第三章基本初等函数(1)导学案(人教B版)

合集下载

高中数学第三章基本初等函数Ⅰ章末分层突破学案新人教B版必修1

高中数学第三章基本初等函数Ⅰ章末分层突破学案新人教B版必修1

第三章基本初等函数(Ⅰ)[自我校对]①分数指数幂②互为反函数③对数函数④解析式y =log a x (a >0,a ≠1) ⑤log a N ⑥解析式y =x α⑦越来越慢⑧越来越快爆炸式增长握各种变形.如N 1b=a ,a b=N ,log a N =b (其中N >0,a >0,a ≠1)是同一数量关系的不同表示形式,因此在许多问题中要能熟练进行它们之间的相互转化,选择适合题目的形式进行运算.【精彩点拨】 (1)利用对数的运算法则、对数恒等式即可得出; (2)利用指数幂的运算法则即可得出.【规范解答】(1)原式=log 322×8329-3=2-3=-1.-1+116+18+110=14380.[再练一题] 1.计算:【解】 (1)原式=-4-1+12×(2)4=-3.)时要借助于指数、对数函数的单调性.涉及指数、对数函数的值域问题有两个类型,一是形如y =af (x )和y =log a f (x )的函数,一般要先求f (x )的值域,然后利用指数、对数的单调性求解;二是形如y =f (a x)和y =f (log a x )的函数,则要根据a x和log a x 的范围,利用函数y =f (x )的性质求解.(2)已知-3≤log 12x ≤-32,求函数f (x )=log 2x 2·log 2x4的最大值和最小值.【精彩点拨】(2)由f (x )=log 2x 2·log 2x4=(log 2x -1)(log 2x -2)=(log 2x )2-3log 2x +2,结合二次函数的性质即可求解.【规范解答】故所求函数的值域为⎣⎢⎡⎦⎥⎤132,12.(2)∵-3≤log 12x ≤-32,∴32≤log 2x ≤3,∴f (x )=log 2x 2·log 2x 4=(log 2x -1)(log 2x -2)=(log 2x )2-3log 2x +2=⎝ ⎛⎭⎪⎫log 2x -322-14. 当log 2x =3时,f (x )max =2,当log 2x =32时,f (x )min =-14.[再练一题]【导学号:60210098】【解】 令k =2x(0≤x ≤2),∴1≤k ≤4,则y =22x -1-3·2x+5=12k 2-3k +5.又y =12(k -3)2+12,k ∈[1,4],∴y =12(k -3)2+12在k ∈[1,3]上是减函数,在k ∈[3,4]上是增函数,∴当k =3时,y min =12;当k =1时,y max =52.即函数的最大值为52,最小值为12.用函数的单调性进行转化,也可利用图象解决,对含参数的问题进行分类讨论,同时还要注意变量本身的取值范围,以免出现增根.对于图象的判断与选择可利用图象的变换、也要重视利用特殊点与选择题中排除法的应用.当0<x ≤12时,4x<log a x ,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝⎛⎭⎪⎫22,1 C .(1,2) D .(2,2)【精彩点拨】 由指数函数和对数函数的图象和性质,将已知不等式转化为不等式恒成立问题加以解决即可.【规范解答】 当0<x ≤12时,1<4x ≤2,要使4x<log a x ,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x ,∴⎩⎪⎨⎪⎧0<a <1,log a a 2<log a x ,即⎩⎪⎨⎪⎧0<a <1,a 2>x 对0<x ≤12时恒成立,∴⎩⎪⎨⎪⎧0<a <1,a 2>12,解得22<a <1,故选B. 【答案】 B [再练一题]3.若log a 2<0(a >0,且a ≠1),则函数f (x )=ax +1的图象大致是( )【解析】 由log a 2<0(a >0,且a ≠1),可得0<a <1,函数f (x )=a x +1=a ·a x,故函数f (x )在R 上是减函数,且经过点(0,a ),故选A. 【答案】 A(1)比较两数(式)或几个数(式)大小问题是本章的一个重要题型,主要考查幂函数、指数函数、对数函数图象与性质的应用及差值比较法与商值比较法的应用.常用的方法有单调性法、图象法、中间搭桥法、作差法、作商法.(2)当需要比较大小的两个实数均是指数幂或对数式时,可将其看成某个指数函数、对数函数或幂函数的函数值,然后利用该函数的单调性比较.(3)比较多个数的大小时,先利用“0”和“1”作为分界点,即把它们分为“小于0”,“大于等于0,小于等于1”,“大于1”三部分,然后再在各部分内利用函数的性质比较大小.比较下列各组中两个值的大小: (1)1.10.9,log 1.10.9,log 0.70.8; (2)log 53,log 63,log 73.【精彩点拨】 利用指数函数、对数函数、幂函数的性质进行比较.【规范解答】 (1)∵1.10.9>1.10=1,log 1.10.9<log 1.11=0,0=log 0.71<log 0.70.8<log 0.70.7=1,∴1.10.9>log 0.70.8>log 1.10.9.(2)∵0<log35<log36<log37,∴log53>log63>log73.[再练一题]4.已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )A.a>b>c B.b>a>cC.b>c>a D.c>b>a【解析】∵a=log20.3<log21=0,b=20.3>20=1,0<c=0.30.2<0.30=1,∴b>c>a.故选C.【答案】 CA.a<b<c B.a<c<bC.b<c<a D.b<a<c【解析】【答案】 D注重理解和掌握分类的原则、方法与技巧,做到确定对象的全面,明确分类的标准,不重不漏地分类讨论.在初等函数中,分类讨论的思想得到了重要的体现,可根据函数的图象和性质,依据函数的单调性分类讨论,使得求解得以实现.(1)求m的值,并确定f(x)的解析式;(2)若g(x)=log a[f(x)-ax](a>0,且a≠1)在[2,3]上为增函数,求实数a的取值范围.【精彩点拨】(1)结合f(3)<f(5),与函数f(x)的奇偶性,分类讨论确定m的值及f(x)的解析式.(2)由g(x)为增函数,结合a讨论,求出a的取值范围.【规范解答】<m <32. ∵m ∈N ,∴m =0或1.综上,m =1,此时f (x )=x 2.(2)由(1)知,当x ∈[2,3]时,g (x )=log a (x 2-ax ).①当0<a <1时,y =log a u 在其定义域内单调递减,要使g (x )在[2,3]上单调递增,则需u (x )=x 2-ax 在[2,3]上单调递减,且u (x )>0.∴⎩⎪⎨⎪⎧ a 2≥3,u 3 =32-3a >0,无解;②当a >1时,y =log a u 在其定义域内单调递增,要使g (x )在[2,3]上单调递增,则需u (x )=x 2-ax 在[2,3]上单调递增,且u (x )>0.∴⎩⎪⎨⎪⎧a 2≤2,u 2 =22-2a >0,解得a <2.∴实数a 的取值范围为1<a <2. [再练一题]6.设a >0且a ≠1,若P =log a (a 3+1),Q =log a (a 2+1),试比较P 、Q 的大小. 【解】 当0<a <1时,有a 3<a 2,即a 3+1<a 2+1. 又当0<a <1时,y =log a x 在(0,+∞)上单调递减, ∴log a (a 3+1)>log a (a 2+1),即P >Q ; 当a >1时,有a 3>a 2,即a 3+1>a 2+1.又当a >1时,y =log a x 在(0,+∞)上单调递增, ∴log a (a 3+1)>log a (a 2+1),即P >Q .综上可得P>Q.1.函数y =2x 2-e |x |在[-2,2]的图象大致为( )【解析】 ∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数,又f (2)=8-e 2∈(0,1),故排除A ,B.设g (x )=2x 2-e x ,则g ′(x )=4x -e x.又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C.故选D.【答案】 D2.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,12 B.⎝ ⎛⎭⎪⎫-∞,12∪⎝ ⎛⎭⎪⎫32,+∞C.⎝ ⎛⎭⎪⎫12,32D.⎝ ⎛⎭⎪⎫32,+∞ 【解析】 因为f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,所以f (-x )=f (x ),且f (x )在(0,+∞)上单调递减.由f (2|a -1|)>f (-2),f (-2)=f (2)可得2|a -1|<2,即|a -1|<12,所以12<a <32.【答案】 C3.某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( )【导学号:97512060】A .2018年B .2019年C .2020年D .2021年【解析】 设2015年后的第n 年该公司投入的研发资金开始超过200万元.由130(1+12%)n >200,得1.12n >2013,两边取常用对数,得n >lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n ≥4,∴从2019年开始,该公司投入的研发资金开始超过200万元.【答案】 B4.已知点(3,9)在函数f (x )=1+a x 的图象上,则f (x )的反函数f -1(x )=________. 【解析】 ∵点(3,9)在函数f (x )=1+a x的图象上, ∴1+a 3=9,解得a =2,∴f (x )=1+2x∴f -1(x )=log 2(x -1) 【答案】 log 2(x -1)5.已知a ∈R ,函数f (x )=log 2⎝ ⎛⎭⎪⎫1x+a .(1)当a =1时,解不等式f (x )>1;(2)若关于x 的方程f (x )+log 2(x 2)=0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈⎣⎢⎡⎦⎥⎤12,1,函数f (x )在区间[t ,t +1]上的最大值与最小值的差不超过1,求a 的取值范围.【解析】 (1)由log 2⎝ ⎛⎭⎪⎫1x +1>1,得1x +1>2,解得{x |0<x <1}.(2)log 2⎝ ⎛⎭⎪⎫1x+a +log 2(x 2)=0有且仅有一解,等价于⎝ ⎛⎭⎪⎫1x+a x 2=1有且仅有一解,等价于ax 2+x -1=0有且仅有一解.当a =0时,x =1,符合题意; 当a ≠0时,Δ=1+4a =0,a =-14.综上,a =0或-14.(3)当0<x 1<x 2时,1x 1+a >1x 2+a ,log 2⎝ ⎛⎭⎪⎫1x 1+a >log 2⎝ ⎛⎭⎪⎫1x 2+a ,所以f (x )在(0,+∞)上单调递减.函数f (x )在区间[t ,t +1]上的最大值与最小值分别为f (t ),f (t +1).f (t )-f (t +1)=log 2⎝ ⎛⎭⎪⎫1t +a -log 2⎝ ⎛⎭⎪⎫1t +1+a ≤1即at 2+(a +1)t -1≥0, 对任意t ∈⎣⎢⎡⎦⎥⎤12,1成立.因为a >0,所以函数y =at 2+(a +1)t -1在区间⎣⎢⎡⎦⎥⎤12,1上单调递增,所以t =12时,y 有最小值34a -12,由34a -12≥0,得a ≥23.故a 的取值范围为⎣⎢⎡⎭⎪⎫23,+∞.。

人教B版高中数学必修一《第三章 基本初等函数(Ⅰ) 3.3 幂函数》_13

人教B版高中数学必修一《第三章 基本初等函数(Ⅰ) 3.3 幂函数》_13

幂 函 数一、教材分析了三个特殊函数:二次函数、指数函数和对数函数,对怎样研究函数已经有了清晰的思路和方法.教材将幂函数放在指数函数和对数函数的学习之后,原因有三:第一,幂函数中有一特殊函数21x y =,学生在没有学习分数指数幂之前,不能从根本上理解此式;第二,学生在初中已经学习了12,,-===x y x y x y 三个简单的幂函数,在第一章中也通过信息技术应用知晓了函数3x y =,对它们的图象和性质已经有了一定的直观认知,现在明确提出幂函数的概念,有助于学生形成系统的知识结构;第三,有了之前的铺垫,幂函数的学习过程可以类比二次函数、指数函数、对数函数的研究方法,渗透分类讨论、数形结合的数学思想,达到培养学生归纳、概括的能力的目的,使学生熟练的利用它们解决一些实际问题,体会从特殊到一般的研究过程,进一步树立利用函数的定义域、值域、奇偶性与单调性研究一个未知函数的意识,以便能为研究一般函数图象与性质提供一个可操作性步骤,从这个角度看,本节课的教学更是一个对学生研究函数的方法和能力的综合评测,是对之前研究函数的一个升华.二、教学目标1.知识与技能目标了解幂函数的概念, 会画五个简单的幂函数12132,,,,-=====x y x y x y x y x y 的图象,能根据图象概括出幂函数的一般性质,同时能应用幂函数的图象和性质解决相关的简单问题; 2.过程与方法目标引导学生从具体幂函数的图象与性质中归纳出共性,培养学生的识图能力和抽象概括能力,培养学生数形结合的意识;通过对幂函数的学习,了解类比法在研究问题中的作用,使学生进一步熟练掌握研究一般函数的思想方法;3.情感、态度与价值观目标通过师生、生生彼此之间的讨论、互动,引导学生主动参与作图、分析图象的特征,培养学生合作、交流、探究的意志品质,并在研究函数变化的过程中体会事物的量变、质变规律,感受数学的对称美、和谐美,同时信息技术的应用也会激发学生的求知欲望.三、教学重难点:重点:通过具体实例认识幂函数的概念,研究其性质,体会图象的变化规律. 难点:幂函数的图象与性质的简单应用 重、难点突破措施: 1.以情感人,以理醒人创设情境中:问题开题,扣人心弦;层层探究中:分类探究,步步为营,丝丝入扣. 2.数形结合现代的多媒体技术直观、形象展示幂函数的指数与图象之间的关联,突破重难点.四、设计理念与任务分析本节课遵循教师为主导,以学生为主体的原则,采用学生自主探究式的教学方法,重视思维发生的过程,注重提高学生的数学思维能力,注重发展学生的创新意识,注重信息技术与数学课程的有效整合,充分体现数学的应用价值、思维价值.围绕本节课的教学重点,教学过程中以“问题串” 的形式展开教学,逐步引导学生观察、思考、归纳、总结。

人教B版第三章基本初等函数

人教B版第三章基本初等函数

第三章 基本初等函数(1)一、选择题.1.对数式log (2+3)的值是( ). A .-1B .0C .1D .不存在2.函数y =a x 在[0,1]上的最大值与最小值和为3,则函数y =3a x -1在[0,1]上的最大值是( ).A .6B .1C .3D .233.函数y =a x -2+1(a >0,a ≠1)的图象必经过点( ). A .(0,1)B .(1,1)C .(2,0)D .(2,2)4.设f (x )=(21)|x |,x ∈R ,那么f (x )是( ). A .奇函数且在(0,+∞)上是增函数 B .偶函数且在(0,+∞)上是增函数 C .奇函数且在(0,+∞)上是减函数 D .偶函数且在(0,+∞)上是减函数5.设a >0,a ≠1,函数y =lo g a x 的反函数和y =lo g a x 1的反函数的图象关于( ).A .x 轴对称B .y 轴对称C .y =x 对称D .原点对称6.函数y =log a (1-x 1)的定义域为( ). A .{x | x <0}B .{x |x >1}C .{x |0<x <1}D .{x |x <0或x >1}7.设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( ). A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)8.函数f (x )=a x -b 的图象如图,其中a ,b 为常数,则下列结论正确的是( ). A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <032 (第8题)9.如图是幂函数y =x n 在第一象限内的图象,已知n 取 ±2,±21四值. 则相应于曲线C 1,C 2,C 3,C 4的n 依次为( ).A .-2,-21,21,2B .2,21,-21,-2C .-21,-2,2,21D .2,21,-2,-2110.若函数f (x )=121+x ,则该函数在(-∞,+∞)上是( ). A .单调递减无最小值 B .单调递减有最小值 C .单调递增无最大值D .单调递增有最大值二、填空题.1.函数y =-2-x 的图象一定过____象限.2.当x >0时,函数f (x )=(a 2-1)x 的值总大于1,则a 的取值范围是_________. 3.函数f (x )=(a 2-1)x 是减函数,则a 的取值范围是 .4.函数y =3 是增函数的区间是 .5.函数y =)2(log 121x -的定义域是 .6.设f (x )是定义在R 上的奇函数,若当x ≥0时,f (x )=lo g 3(1+x ),则f (-2)=_____. 三、解答题.1.如果函数 y =a 2x +2a x -1(a >0且a ≠1)在区间[-1,1]上最大值为14,求a 的值.2.求函数y =123-x 的定义域及单调递增区间.(第9题)254x x --3.不等式x 2-log m x <0在(0,21)内恒成立,求实数m 的取值范围.4.已知函数f (x )=x23212++-p p (p ∈Z )在(0,+∞)上是增函数,且在其定义域上是偶函数. 求p 的值,并写出相应的函数f (x )的解析式.参考答案一、选择题. 1. A【解析】log 32-(2+3)=log 32-(2-3)-1=-1. 2.C【解析】由于函数y =a x 在[0,1]上是单调的,因此最大值与最小值都在端点处取到,故有a 0+a 1=3,解得a =2,因此函数y =13-x a 在[0,1]上是单调递增函数,最大值当 x =1时取到,即为3.3.D【解析】由于函数y =a x 经过定点(0,1),所以函数y =a x -2经过定点(2,1),于是函数y =a x -2+1经过定点(2,2).4.D【解析】因为函数 f (x )=(21|x | )=⎪⎩⎪⎨⎧ ,图象如下图.由图象可知答案显然是D . 5.B【解析】解法一:y =log a x 的反函数为y =a x ,而y =log a x1的反函数为y =a -x ,因此,它们关于 y 轴对称.解法二:因为两个原函数的图象关于x 轴对称,而互为反函数的图象关于直线y =x 对称,因此y =log a x 的反函数和y =log ax1的反函数的图象关于y 轴对称. 6.D【解析】由题意,得1-x 1>000x x x-->⇔>x 1->0,∴x <0或x >1.7.C【解析】∵0<a <1,f (x )<0,∴a 2x -2a x -2>1,解得a x >3或a x <-1(舍去), ∴x <log a 3.8.D(第4题)(21)x(x ≥0)2x (x <0)【解析】从曲线走向可知0<a <1,从曲线位置看,是由y =a x (0<a <1)向左平移|-b |个单位而得到,故-b >0,即b <0.9.B【解析】在第一象限,在直线x =1的右侧,逆时针方向幂指数是由小到大,由负到正.观察x >1时图象,可知C 1,C 2,C 3,C 4对应的n 依次从大到小. 10.A【解析】由于2x +1在(-∞,+∞)上大于0单调递增,所以f (x )=121+x 单调递减,(-∞,+∞)是开区间,所以最小值无法取到. 二、填空题. 1.三、四【解析】y =-2-x =-(21)x ,它可以看作是指数函数y =(21)x 的图象作关于x 轴对称的变换,因此一定过第三象限和第四象限.2.a >2或a <-2【解析】所给函数为指数函数f (x )=A x ,由指数函数的性质结合图象可以得到A >1, 即a 2-1>1,解得a >2或a <-2.3.(1,2)∪(-2,-1)【解析】由已知得0<a 2-1<1,即1<a 2<2. 4.(-∞,-25) 【解析】即求二次函数y =4-5x -x 2的增区间.5.{x |1<x <2}【解析】x 应满足⎪⎩⎪⎨⎧--0>20 )>(2log 21x x 即⎩⎨⎧--0>21<2x x 解得1<x <2.故函数的定义域为{x |1<x <2}. 6.-1【解析】因为x ≥0时,f (x )=log 3(1+x ),又f (x )为奇函数,所以f (-x )=-f (x ),设(第9题)(第4题)x <0,所以f (x )=-f (-x )=-log 3(1-x ),所以f (-2)=-log 33=-1.三、解答题.1.a =3或31【解析】令 t =a x ,y =t 2+2t -1 ∵t >0,且y (t )在(0,+∞)上单调递增,解方程t 2+2t -1=14得正根为t =3.当a >1时,a 1=3,a =3;当 0<a <1时, a -1=3,a =312.定义域为x ∈(-∞,-1]∪[1,+∞);单调递增区间为[1,+∞). 【解析】要使函数有意义必须x 2-1≥0,∴x ≤-1或x ≥1,定义域为x ∈(-∞,-1]∪[1,+∞).令u =12-x ,则y =3u .由于y =3u 是增函数,故只须求u =12-x 的递增区间即可,当x ∈[1,+∞),u =12-x 单调递增,故y =123-x 的单调递增区间为[1,+∞).3.[161,1) 【解析】由x 2-log m x <0得x 2<log m x .在同一坐标系中作y =x 2和y =log m x 的图象,要使x 2<log m x 在(0,21)内恒成立,只要y =log m x 在(0,21)内的图象在y =x 2的上方,于是0<m <1, ∵x =21时y =x 2=41, ∴只要x =21时y =log m 21≥41=log m m 41.∴21≤m 41,即161≤m , 又0<m <1,∴161≤m <1.故所求m 的取值范围是[161,1). (第3题)4.p =1,f (x )=x 2【解析】①若y =x在x ∈(0,+∞)上是递增函数,则有α>0. ∵ f (x )在(0,+∞)上是增函数,∴-21p 2+p +23>0. 解得:-1<p <3,而p ∈Z , ∴ p =0,1,2.当p =0或2时,f (x )=x 23不是偶函数,故p =1,此时f (x )=x 2.。

高中数学 第三章 基本初等函数(Ⅰ) 3.2.1 对数及其运算 第2课时 对数式的运算学案 新人教B

高中数学 第三章 基本初等函数(Ⅰ) 3.2.1 对数及其运算 第2课时 对数式的运算学案 新人教B

第2课时 对数式的运算1.了解自然对数的概念及表示. 2.理解对数的运算性质. 3.掌握换底公式及对数的运算.1.对数的运算法则若a >0,a ≠1,M >0,N >0自然语言数学表达式积的对数log a (MN )=log a M +log a N ,log a (N 1·N 2·…·N k )=log a N 1+log a N 2+…+log a N k (N i >0,i =1,2,…,k )正因数积的对数等于同一底数的各因数对数的和 商的对数log a M N=log a M -log a N两个正数商的对数等于同一底数的被除数的对数减去除数的对数幂的对数 log a M n=n log a M (n ∈R )正数幂的对数等于幂指数乘以同一底数幂的底数的对数2.换底公式一般地,log b N =log a Nlog a b ,其中 b >0,b ≠1,N >0,a >0,a ≠1,这个公式称为对数的换底公式.换底公式两个重要的推论: (1)log a m b n=n mlog a b ; (2)log a b =1log b a. 3.自然对数(1)以e 为底的对数叫做自然对数,log e N 通常记作ln_N . (2)自然对数与常用对数的关系:ln N ≈2.302 6lg N .1.下列各式中均有意义,结论正确的是( )A .log a y =2log a yB .log a x n=n log a x C .-log a x =1log a xD .log a (x +y )=log a x +log a y 答案:B2.已知lg 2=a ,lg 3=b ,用a ,b 表示log 125=______. 解析:log 125=lg 5lg 12=1-lg 22lg 2+lg 3=1-a2a +b .答案:1-a2a +b3.若M 、N 同号,则式子log a (M ·N )=log a M +log a N 成立吗? 解:只有M 、N 同为正数时才成立.对数的运算法则计算下列各式的值: (1)log 2748+log 212-12log 242; (2)lg 52+23lg 8+lg 5·lg 20+lg 22;(3)lg 243lg 9; (4)lg 27+lg 8-3lg 10lg 1.2.【解】 (1)原式=log 27×1248×42=log 212=-12.(2)原式=2lg 5+2lg 2+lg 5·(1+lg 2)+lg 22 =2(lg 5+lg 2)+lg 5+lg 2(lg 5+lg 2) =2+lg 5+lg 2=2+1=3. (3)原式=lg 35lg 32=5lg 32lg 3=52. (4)原式=lg (33)12+lg 23-3lg 1012lg3×2210=32(lg 3+2lg 2-1)lg 3+2lg 2-1=32.(1)利用对数的运算法则,可以把乘、除、乘方的运算转化为对数的加、减、乘运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度.(2)要熟练掌握公式的正用和逆用.(3)在使用公式的过程中,要注意公式成立的条件. (4)对于同底的对数的化简,常用方法是:计算下列各式的值:(1)2lg 2+lg 31+12lg 0.36+13lg 8;(2)lg(3+5+ 3-5); (3)log 28+43+log 28-48. 解:(1)原式=lg 4+lg 31+lg 0.6+lg 2=lg 12lg (10×0.6×2)=lg 12lg 12=1.(2)原式=12lg(3+5+ 3-5)2=12lg[3+5+3-5+2(3+5)(3-5)] =12lg(6+24)=12lg 10=12. (3)原式=log 2(8+43·8-43) =log 282-48=log 24=2.换底公式的应用计算:(1)log 1627·log 8132;(2)(log 32+log 92)(log 43+log 83). 【解】 (1)log 1627·log 8132=lg 27lg 16×lg 32lg 81=lg 33lg 24×lg 25lg 34=3lg 34lg 2×5lg 24lg 3=1516. (2)(log 32+log 92)(log 43+log 83) =(log 32+log 32log 39)⎝ ⎛⎭⎪⎫log 23log 24+log 23log 28=(log 32+12log 32)⎝ ⎛⎭⎪⎫12log 23+13log 23 =32log 32×56log 23 =54×lg 2lg 3×lg 3lg 2=54.应用换底公式的技巧及注意事项(1)换底公式的作用是将不同底数的对数式转化成同底数的对数式,将一般对数式转化成自然对数式或常用对数式来运算.要注意换底公式的正用、逆用及变形应用.(2)题目中有指数式和对数式时,要注意将指数式与对数式进行互化,统一成一种形式.1.log 89log 23的值是( )A .23 B .32 C .1D .2解析:选A .法一:将分子、分母利用换底公式转化为常用对数,即log 89log 23=lg 9lg 8lg 3lg 2=2lg 33lg 2·lg 2lg 3=23. 法二:将分子利用换底公式转化为以2为底的对数, 即log 89log 23=log 29log 28log 23=2log 233log 23=23.2.计算:log 52·log 79log 513·log 734.解:原式=log 52log 513·log 79log 734=log 132·log 349=log 13212·3log 2232=-12·log 32·3log 23=-32.对数运算中的综合问题若a ,b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值.【解】 原方程可化为2(lg x )2-4lg x +1=0, 设t =lg x ,则原方程可化为2t 2-4t +1=0. 所以t 1+t 2=2,t 1t 2=12.由已知a ,b 是原方程的两个根, 则t 1=lg a ,t 2=lg b ,即lg a +lg b =2,lg a ·lg b =12,所以lg(ab )·(log a b +log b a ) =(lg a +lg b )⎝⎛⎭⎪⎫lg b lg a +lg a lg b=(lg a +lg b )[(lg b )2+(lg a )2]lg a lg b=(lg a +lg b )·(lg b +lg a )2-2lg a lg blg a lg b=2×22-2×1212=12.即lg(ab )·(log a b +log b a )=12.应用对数的运算性质解对数方程的三种方法(1)定义法:解形如b =log a f (x )(a >0,a ≠1)的方程时,常借助对数函数的定义等价转化为f (x )=a b求解.(2)转化法:形如log a f (x )=log a g (x )(a >0,a ≠1)的方程,等价转化为f (x )=g (x ),且⎩⎪⎨⎪⎧f (x )>0,g (x )>0求解. (3)换元法:适用于f (log a x )=0(a >0,a ≠1)形式的方程的求解问题,这类方程一般可通过设中间变量的方法(换元法)来解.1.方程log 4(3x -1)=log 4(x -1)+log 4(x +3)的解为________.解析:原方程可化为3x -1=(x -1)(x +3), 即x 2-x -2=0, 解得x =2或x =-1,而x =-1使真数3x -1和x -1小于0, 故方程的解是x =2. 答案:x =22.已知lg(x +2y )+lg(x -y )=lg 2+lg x +lg y ,求xy的值. 解:由已知条件得⎩⎪⎨⎪⎧x +2y >0,x -y >0,x >0,y >0,(x +2y )(x -y )=2xy ,即⎩⎪⎨⎪⎧x >y ,y >0,(x +2y )(x -y )=2xy , 整理得⎩⎪⎨⎪⎧x >y ,y >0,(x -2y )(x +y )=0,所以x -2y =0,所以xy=2.1.对于同底的对数的化简要用的方法是:(1)“收”,将同底的两对数的和(差)收成积(商)的对数;(2)“拆”,将积(商)的对数拆成两对数的和(差).2.对于常用对数的化简要创设情境充分利用“lg 5+lg 2=1”来解题. 3.对于多重对数符号对数的化简,应从内向外逐层化简求值.4.要充分运用“1”的对数等于0,底的对数等于“1”等对数的运算性质.1.在运算过程中避免出现以下错误: log a (MN )=log a M ·log a N .log a M N =log a M log a N.log a N n=(log a N )n.log a M ±log a N =log a (M ±N ).2.要特别注意它的前提条件:a >0,a ≠1,M >0,N >0,尤其是 M ,N 都是正数这一条件,否则 M ,N 中有一个小于或等于 0,就导致 log a M 或 log a N 无意义,另外还要注意,M >0,N >0 与 M ·N >0 并不等价.1.若a >0,a ≠1,x >0,y >0,x >y ,则下列式子中正确的个数是( ) ①log a x +log a y =log a (x +y ); ②log a x -log a y =log a (x -y ); ③log a x y=log a x ÷log a y ; ④log a (xy )=log a x ·log a y . A .0 B .1 C .2 D .3答案:A2.lg 8+3lg 5的值为( ) A .-3 B .-1 C .1D .3 解析:选D .lg 8+3lg 5=3(lg 2+lg 5)=3. 3.log 327=________. 答案:64.设2a =5b=10,则1a +1b=________.解析:因为2a=10, 所以a =log 210, 所以1a=lg 2,又因为5b=10,所以b =log 510, 所以1b=lg 5,所以1a +1b=lg 2+lg 5=lg(2×5)=lg 10=1. 答案:1[A 基础达标]1.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5D .6解析:选D .原式=lg 25lg 2·lg 22lg 3·lg 9lg 5=2lg 5lg 2·32lg 2lg 3·2lg 3lg 5=6. 2.设a >0,a ≠1,x ∈R ,下列结论错误的是( ) A .log a 1=0 B .log a x 2=2log a x C .log a a x=xD .log a a =1解析:选B .当x ≤0时,log a x 无意义,故选B . 3.如果lg 2=a ,lg 3=b ,则lg 12lg 15等于( )A .2a +b 1+a +bB .a +2b 1+a +bC .2a +b 1-a +bD .a +2b 1-a +b解析:选C .因为lg 2=a ,lg 3=b , 所以lg 12lg 15=lg 3+lg 4lg 3+lg 5=lg 3+2lg 2lg 3+1-lg 2=2a +b1+b -a.4.若lg x -lg y =a ,则lg ⎝ ⎛⎭⎪⎫x 23-lg ⎝ ⎛⎭⎪⎫y 23=( ) A .3a B .32a C .aD .a2解析:选A .原式=3lg x 2-3lg y2=3(lg x -lg 2)-3(lg y -lg 2) =3(lg x -lg y )=3a .5.已知2x=3,log 483=y ,则x +2y 等于( )A .3B .8C .4D .log 48解析:选A .因为2x=3, 所以x =log 23. 又log 483=y ,所以x +2y =log 23+2log 483=log 23+2(log 48-log 43) =log 23+2⎝ ⎛⎭⎪⎫32log 22-12log 23 =log 23+3-log 23=3.故选A .6.log 535-2log 573+log 57-log 51.8=________.解析:原式=(log 55+log 57)-2(log 57-log 53)+log 57-(log 59-log 55) =1+log 57-2log 57+2log 53+log 57-2log 53+1 =2. 答案:27.设10a=2,10b=3,则log 1815=________(用a ,b 表示). 解析:由10a=2,10b=3得a =lg 2,b =lg 3.所以log 1815=lg 15lg 18=lg 3+lg 5lg 2+lg 9=lg 3+1-lg 2lg 2+2lg 3=b +1-aa +2b. 答案:b +1-aa +2b8.已知m >0,且10x=lg(10m )+lg 1m,则x =__________. 解析:lg(10m )+lg 1m =lg 10+lg m +lg 1m=1,所以10x =1=100, 所以x =0. 答案:0 9.计算:(1)(log 43+log 83)(log 32+log 92)-log 12432;(2)(log 25+log 40.2)(log 52+log 250.5).解:(1)原式=⎝ ⎛⎭⎪⎫12log 23+13log 23·(log 32+12log 32)+log 2254 =⎝ ⎛⎭⎪⎫56log 23·⎝ ⎛⎭⎪⎫32log 32+54=56×32×lg 3lg 2×lg 2lg 3+54 =54+54=52. (2)原式=(log 25+12log 215)(log 52+12log 512)=(log 25+12log 25-1)(log 52+12log 52-1)=(log 25-12log 25)(log 52-12log 52)=14·log 25·log 52=14. 10.解下列关于x 的方程: (1)lg x -1=lg(x -1);(2)log 4(3-x )+log 0.25(3+x )=log 4(1-x )+log 0.25(2x +1). 解:(1)原方程等价于⎩⎨⎧x -1=x -1,x -1>0.解之得x =2.经检验x =2是原方程的解,所以原方程的解为x =2.(2)原方程可化为log 4(3-x )-log 4(3+x )=log 4(1-x )-log 4(2x +1). 即log 43-x 3+x =log 41-x2x +1.整理得3-x x +3=1-x2x +1,解之得x =7或x =0.当x =7时,3-x <0,不满足真数大于0的条件,故舍去. x =0满足,所以原方程的解为x =0.[B 能力提升]11.若 lg a ,lg b 是方程 2x 2-4x +1=0 的两个根,则 (lg a b )2的值等于() A .2 B .12C .4D .14解析:选A .由根与系数的关系,得 lg a +lg b =2,lg a ·lg b =12,所以(lg a b )2=(lg a -lg b )2=(lg a +lg b )2-4lg a ·lg b=22-4×12=2.12.若集合{x ,xy ,lg(xy )}={0,|x |,y },则log 2(x 2+y 2)=________.解析:由{x ,xy ,lg(xy )}={0,|x |,y }知:xy =1,此时两集合为{x ,1,0}={0,|x |,y },所以⎩⎪⎨⎪⎧y =-1x =-1, 从而log 2(x 2+y 2)=log 22=1.答案:113.已知log 89=m ,log 35=n ,试用m ,n 表示log 512.解:因为m =log 89=23log 23=23·lg 3lg 2, 所以lg 2=23mlg 3, 又n =log 35=lg 5lg 3,所以lg 5=n lg 3. 则log 512=lg 12lg 5=lg 3+lg 4lg 5=lg 3+43m lg 3n lg 3=1+43m n =3m +43mn. 14.(选做题)设a >0,a ≠1,x ,y 满足log a x +3log x a -log x y =3,用log a x 表示log a y ,并求当x 取何值时,log a y 取得最小值.解:由换底公式得log a x +3log a x -log a y log a x=3, 整理得:(log a x )2+3-log a y =3log a x , 所以log a y =(log a x )2-3log a x +3=(log a x -32)2+34. 所以当log a x =32,即x =a 32时,log a y 取得最小值34.。

高中数学第三章基本初等函数(Ⅰ)3.2对数与对数函数(1)第一课时同步练习新人教B版必修1

高中数学第三章基本初等函数(Ⅰ)3.2对数与对数函数(1)第一课时同步练习新人教B版必修1

3.2.1 对数及其运算第1课时1.若a 2=N(a>0且a≠1),则有( )A .log 2N =aB .log 2a =NC .log N a =2D .log a N =22.若log x 7y =z ,则( )A .y 7=x zB .y =x 7zC .y =7x zD .y =z 7x3.21+log 272的值等于( )A .272B .7 C.47D .144.若log 16x =-14,则x =________;若(2)x=12,则x =________.5.若log 2(x 2-4x +6)=1,则x =________.1.有下列说法:①零和负数无对数;②3log 3(-5)=-5成立;③任何一个指数式都可以化为对数式;④以10为底的对数叫做常用对数.其中正确命题的个数为( )A .1个B .2个C .3个D .4个2.下列指数式与对数式的互化中,不正确的一组是( )A .100=1与lg1=0B .27-13=13与log 2713=-13C .log 39=2与912=3D .log 55=1与51=53.在b =log (a -2)(5-a)中,实数a 的取值范围为…( ) A .a>5或a<2 B .2<a<5 C .2<a<3或3<a<5 D .3<a<44.计算3log 35+3log315=________.5.已知log 7[log 3(log 2x)]=0,那么x -12=________.6.已知log a 2=m ,log a 3=n ,求a 2m +n的值.7.求alog a b·log b c·log c N 的值.1.给出下列式子:①5log 512=12;②πlogπ3-1=13;③4log 4(-3)=-3;④xlog x 6=6.其中不正确的是( )A .①③ B.②③ C.③④ D.②④ 2.下列命题正确的是( )①对数式log a N =b(a>0,且a≠1)和指数式a b=N(a>0,且a≠1)是同一关系式的两种不同表达形式;②在同底条件下,对数式log a N =b 与指数式a b=N 可以互相转化;③若a b=N(a>0,且a≠1),则alog a N =N 一定成立; ④对数的底数是任意正实数. A .①② B.①②③④ C .①②③ D.④3.以6为底,216336的对数等于( )A.73B.113C.92D .2 4.设5lgx=25,则x 的值等于( ) A .10 B .±10 C.100 D .±100 5.log 6(log 4(log 381))=________.6.log 3(1-2x9)=1,则x =________.7.(1)求对数值:log 4381=________;log 354625=________.(2)求真数:log 3x =-34,则x =________;log 2x =78,则x =________.(3)求底数:log x 3=-35,则x =________;log x 2=78,则x =________.8.已知二次函数f(x)=(lga)x 2+2x +4lga 的最大值是3,求a 的值.9.已知log a b =log b a(a>0,a≠1;b>0,且b≠1),求证:a =b 或a =1b.10.已知lga 和lgb 是关于x 的方程x 2-x +m =0的两个根,而关于x 的方程x 2-(lga)x -(1+lga)=0有两个相等的实数根,求实数a ,b 和m 的值.答案与解析课前预习1.D 由对数式与指数式的互化易得.2.B log x 7y =z ⇔x z =7y ,∴x 7z=y.3.B 21+log 272=2·2log 272=2·72=7.4.12 -2 log 16x =-14⇔x =16-14=12,(2)x =12⇔x =log 212=log 2(2)-2=-2. 5.2 由log 2(x 2-4x +6)=1得x 2-4x +6=2,即x 2-4x +4=0,即(x -2)2=0,∴x =2. 课堂巩固1.B ③错误,如(-1)2=1就不能写成对数式.②错误,log 3(-5)无意义.2.C log 39=2的指数式应为32=9. 3.C 由对数的定义知⎩⎪⎨⎪⎧5-a>0,a -2>0,a -2≠1,解得⎩⎪⎨⎪⎧a<5,a>2,a≠3,∴2<a<3或3<a<5.4.655 ∵3log 35=5,3log 315=(3log 315)12=(15)12=55. ∴原式=5+55=655. 5.24由已知得log 3(log 2x)=1, ∴log 2x =3,则x =23.∴x-12=2-32=122=24.6.解:∵log a 2=m ,∴a m=2.又log a 3=n ,∴a n=3. ∴a 2m +n =(a m )2·a n =22·3=12.7.解:原式=(alog a b)log b c·log c N =blog b c·log c N =(blog b c)log c N =clog c N =N. 点评:重复使用对数恒等式即可得解;对数恒等式alog a N =N 中要注意书写格式. 课后检测1.C ③不正确,log 4(-3)无意义,∵负数和零无对数;④不正确,应在条件“x>0,且x≠1”的前提下计算.2.C ④中的底数应满足“大于0且不等于1”.3.A ∵216336=63623=63-23=673,∴log 6216336=log 6673=73.4.C 5lgx =25,∴lgx=2,即102=x. ∴x=100.5.0 原式=log 6[log 4(log 334)] =log 6(log 44) =log 61=0.6.-13 由已知得1-2x9=3,∴x=-13.7.(1)16 3 (2)1427278 (3)3-53 287(1)(43)16=34=81,∴log 4381=16;∵(354)3=625,∴log 354625=3.(2)由题意可得x =3-34=1427;由已知得x =278.(3)由已知得x -35=3,∴x=3-53;x 78=2,∴x=287.点评:对于对数和对数的底数与真数三者之间,已知其中两个就可求另外一个,关键是指数式与对数式的互化.8.解:∵f(x)的最大值为3,∴⎩⎪⎨⎪⎧lga<0,16lg 2a -44lga=3⇒(4lga +1)(lga -1)=0.∴lga=1(舍去)或lga =-14.∴a=10-14.9.证明:设log a b =log b a =k ,则b =a k ,a =b k,从而有b =(b k )k =bk 2.∵b>0,b≠1,∴k 2=1,即k =±1.当k =-1时,a =1b;当k =1时,a =b.∴a=b 或a =1b ,命题得证.10.解:由题意,得⎩⎪⎨⎪⎧ lga +lgb =1,lga·lgb=m ,(lga)2+4(1+lga)=0,①②③由③得(lga +2)2=0,∴lga=-2.∴a =1100.代入①得lgb =1-lga =3,∴b=103=1 000. 代入②得m =lga·lgb=(-2)×3=-6.∴a=1100,b =1 000,m =-6.。

高中数学人教B版教材目录word

高中数学人教B版教材目录word

高中数学人教B版教材目录
高中数学(B版)必修一
第一章集合第二章函数第三章基本初等函数(Ⅰ)
高中数学(B版)必修二
第一章立体几何初步第二章平面解析几何初步
高中数学(B版)必修三
第一章算法初步第二章统计
高中数学(B版)必修四
第一章基本初等函(Ⅱ) 第二章平面向量第三章三角恒等变换
高中数学(B版)必修五
第一章解三角形第二章数列第三章不等式
(文)选修1-1
第一章常用逻辑用语第二章圆锥曲线与方程第三章导数及其应用
选修1-2
第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图
(理)选修2-1
第一章常用逻辑用语第二章圆锥曲线与方程第三章空间向量与立体几何选修2-2
第一章导数及其应用第二章推理与证明第三章数系的扩充与复数的引入选修2-3
第一章计数原理第二章随机变量及其分布第三章统计案例。

新课标人教版数学B教案·必修(1)第三章基本初等函数(Ⅰ)

新课标人教版数学B教案·必修(1)第三章基本初等函数(Ⅰ)

新课标人教版数学B ·必修(1)第三章基本初等函数(Ⅰ) 3.1指数与指数函数 3.1.1有理指数幂及其运算教学目标:根式、分数指数幂的概念以及利用分数指数的运算性质进行指数的运算. 教学重点:分数指数幂的概念和分数指数的运算性质.本小节的难点是根式的概念和分数指数幂的概念.关键是理解分数指数幂和根式的意义. 教学过程:(1)指数概念的扩充:指数的概念是由乘方概念推广而来的。

相同因数相乘个n a aaa ⋅⋅⋅=n a 导出乘方,这里的n 为正整数。

从复习初中内容开始,首先将n 推广为全体整数;然后把乘方、开方统一起来,推广为有理指数;最后,在实数范围内建立起指数概念.(2)分数指数幂是根式的另一种表示,根式的运算可利用分数指数幂与根式之间的关系转化为分数指数幂的运算.对于问题计算化简的结果,不强求统一用何种形式来表示.但结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.(3)随着指数范围的扩充,幂的运算性质逐步合并且简化.正整数指数幂的运算性质如下: ①; ②;③;④;⑤.当指数的范围扩大到整数集之后,幂的运算性质可由5条合并为3条,即:①; ②; ③.这3条性质都要遵守零指数幂、负整数指数幂的底数不能等于0的规定. 当指数的范围扩充到有理数集以至实数集后,幂的运算性质仍然是上述3条,但要遵守负实数指数幂的底数不能等于0的规定.(4)例1:先化简再用计算机求值(1)4.1213.2)549(+- (2)11(22--+-+m m m m (其中3.8=m )例2:已知:22121=+-aa 求下列各式的值(1)22-+a a ;(2)33-+a a ;(3)44-+a a .例3:化简:332ba ab b a 课堂练习:第97页练习A,练习B小结:本节学习了根式、分数指数幂的概念以及利用分数指数的运算性质进行指数的运算.课后作业:第100页习题3-1A 第1题3.1.2指数函数(1)教学目标:1.使学生掌握指数函数的概念,图象和性质.(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.2. 通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.教学重点:指数函数的图象、性质。

人教B版必修一课后作业:第三章 基本初等函数(Ⅰ) 3.4 Word版含答案

人教B版必修一课后作业:第三章 基本初等函数(Ⅰ) 3.4 Word版含答案

学习目标 1.尝试将实际问题转化为函数模型.2.了解指数函数、对数函数及幂函数等函数模型的增长差异.3.会根据函数的增长差异选择函数模型.知识点一函数模型思考自由落体速度公式v=gt是一种函数模型.类比这个公式的发现过程,说说什么是函数模型?它怎么来的?有什么用?答案函数模型来源于现实(伽利略斜塔抛球),通过收集数据(打点计时器测量),画散点图分析数据(增长速度、单位时间内的增长量等),寻找或选择函数(假说)来拟合,这个函数即为函数模型.函数模型通常用来解释已有数据和预测.梳理一般地,设自变量为x,函数为y,并用x表示各相关量,然后根据问题的已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为数学问题,实现问题的数学化,即所谓建立数学模型.知识点二三种常见函数模型的增长差异比较三种函数模型的性质,填写下表.类型一几类函数模型的增长差异例1 (1)下列函数中,随x 的增大,增长速度最快的是( ) A .y =50x B .y =x 50C .y =50xD .y =log 50x (x ∈N +)答案 C解析 四个函数中,增长速度由慢到快依次是y =log 50x ,y =50x ,y =x 50,y =50x . (2)函数y =2x -x 2的大致图象为( )答案 A解析 在同一平面直角坐标系内作出y 1=2x ,y 2=x 2的图象(图略).易知在区间(0,+∞)上,当x ∈(0,2)时,2x >x 2,即此时y >0;当x ∈(2,4)时,2x <x 2,即y <0;当x ∈(4,+∞)时,2x >x 2,即y >0;当x =-1时,y =2-1-1<0.据此可知只有选项A 中的图象符合条件. 反思与感悟 在区间(0,+∞)上,尽管函数y =a x (a >1),y =log a x (a >1)和y =x n (n >0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着x 的增大,y =a x (a >1)的增长速度越来越快,会超过并远远大于y =x n (n >0)的增长速度,而y =log a x (a >1)的增长速度则会越来越慢.因此,总会存在一个x 0,当x >x 0时,就有log a x <x n <a x . 跟踪训练1 函数f (x )=lg|x |x2的大致图象为( )答案 D解析 f (x )为偶函数,排除A 、B.当x >1时,y =lg|x |=lg x >0,且增长速度小于y =x 2,所以随着x 的逐渐增大,lg|x |x 2越来越接近0且函数值为正数,故选D.类型二 函数模型应用 命题角度1 选择函数模型例2 某大型超市为了满足顾客对商品的购物需求,对超市的商品种类做了一定的调整,结果调整初期利润增长迅速,随着时间的推移,增长速度越来越慢,如果建立恰当的函数模型来反映该超市调整后利润y 与售出商品的数量x 的关系,则可选用( ) A .一次函数 B .二次函数 C .指数型函数 D .对数型函数答案 D解析 四个函数中,A 的增长速度不变,B 、C 增长速度越来越快,其中C 增长速度比B 更快,D 增长速度越来越慢,故只有D 能反映y 与x 的关系.反思与感悟 根据实际问题提供的两个变量的数量关系可构建和选择正确的函数模型.同时,要注意利用函数图象的直观性来确定适合题意的函数模型.跟踪训练2 某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年的年产量保持不变,将该厂6年来这种产品的总产量C 与时间t (年)的函数关系用图象表示,则正确的是( )答案 A命题角度2 用函数模型决策例3 某公司预投资100万元,有两种投资可供选择: 甲方案年利率10%,按单利计算,5年后收回本金和利息; 乙方案年利率9%,按每年复利一次计算,5年后收回本金和利息.哪种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元) 解 按甲,每年利息100×10%=10,5年后本息合计150万元;按乙,第一年本息合计100×1.09,第二年本息合计100×1.092,…,5年后本息合计100×1.095≈153.86(万元).故按乙方案投资5年可多得利3.86万元,乙方案投资更有利.反思与感悟 建立函数模型是为了预测和决策,预测准不准主要靠建立的函数模型与实际的拟合程度.而要获得好的拟合度,就需要丰富、详实的数据.跟踪训练3 一家庭(父亲、母亲和孩子们)去某地旅游,甲旅行社说:“如果父亲买全票一张,其余人可享受半票优惠.”乙旅行社说:“家庭旅行为集体票,按原价23优惠.”这两家旅行社的原价是一样的.试就家庭里不同的孩子数,分别建立表达式,计算两家旅行社的收费,并讨论哪家旅行社更优惠.解 设家庭中孩子数为x (x ≥1,x ∈N +),旅游收费为y ,旅游原价为a . 甲旅行社收费:y =a +a 2(x +1)=a2(x +3);乙旅行社收费:y =2a3(x +2).∵2a 3(x +2)-a 2(x +3)=a6(x -1), ∴当x =1时,两家旅行社收费相等. 当x >1时,甲旅行社更优惠.1.下列函数中随x 的增长而增长最快的是( ) A .y =e x B .y =ln x C .y =x 100 D .y =2x答案 A2.能使不等式log 2x <x 2<2x 一定成立的x 的取值区间是( ) A .(0,+∞) B .(2,+∞) C .(-∞,2) D .(4,+∞)答案 D3.某物体一天中的温度T (单位:℃)是时间t (单位:h)的函数:T (t )=t 3-3t +60,t =0表示中午12:00,其后t 取正值,则下午3时温度为( ) A .8℃ B .78℃ C .112℃ D .18℃答案 B4.下面选项是四种生意预期的收益y 关于时间x 的函数,从足够长远的角度看,更为有前途的生意是( ) A .y =10×1.05xB .y =20+x 1.5C .y =30+lg(x -1)D .y =50 答案 A5.我们处在一个有声的世界里,不同场合人们对声音的音量会有不同的要求.音量大小的单位是分贝(dB).对于一个强度为I 的声波,其音量的大小η可由如下公式计算:η=10·lg II 0(其中I 0是人耳能听到的声音的最低声波强度).设η1=70 dB 的声音强度为I 1,η2=60 dB 的声音强度为I 2,则I 1是I 2的( ) A.76倍 B .10倍 C .1076倍 D .ln 76倍答案 B解析 由题意,令70=10lg I 1I 0,则有I 1=I 0×107.同理得I 2=I 0×106,所以I 1I 2=10.1.四类不同增长的函数模型(1)增长速度不变的函数模型是一次函数模型.(2)增长速度最快即呈现爆炸式增长的函数模型是指数型函数模型. (3)增长速度较慢的函数模型是对数型函数模型. (4)增长速度平稳的函数模型是幂函数模型. 2.函数模型的应用(1)可推演原则:建立模型,一定要有意义,既能作理论分析,又能计算、推理,且能得出正确结论.(2)反映性原则:建立模型,应与原型具有“相似性”,所得模型的解应具有说明问题的功能,能回到具体问题中解决问题.课时作业一、选择题1.下列函数中,增长速度越来越慢的是( )A.y=6x B.y=log6xC.y=x6D.y=6x答案 B解析D增长速度不变,A、C增长速度越来越快,只有D符合题意.2.以下四种说法中,正确的是()A.幂函数增长的速度比一次函数增长的速度快B.对任意的x>0,x a>log a xC.对任意的x>0,a x>log a xD.不一定存在x0,当x>x0时,总有a x>x a>log a x答案 D解析对于A,幂函数与一次函数的增长速度分别受幂指数及一次项系数的影响,幂指数与一次项系数不确定,增长速度不能比较;对于B,C,显然不成立;对于D,当a>1时,一定存在x0,使得当x>x0时,总有a x>x a>log a x,但若去掉限制条件“a>1”,则结论不成立.3.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致是()答案 D解析设该林区的森林原有蓄积量为a,由题意,ax=a(1+0.104)y,故y=log1.104x(x≥1),∴y=f(x)的图象大致为D中图象.4.下面给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么最能拟合诗句“红豆生南国,春来发几枝”所提到的红豆生长时间与枝数的关系的函数模型是()A .指数函数:y =2tB .对数函数:y =log 2tC .幂函数:y =t 3D .二次函数:y =2t 2答案 A解析 由题干中的图象可知,该函数模型应为指数函数.5.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P (单位:毫克/升)与过滤时间t (单位:时)之间的函数关系式为:P =P 0e -kt (k ,P 0均为正的常数).若在前5个小时的过滤过程中污染物被排除了90%,那么,至少还需要过滤的时间为( ) A.12小时 B.59小时 C .5小时 D .10小时答案 C解析 由题意知前5个小时消除了90%的污染物.∵P =P 0e -kt ,∴(1-90%)P 0=P 0e -5k ,∴0.1=e -5k ,即-5k =ln 0.1,∴k =-15ln 0.1.由1%P 0=P 0e -kt ,即0.01=e -kt ,∴-kt =ln 0.01,∴⎝⎛⎭⎫15ln 0.1t =ln 0.01,∴t =10.∴至少还需要过滤5小时才可以排放. 6.向高为H 的水瓶内注水,一直到注满为止,如果注水量V 与水深h 的函数图象如图所示,那么水瓶的形状大致是( )答案 B解析 水深h 为自变量,随着h 增大,A 中V 增长速度越来越快,C 中先慢后快,D 增长速度不变,只有B 中V 增长速度越来越慢. 二、填空题7.某厂日产手套总成本y (元)与手套日产量x (双)的关系式为y =5x +4 000,而手套出厂价格为每双10元,则该厂为了不亏本,日产手套至少为________双. 答案 800解析 要使该厂不亏本,只需10x -y ≥0, 即10x -(5x +4 000)≥0,解得x ≥800.8.在不考虑空气阻力的情况下,火箭的最大速度v m/s 和燃料质量M kg 、火箭(除燃料外)质量m kg 的关系是v =2 000ln ⎝⎛⎭⎫1+Mm ,则当燃料质量是火箭质量的________倍时,火箭的最大速度可达12 km/s. 答案 e 6-1解析 由题意2 000ln ⎝⎛⎭⎫1+Mm =12 000. ∴ln ⎝⎛⎭⎫1+M m =6,从而Mm=e 6-1. 9.某种动物繁殖数量y (只)与时间x (年)的关系式为y =a log 2(x +1),设这种动物第一年有100只,则到第7年这种动物发展到________只. 答案 300解析 把x =1,y =100代入y =a log 2(x +1), 得a =100,故函数关系式为y =100log 2(x +1), 所以当x =7时,y =100log 2(7+1)=300. 所以到第7年这种动物发展到300只.10.某种储蓄按复利计算利息,若本金为a 元,每期利率为r ,存期是x ,本利和(本金加利息)为y 元,则本利和y 随存期x 变化的函数关系式是________. 答案 y =a (1+r )x ,x ∈N +解析 已知本金为a 元,利率为r ,则1期后本利和为y =a +ar =a (1+r ), 2期后本利和为y =a (1+r )+a (1+r )r =a (1+r )2, 3期后本利和为y =a (1+r )3,…x 期后本利和为y =a (1+r )x ,x ∈N +. 三、解答题11.在制造纯净水的过程中,如果每增加一次过滤可减少水中杂质的20%,那么要使水中杂质减少到原来的5%以下,则至少要过滤几次.(lg 2≈0.301 0,lg 3≈0.477 1) 解 设原有杂质为a ,经过x 次过滤后杂质为y ,则y =a ×(1-20%)x =a 0.8x . 由题意得ya<5%,即0.8x <5%,所以x lg 0.8<lg 0.05,即x >lg 0.05lg 0.8≈13.4,因此至少需要经过14次过滤才能使水中杂质减少到原来的5%以下.12.某企业生产A ,B 两种产品.根据市场调查与市场预测知A 产品的利润与投资成正比,其关系如图(1)所示,B 产品的利润与投资的算术平方根成正比,其关系如图(2)所示.(注:图中的横坐标表示投资金额,单位为万元)(1)分别将A ,B 两种产品的利润表示为投资的函数关系式;(2)该企业已筹集10万元资金,并全部投入A ,B 两种产品的生产.问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润为多少万元?解 (1)设投资了x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元. 由题意知f (x )=k 1x (k 1≠0),g (x )=k 2x (k 2≠0). 由题图可知f (2)=1,所以k 1=12,由g (4)=4,得k 2=2.故f (x )=12x (x ≥0),g (x )=2x (x ≥0).(2)设A 产品投入x 万元,则B 产品投入(10-x )万元. 设企业利润为y 万元, 则y =f (x )+g (10-x )=12x +210-x (0≤x ≤10).令10-x =t ,则y =10-t 22+2t =-12(t -2)2+7(0≤t ≤10).当t =2时,y max =7,此时x =10-4=6.所以当A 产品投入6万元,B 产品投入4万元时,该企业获得最大利润,最大利润为7万元. 13.某纪念章从2015年1月6日起开始上市.通过市场调查,得到该纪念章每枚的市场价y (单位:元)与上市时间x (单元:天)的数据如下:(1)根据上表数据结合散点图,从下列函数中选取一个恰当的函数描述该纪念章的市场价y 与上市时间x 的变化关系并说明理由:①y =ax +b ;②y =ax 2+bx +c ;③y =a log b x . (2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格.解 (1)∵随着时间x 的增加,y 的值先减后增,而所给的三个函数中y =ax +b 和y =a log b x 显然都是单调函数,不满足题意,∴函数y =ax 2+bx +c 满足该纪念章的市场价y 与上市时间x 的变化关系. (2)把点(4,90),(10,51),(36,90)分别代入y =ax 2+bx +c 中,得⎩⎪⎨⎪⎧16a +4b +c =90,100a +10b +c =51,1 296a +36b +c =90,解得⎩⎪⎨⎪⎧a =14,b =-10,c =126,∴y =14x 2-10x +126=14(x -20)2+26.∴当x =20时,y 有最小值26.故该纪念章市场价最低时的上市天数为20天,最低的价格为26元. 四、探究与拓展14.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份( ) A .甲食堂的营业额较高 B .乙食堂的营业额较高 C .甲、乙两食堂的营业额相同11 D .不能确定甲、乙哪个食堂的营业额较高答案 A解析 设甲、乙两食堂1月份的营业额均为m ,甲食堂的营业额每月增加a (a >0),乙食堂的营业额每月增加的百分率为x ,由题意可得,m +8a =m ×(1+x )8,则5月份甲食堂的营业额y 1=m +4a ,乙食堂的营业额y 2=m ×(1+x )4=m (m +8a ),因为y 21-y 22=(m +4a )2-m (m +8a )=16a 2>0,所以y 1>y 2,故本年5月份甲食堂的营业额较高.15.众所周知,大包装商品的成本要比小包装商品的成本低.某种品牌的饼干,其100克装的售价为1.6元,其200克装的售价为3元.假定该商品的售价由三部分组成:生产成本(a 元)、包装成本(b 元)、利润,生产成本(a 元)与饼干质量成正比,包装成本(b 元)与饼干质量的算术平方根(估计值)成正比,利润率为20%,试求出该种饼干1 000克装的合理售价. 解 设饼干的质量为x 克,则其售价y (元)与质量x (克)之间的函数解析式为y =(mx +n x )(1+0.2),由题意得1.6=(100m +100n )(1+0.2),即43=100m +10n . 又3=(200m +200n )(1+0.2).即2.5≈200m +14.14n ,∴0.167≈5.86n ,∴⎩⎪⎨⎪⎧n ≈0.028 4,m ≈1.05×10-2, ∴y ≈(1.05×10-2x +0.028 4x )×1.2,当x =1 000时,y ≈13.7.∴估计这种饼干1 000克装的售价为13.7元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.1实数指数幂及其运算【学习要点】1根式、分数指数幂的概念.2分数指数的运算性质.【学习要求】1理解根式和分数指数幂的概念及它们的运算性质.了解实数指数幂的意义。

2 会进行简单的运算。

【复习引入】1 、相同因数相乘个n a aaa ⋅⋅⋅记作na ,读作 ,a 叫做幂的 , n 叫做幂的 。

其中n 是正整数。

2、 正整数指数幂的性质:(1) (2) (3) (3)【概念探究】阅读教材85页到88页例1,完成下列各题。

1、 指数概念的扩充:n a 中的n 可以扩展为整数。

整数指数幂的性质为:(1) (2) (3) 。

2 、0a = ,n a -=3、零指数幂和负整数指数幂都要求 。

4、 如果存在实数x ,使得(,1,)nx a a R n n N +=∈>∈,则x 叫作 。

求a 的n 次方根,叫作把a 开n 次方,称作 。

5、规定正分数指数幂的定义是:(1) (2) 。

规定负分数指数幂的定义是: 。

规定0的正分数指数幂为0,0的负分数指数幂和0次幂 。

规定了分数指数幂以后,指数的概念也就从整数指数扩展到了 指数。

6 、有理指数幂的运算性质有:(1) (2) (3) 。

完成教材89页1题【例题解析】例题1计算下列各式,并把结果化为只含正整数指数的形式(式子中的,0a b ≠)(1)322123(3)9a b a b a b------=(2)34320()()[]()()a b a b a b a b --+--+(0,0)a b a b +≠-≠例题2化简下列各式 (12(23)1020.5231(2)2(2)(0.01)54--+⨯-小结:化简,注意体会指数的运算性质。

例3: 化简:332ba abb a练习:(1【补充练习】1、 化简,注意体会指数的运算性质:(1)22252432()()()a b a b a b --÷ (2)340.10.01--3、 求值,注意体会分数指数幂与根式的转换:(1) 2 1.53(0.027)-; (2; (3完成教材89页2题3.1.2 指数函数【学习要点】1. 了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系; 2. 理解指数函数的概念和意义;3. 能画出具体指数函数的图象,掌握指数函数的性质(单调性、特殊点). 【学习过程】一、新课导学探究任务一:指数函数模型思想及指数函数概念实例:细胞分裂时,第 1 次由1个分裂成 2 个,第 2 次由2个分裂成 4 个,第 3 次由4个分裂成 8 个,如此下去,如果第 x 次分裂得到 y 个细胞,那么细胞个数 y 与次数x 的关系式是什么?_________________________________.【讨论】:(1)这个关系式是否构成函数? (2)是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字? 新知:一般地,函数)1,0(≠>=a a a y x 且叫做________函数,其中x 是自变量,函数的定义域是R .反思1:为什么规定10≠>a a 且呢?否则会出现什么情况呢? 【讨论】:则若,0=a _______________________________________. 则若,0<a _______________________________________.则若,1=a _______________________________________.反思2:函数x y 32⨯=是指数函数吗? 《学生活动》下列函数哪些是指数函数?(1)xy 3= (2)x y 12= (3)xy )2(-= (4)13+=xy (5)xy 23= (6)xy π= (7)24x y = (8))121()12(≠>-=a a a y x且____________________________探究任务二:指数函数的图象和性质引言:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?回顾:(1)研究方法:画出函数图象,结合图象研究函数性质.(2)研究内容:定义域、值域、特殊点、单调性、最大(小)值等等.《作图》:在同一坐标系中画出下列函数图象:x y 2= x y )1(=《练习》在上面的坐标系中继续作出xxy y )31(3==与的图像【讨论】新知:根据图象归纳指数函数的性质《巩固训练》1. 函数xa y =中,无论10,0<<>a a 还是,都经过______________. 2. 指数函数x a y =中,x a 和的取值范围分别是_________________________. 3. 若函数xa y )12(+=是减函数,则a 的取值范围是__________________.二、典型例题例1:求下列函数的定义域: (1)23-=x y (2)x y 1)21(=例2:已知指数函数xa x f =)((1,0≠>a a 且)的图象经过点),3(π,求)3(),1(),0(-f f f 的值.例3:比较下列各题中两个值的大小: (1) 35.27.1 ,7.1 (2) 2.01.08.0 ,8.0-- (3) 1.33.09.0 ,7.1(4) 比较2131a a 与的大小,)1,0(≠>a a 且《练习》1. 求下列函数的定义域: (1)xy -=32 (2)123+=x y (3)xy 5)21(= (4)x y 17.0=2. 比较下列各题中两个数的大小: (1) 7.08.03,3(2) 1.01.075.0 ,75.0-(3) 5.37.201.1 ,01.1(4)已知的大小关系是则c b a c b a ,,,2.1,8.0,8.08.09.07.0===_____________________.3.2.1对数及其运算(1)【学习要点】1. 理解对数的概念;2. 能够说明对数与指数的关系;3. 掌握对数式与指数式的相互转化.【学习要点】理解对数概念,能够进行对数式与指数式的互化。

引导学生对指数式与对数式互化,明确对数运算是指数运算的逆运算. 【概念探究】 1.新知:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的 (logarithm ).记作 ,其中a 叫做 ,N 叫做新知:我们通常将以10为底的对数叫做 (common logarithm ),并把常用对数10log N 简记为 。

在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫 ,并把自然对数log e N 简记作 。

反思:(1)指数与对数间的关系? 0,1a a >≠时,xa N =⇔.(2)负数与零是否有对数?为什么? (3)log 1a = , log a a =例1下列指数式化为对数式,对数式化为指数式. (1)35125= ; (2)712128-=; (3)2100.01-=;(4)12log 325=-; (5)lg0.001=3-; (6)ln100=4.606.例2求下列各式中x 的值:(1)642log 3x =; (2)log 86x =-; (3)lg 4x =;(4)52log (log )0x =.练习(1)5log 25 ; (2)21log 16;(3)lg 10000.课本97页练习A 1-5对数及其运算(2)运算性质:若a >0,a ≠1,M >0,N >0,则(1)log a (MN )= (2)log a MN =(3)log a M n = 例1求下列各式的值(1)log 525 (2)log 0.41 (3)log 2(47×25) (4)lg 5100例2用log a x ,log a y ,log a z 表示下列各式:(1)log a xy z (2)log a x 2·y3z例3计算:(1)lg14-2lg 73 +lg7-lg18 (2)lg243lg9 (3)lg 27 +lg8-3lg 10lg1.2课本99页 练习A 1-4对数及其运算(3)换底公式【概念探究】1.对数换底公式:(a 、b >0, a 、b ≠1,N >0) 2.两个常用的推论:① log a b ·log b a =② log mabn= ( a 、b >0且均不为1)※ 知识拓展① 对数的换底公式log log log b a b N N a=;② 对数的倒数公式1log log a b b a=;③ 对数常用式:l o gl o n naa N N =; ④log log mn a an N N m=,1logloglog=⋅⋅a c b cba练1. 运用换底公式推导下列结论.(1)log log m na a nb b m=; (2)1log log a b b a=.练2. 计算:(1)7lg 142lglg 7lg 183-+-; (2)lg 243lg 91.计算下列各式的值(1)log log a c c a ⋅; (2)2345log 3log 4log 5log 2⋅⋅⋅(3)4839(log 3log 3)(log 2log 2)++3.计算 278log 32log 9⨯4.化简:11451111log log 93+5.18log 9,185,ba ==用含,ab 的式子表示36log 45的值。

,依步骤在不同的坐标轴中作出对数函数与)观察当值对函数图像的影响?当3.2.3 指数函数与对数函数关系【学习目标】1. 理解反函数的概念,会求简单函数的反函数,提高归纳概括能力。

2. 通过自主学习、合作探究,体会互为反函数的函数间的关系。

3. 以极度的热情投入到课堂学习当中,体验数形和谐的对称美.【重点难点】重点:反函数的概念以及指数函数对数函数的关系.难点:反函数概念的理解.【能力立意】通过探究指数函数与对数函数的关系,提高认知与探究能力;通过探究反函数的概念以及求反函数,提高知识间联系的能力;通过小组合作,提高合作共赢的能力。

【预习指导】1.先用5分钟自主预习课本,标注重难点,随时记录疑问,待课上讨论解决;必须掌握的内容:指数函数与对数函数的关系;反函数的概念;反函数的求法。

2.合上课本用15分钟完成导学案,写出自己的收获和疑惑。

【自主探究】1.对数函数x y 2log =和指数函数x y 2=的自变量与因变量的关系是怎样的?2.在同一坐标系内画出x y 2log =和x y 2=的图像,3.在同一坐标系内画出x y 21log =和x y )(21=的图像4.以上同一坐标系内的两个图象的关系是怎样的?5.什么是反函数?两个函数互为反函数要满足怎样的条件?互为反函数有哪些性质?【合作探究】例1、求下列函数的反函数(1)2log y x = (2)1()3x y = (3)2(0)y x x =≥例2、已知()2x f x x =+,求11()3f-跟踪练习:1.已知()y f x =的反函数为11()2x fx -+=,求(1)f =2.若函数13xy -=+的反函数为()y g x =,求(10)g =例3.比较2log 5、0.52、4log 15的大小练习 课本106页 练习3.3幂函数导学案1、学习目标: (1)掌握幂函数的形式特征,掌握具体幂函数的图象和性质(2)能应用幂函数的图象和性质解决有关简单问题2、重点难点:掌握常见幂函数的图象和性质;学会应用幂函数性质比较大小。

相关文档
最新文档