无盖的正方体盒子的平面展开图可以是下图中的( )A.只有图①B.图①、图②C.图②、图③D.图①、图③①②③02.如图所示的是一个由白纸拼成的立体图形,但有两面刷上黑色,将该立体图形展开后应该是( )A.B.C.D.03.下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体盒的是( )A.B.C.D.04.如图所示是三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是( )A.B.C.D.【例5】一个画家有14个边长为1米的正方体,他在地面上把它们摆成如右图的形状,然后他把露出的表面涂上颜色,那么被涂上颜色的总面积为( )A.19平方米B.21平方米C.33平方米D.34平方米【解法指导】本题把涂上颜色的面积一块一块加起来计算很麻烦,应从整体角度出发,把立体转化为平面,观察题图所给的几何体,从前、后、左、右四个方向都只能看到6个1×1的正方形,从上面看可以看到一个3×3的大正方形轮廓,所以被涂上颜色的总面积应为4×6×1×1+3×3×1×1=33(平方米),故选C.【变式题组】01.如图是由若干个大小相同的小正方体堆砌而成的几何体.那么其三种视图中面积最小的是( )A.正视图B.左视图C.俯视图D.三种一样02.将一个底面直径为2 cm,高为2 cm的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图的面积为( )A.2πcm2B.3πcm2C.4πcm2D.5πcm203.一个大长方体是由四个完全一样的小长方体拼成的,如果每个小长方体的长、宽、高分别是3, 1,1那么这个大长方体的表面积可能有______种不同的值,其中最小值为______.【例6】李明为好友制作一个(右图)正方形礼品盒,六个面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )【解法指导】 本例主要考查立方体的展开图中对面、邻面的分布规律,可动手折叠发现答案,故应选择C .【变式题组】 01.已知一个正方体的每一面都填有唯一一个数字,且各相对面上所填的数互为倒数,若这个正方 体的平面展开图如右图所示,则A 、B 的值分别是( )A .13,12B . 13,1C .12,13D .1,1302.在下图中添加一个小正方形,使该图经过折叠后能围成一个四棱柱,不同的添法共有( )A .7种B .4种C .3种D .2种03.将一张长与宽的比为2:1的长方形纸片按如图①、②所示的方式对折后,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是()【例7】 设5 cm ×4 cm ×3 cm 长方体的一个表面展开图的周长为n cm ,则n 的最 小值是______.【解法指导】 把展开图的周长用相应的代数式表示.长方体的展开图的周长为8c +4b +2a .故周长最小值为8×3+4×4+2×5=50,故填50 cm .【变式题组】01.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,如图现有一个边长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?BA 312102.如图是几个小立方块所搭成的几何体.从上面看图形,小正方形中的数字表示该位置的小立方块的个数,那么是这个几何体从正面看的图形的是( )2211A.B.C.D.03.如图①是由若干个小正方体所搭成的几何体,②是①从上面看到的图形,则①从左面看到的图形是( )①②A.B.C.D.演练巩固反馈提高01.水平位置的下列几何体,从正面看的图形不是长方形的是( )02.有一个外观为圆柱形的物体,它的内部构造从外部看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时(如图),得到了如图所示的(1)、(2)两组形状不同的截面,则这个物体的内部构造是( )A.空心圆柱B.空心圆锥C.空心球D.空心半球03.将如图所示图形折叠成立方体后,下面四个选项正确的是( )04.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是( )21231A .B .C .D .05.一个几何体的三视图如图所示,那么这个几何体是()A .B .C .D .06.如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是( )07.如下图所示的某一几何体的三视图,则这个几何体是( )A .圆柱B .圆锥C .正方体D .球 正视图 左视图 俯视图08.如图是一个几何体的三视图,根据图中提供的数据(单位: cm )可求得这个几何体的体积为 ( ) A .2 cm 2 B .4 cm 2 C .6 cm 2 D .8 cm 2 主视图 左视图 俯视图12 121109.如图所示是无盖长方体盒子的表面展开图(重叠部分不计)则盒子的容积为( )A .4B .6C .12D .1510.宜黄素有“华南虎之乡”的美誉,将“华南虎之乡美”六个字填写在一个正方体的六个面上,其平面展开图如图所示,那么在该正方体中,和“虎”字相对的字是______.11.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是______.主视图左视图俯视图12.设有一个边长为1的正三角形,记作A1,将A1的每条边三等分,在中间的线段上向外作正三角形,去掉中间的线段后所得到的图形记作A2;将A2的每条边三等分,重复上述过程,所得到的图形记作A3,现将A3的每条边三等分,重复上述过程,所得到的图形记作A4,则A4的周长是多少?14.由3个相同的小立方块搭成的几何体如图所示,请画出它的主视图和俯视图.主视方向15.一个五棱柱如图,它的底面边长都是4厘米,侧棱长6厘米,回答下列问题.(1)这个五棱柱一共有多少个面?它们分别是什么形状?哪些面的形状、面积完全相同?(2)这个五棱柱一共有多少条棱?它们的长度分别是多少?美乡之虎南华培优升级 奥赛检测01.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看到的图形为( )211423A .B .C .D .02.将圆柱形纸筒沿母线AB 剪开铺平,得到一个矩形(图1);如果将这个纸筒沿线路BMA (图2)剪开铺平,得到的图形是( ) A .平行四边形 B .矩形 C .三角形 D .半圆03.一根单线从纽扣的4个孔中穿过(每个孔只穿过一次),其正面情形如图所示,下面4个图形可能 是其背面情形的是( )04.用M 、N 、P 、Q 各代表四种简单几何图形(线段、正三角形、正方形、圆)中的一种,下图①至④是由M 、N 、P 、Q 中的两种图形组合而成的(组合用“&”表示).那么下列组合图形表示P &Q 的是 ( )05. 如图是一个立体图形的主视图,左视图(图中单位为厘米),则立体图形的体积为( )立方厘米. A .π B .2π C .3π D .4π06.如下左图是一个正方体的平面展开图,这个正方体是()A.B.C.D.07.把10个相同的小正方形按如图的位置堆放,它的外表会有若干个小正方形,如果将图中标有字母P的一个小正方体搬去,这时外表含有的小正方形的个数与搬运前相比( )A.不增不减B.减少1个C.减少2个D.减少3个08.如图,可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小值是______.09.设5 cm×4 cm×3 cm长方体的一个表面展开图的周长为n cm,则n的最小值是______.10.已知直四棱柱的底面是边长为a的正方形,高为h,体积为V,表面积等于S.(1)当a=2,h=3时,分别求V和S;(2)当V=12,S=32时,求2a+1h的值.P654321。

多姿多彩的图形教学设计

多姿多彩的图形教学设计

4.1多姿多彩的图形(第一课时几何图形)(一)、基础知识与基本技能1、基础知识:初步认识立体图形和平面图形的概念。

2、基本技能: 能从具体物体中抽象出立体图形,能举出类似于长方体、正方体、球、圆柱、圆锥、棱柱、棱锥的物体实例。

(二)、数学思考在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉。

通过观察、动手操作、类比、推理等数学活动,积累数学活动经验,感受数学思考过程的条理性,发展形象思维。

(三)、解决问题能从具体实物中抽象出几何图形,并用几何图形描述一些现实生活中的物体。

(四)、情感与态度领域1.积极参与教学活动过程,形成主动探究的意识和自觉认真的学习态度,丰富学生数学活动的成功体验,培养敢于面对学习困难的精神,激发学生对几何图形的好奇心,感受几何图形的美感,发展学生的审美情趣。

2.在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。

教学重点:1、识别一些基本几何体(直棱柱,圆柱,圆锥,球)以及它们的简单组合得到的平面图形,从现实物体中抽象出几何图形。

2、把立体图形转化为平面图形。

教学难点:立体图形与平面图形之间的转化。

教学媒体:多媒体辅助教学教学过程设计(一)、创设情境,引入新课在献给爱丽丝的钢琴曲伴奏下,演示课件展示多姿多彩的图片,学生欣赏图片。

[设计意图]鞍山城市建筑物、北京奥林匹克公园中心、世界各地名胜、食物、交通标志、剪纸等这些学习内容都是具有现实意义的。

新课的引入联系学生的生活现实与数学现实(小学已学过部分立体图形),因为在学生原有的认知结构中,对生活中的立体图形已有所认识,所以这些活动是建立在学生的认识发展水平和已有的知识经验基础上,通过欣赏图片激发学生主动回忆联想,增强学生的审美意识,激发学习兴趣。

(二)实物中抽象、概括出立体图形,引导学生认识立体图形1、找一找(1)下图中的一些物体形状与我们学过的哪些图形相类似?把相应的物体和图形连接起来。

教育部参赛_《多姿多彩的图形》_刘燕平

教育部参赛_《多姿多彩的图形》_刘燕平
由几何图形想象出实物的形状的过程,从而进一步丰富学生对图形的认识与感受。教师引导学生积极地参与到数学学习活动中,真正成为数学学习的主人,充分体现了学生的主体地位,有意识地让学生在抽象思维、情感态度等方面得到进步与发展。
教育方面:
1、培养学生好学自学的良好习惯。
2、激发学生热爱科学、热爱大自然、勇于探索大自然奥秘的热情。
发展方面:
培养学生的想象能力、思维能力、语言表达能力。
教材分析:
说明教材版本、选取的教学章节、以及教师个人对教材内容的理解分析,需要清晰的阐明教学重点、难点以及教学准备。
多姿多彩的图形中的几何图形,是人教版教材《数学》七年级上册第四章第一节的第一课时。所含内容在小学阶段学生已有了感性认识,本课时以现实背景为素材,让学生亲自经历将实际问题抽象成数学模型的过程,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对空间图形的认识和感受。本节课的知识是进一步学习平面几何以及立体几何的基础,具有承上启下的作用。本节课是学习空间与图形的第一课时需要在情感上激发学生兴趣,培养学生学习数学的热情。
过程与方法:能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富对几何形状的感性认识。
情感态度与价值观:经历从现实世界抽象出几何图形的过程,感受图形世界的丰富多彩,激发对学习空间与图形的兴趣,通过与其他同学交流活动,初步形成积极参与数学活动,主动与他人合作交流的意识。
教学重点//www、tudou、com/programs/view/hI4Z8fvSKms/
(八)教学反思:
“动手实践、自主探索与合作交流是学生学习数学的重要方式。”为了体现新课标理念,在设计本课时,从学生身边熟悉的物体着手,提供大量的实物与图片,注重所学知识与生活实际的联系,学生在教师的引导下,经历观察、想象、实践、交流等数学活动,识别立体图形与平面图形。让学生经历由实物的形状想象出几何图形,

人教版-数学-七年级上册--4.1多姿多彩的图形 点、线、面、体-

人教版-数学-七年级上册--4.1多姿多彩的图形 点、线、面、体-

人教版七年级上第四章第一节多姿多彩的图形教案第3课时 4.1.3 点、线、面、体【教学目标】:1、知识与技能:1.进一步认识体、面、线、点的概念.2.理解点、线、面、体之间的关系.2、过程与方法:1、通过学习点的关系,进一步发展学生抽象概括的能力和形象思维能力,发展从不同角度体现事物间联系的能力.2、通过对点、线、面、体的认识,使学生经历用图形描述现实.3、情感态度与价值观:1、通过联系现实世界中各种常见的几何体及情景让学生认识数学与现实生活的密切联系.2、发展学生与他人交流、合作的意识.【教学情景导入】:创设情境多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?观察、讨论.让学生共同体会“点动成线、线动成面、面动成体,’.让学生举出更多的“点动成线、线动成面、面动成体”的例子。

由学生说出点、线、面、体的动态关系【教学过程设计】:活动一:提出问题:(1)说出你熟悉的一些平面图形和立体图形.(2)知道这些立体图形是由什么围成的吗?(3)面与面相交的公共部分叫什么?(4)线与线相交的部分叫什么?(5)举出生活实际中点、线、面、体之间相互转化的实例由学生思考点、线、面、体之间的关系.学生思考回答长方体、圆柱、棱柱、三棱锥、圆锥、球等几何体是由那些平面图形旋转形成的.教师给出了体的概念,学生先独立观察,思考,然后再分组讨论,交流得出结论.(1)体是由面围成;面有两种:平面和曲面.(2)面与面相交的地方形成了线;线有直的也有曲的.(3)线与线相交的地方是点;点没有大小.老师总结出点、线、面、体之间的关系.活动二:.提出问题:1.笔尖可以看作一个点,这个点在纸上运动时,形成了什么?2.通过上述运动,你得出了什么结论?3.你能举出生活中的一些实例进一步说明这一结论吗?继续提出问题:(6)说出你熟悉的一些平面图形和立体图形.(7)知道这些立体图形是由什么围成的吗?(8)面与面相交的公共部分叫什么?(9)线与线相交的部分叫什么?(10)举出生活实际中点、线、面、体之间相互转化的实例学生思考回答长方体、圆柱、棱柱、三棱锥、圆锥、球等几何体是由那些平面图形旋转形成的.1.汽车雨刷可以看作什么几何图形?在挡风玻璃上运动时的路线形成什么几何图形?2.通过对上面的实例分析你得出了什么结论?3.你能举出生活中的一些实例进一步说明这一结论吗?1.长方形纸片绕它的一边旋转,形成了什么图形?2.通过对上面的实例分析你得出了什么结论?1.你能再举出一些例子进一步说明这一结论吗?练习:如图1,上面的平面图形绕轴旋转一周,可以得出下面的立体图形,把有对应关系的平面图形与立体图形连接起来.图2活动三:如图2,思考:为什么在这张地图上,北京只是一个点,而在那张地图上,北京却占了几乎整个版图?观察几何图片,你有什么发现?构成几何图形的基本元素是什么?活动四:小结本节课你学到了哪些知识?有什么收获?小结:几何图形都是由点、线、面、体组成的.点是构成图形的基本元素.师生共同小结:点、线、面、体之间的关系.注:(1)是否真正理解点、线、面、体之间的关系.(2)几何语言是否准确?(3)能否与实际结合:练习:“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.【课堂作业】1. 如图,上面的平面图形绕轴轴旋转一周,可以得出下面的立体图形,把有对应关系的平面图形与立体图形连接起来.2. 圆锥是由( )旋转而成的.A.直角三角形 B.正方形 C.长方形 D.梯形3. 有一个正方体,红、黄、蓝色的面各有两面,在这个正方体中,有一些顶点颜色都不同的面的交点,这种顶点最多有 个,最少有 个.4. 面与面相交成 ,线与线相交成 .5. 在几何体上找出下列事例:⑴两个平面相交得到一条直线;⑵一个平面与一个曲面相交得到一条曲的线;⑶两条直线相交得到一个点;⑷一条直线与一个平面相交得到一个点.答案:1、答案:①和D;②和C;③和E;④和A;⑤和B.2、答案:A.3、答案:8,2.4、答案:线,点.① ② ③ ④ ⑤A B C E5、答案:⑴棱柱的一个侧面与一个底面相交得到一条直线;⑵圆锥的底面与侧面相交得到一个圆,是曲的线;⑶长方体上任意两条相邻的直线,相交得到一个点;⑷棱柱的一条竖棱与底面相交得到一个点.【教学反思】在本节课的教学设计中,改变以往注重知识的传授的倾向,强调学生形成积极主动的学习态度,关注学生的学习兴趣和体验.数学学习活动中,应用多媒体给学生创设了生动的学习活动情景,引导学生观察生活中的美妙画面,激发学生的学习兴趣,对点、线、面、体知识有了初步的认识.再利用课件动态演示让学生从另外一个角度对所学知识进行再认识.在学习中注重让学生主动参与学习活动,观察感受,亲身经历体验图形的变化过程,通过自主、合作、探究学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力.。

知识树图片大全(1)

知识树图片大全(1)

点关于X 轴对称
点关于Y 轴对称
用坐标表示轴对称
定义
轴 对 称 变 换
距离最短的问题
作图
等边对等角
三线合一
性质
要素
等角对等边
判定
表示方法
概念
定义
等 腰



特例
等边三角形
九年级数学 上册
人教版(天津专用)
正多边形 和圆
与圆有关的 位置关系
弧长和 扇形面积

课题学习
中心对称
图形 的旋转
九 年( 级一 数册 学书 上)
D.航空运输
1.李鸿章1872年在上海创办轮船招商局,“前10年盈和,成
为长江上重要商局,招商局和英商太古、怡和三家呈鼎立
之势”。这说明该企业的创办
()
A.打破了外商对中国航运业的垄断
B.阻止了外国对中国的经济侵略
C.标志着中国近代化的起步
D.使李鸿章转变为民族资本家
解析:李鸿章是地主阶级的代表,并未转化为民族资本家; 洋务运动标志着中国近代化的开端,但不是具体以某个企业 的创办为标志;洋务运动中民用企业的创办在一定程度上抵 制了列强的经济侵略,但是并未能阻止其侵略。故B、C、D 三项表述都有错误。 答案:A
展开与 折叠
三视图
立体图形
点和直线 的位置关 系
平面图形
制作:南孙庄中学 数学组
的多 图姿 形多

寻找射
应用
线的方
表示 法
两直线的位
置关系
直线公理
射线
画法
点和直线的
位置关系
直线
线段
表示
性质 画法
表示
制作:南孙庄中学 数学组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1.1
北京
上 海
香 港
悉 尼
天坛祈年殿—中国
国家体育馆—中国
泰姬陵—印度
圆形斗兽场—意大利
白宫—美国
巴台农神庙—希腊
大英博物馆—英国
万里长城—中国
金字塔—埃及
地球—我们的家
常见的平面图形
有些几何图形(如线段、角、三角形、长方形、圆等) 的各部分都在同一平内,这样的几何图形叫做平面图形.
D.甲在丁的对面,乙在甲的右边,丙在丁的右边
10.从不同方向观察如图 9 所示的几何体,不可能 看到的是( B ).
11.猜谜语:一个物体,前看后看,左看右看,上 看下看,看来看去都一样,这个物体可能是什么几 何体?
知识梳理
★ 对于一些立体图形的问题,常常会把它们转化为 平面图形来研究和处理.从不同的方向看立体图 形,往往会看到不同的形状的平面图形. ★ 有些立体图形是由一些平面图形围成的,将它们 的表面适当剪开,可以展成平面图形,这样的平面 图形称为相应立体图形的展开图.
①从上面看,②从正面看,③从左面看.
7.下列哪个图形不是三棱柱的表面展开图( C ).
8.如图 7 是一个由 4 个正方体组成的立体图形, 分别是从正面、左面、上面看这个图形,各能得到 什么平面图形?
如图 1.
拓展应用
9.甲、乙、丙、丁四人分别面对面坐在一张四边 形桌子旁边如图 8 所示,桌上一张纸上写着字母 “W”.甲说他看到的是“W”,乙说他看到的是“ ”, 丙说他看到的是“ ”,丁说看到的是“M”,则下列 说法正确的是( D ). A.丙在乙的对面,丙的左边是甲,右边是乙 B.甲在乙的对面,甲的右边是丙,左边是丁 C.甲在丁的对面,乙在甲的左对,丙在丁的右边
正方体的11种展开图
1.“141型”,中间一行4个作侧面,上下两个各作为上下底面, 共有6种基本图形。
知 识 拓 展 2.“132型”,中间3个作侧面,共3种基本图形。
3.“222型”,两行只能有1个正方形相连。
4.“33型”,两行只能有1个正方形 相连。
圆锥 棱锥 圆台
三棱锥
四棱锥 五棱锥 六棱锥 ……
台体
棱台
现在你知道了吗?
1.常见的立体图形有那些?常见的平 面图形有那些?
2.生活中很多图案都由简单的几何图 形构成,我们也有能力设计美观、有 意义的图案.
想想看:
1.长方体、正方体、球、圆柱、圆锥等都是常见 的 立体 图形.
2.机器零件中的六角螺母、圆筒形的笔筒、足球、
考题链接
12.在下面图形中,不能折成正方体的是( B ).
13.如图 10,当这个图案被折起来组成一个正方体,数 字 5 会在与数学 2 所在的平面相对的平面上.
14.如图 11,图 A是一组立方块,请指出 B,C 图各是 从哪个方向看到的图形.
B.从正面看,C.从上面看.
15.用五个小正方形搭成如图 12 所示的几何体,请画 出分别从正面、左面、上面看它所得到的平面图形.
火柴盒、圣诞帽中,类似于棱柱的物体
有 机器零件中的六角螺母,火柴盒 ,类似于球体
的 物 体 有 足球
,类似于圆锥的物体
有 圣诞帽 ,类似于圆柱的物体有 圆筒形的笔筒 .
3.从上面观察图 1 中的四个实物,得到什么平面 图形,请将相应的图形连接起来:
典型问题

【问题 2】如图 4 所示,将一个正方体的表面沿某 些棱剪开,展开一个平面图形,回答下列问题:
长方体
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
长方体
正方体
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
长方体
正方体
圆柱体
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
长方体
正方体
球 圆柱体
生活中你会常见很多几何体,由下列几何 体想象出你熟悉的实物吗?
(1)正方体展开能得到图 4 甲、图 4 乙中的平面图 形吗?(2)图 4 丙、图 4 丁中的图形经过折叠能否 围成一个正方体?

技能训练
4.圆柱的侧面展开图是( D ).
A.等腰三角形
B.等腰梯形
C.扇形
D.长方形
5.如图 5,分别从正面、左面、上面看都不能得 到的平面图形是( C ).
6.如图 6 中的①,②,③分别是从哪个方向看到 的六棱柱 A所得到的平面图形,请在相应的横线 上分别写出.
长方体
正方体
圆柱体

圆锥体
圆台体
下列实物与给出的哪个几何体相似?
四棱锥
三棱柱
六棱柱
立体图形与平面图形
图中的一些物体与我们学过的哪些图形相类似?把相应的物体和图形连接 起来
你还能再举出一些类似于这些图形的物体吗?
常见立体图形的归类
柱体 球体
三棱柱 棱柱
圆柱 四棱柱 五棱柱 六棱柱
……
立体图形
锥体
三角形
长方形
五边形
圆形
正方形
六边形
找一找:有哪些熟悉的平面图形?
常见的立体图形
有些几何图形(如长方体、正方体、圆柱、圆锥、球等) 的各部分不都在同一平内,这样的几何图

圆锥
圆台
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
生活中你会常见很多实物,由下列实物能 想象出你熟悉的几何体吗?
相关文档
最新文档