第二章炸药的爆炸性能及其参数
炸药的爆炸性能

炸药的爆炸性能炸药的爆炸性能是炸药与工程爆破效果相关的基本性能和指标,包括炸药的敏感度、爆力、爆速、猛度、殉爆距离、管道效应、聚能效应等性能指标。
一、敏感度在外能的作用下,使炸药发生爆炸的难易程度称为敏感度。
当炸药起爆所需要的外能小,则该炸药的敏感度高;反之,当炸药起爆所需要的外能大,则该炸药的敏感度低。
能够激发炸药发生爆炸反应的能量有热能、电能、光能、机械能、冲击波能等。
炸药对于不同形式的外能作用所表现的敏感度是不同的。
(1)炸药的热感度。
炸药的热感度是指在热能作用下,炸药发生爆炸的难易程度,通常用爆发点表示。
爆发点是在标准容器中放入0.05g炸药,在5min 内受热而发生燃烧或爆炸反应时的最低温度。
当炸药爆发点越高,表示炸药的热感度越低。
不同炸药有各自的爆发点,硝铵炸药为280~320℃,黑火药为290~310℃,雷管为175~180℃。
(2)炸药的机械感度。
炸药的机械感度是指炸药在外力撞击下,生产与运输时产生摩擦等机械作用下发生爆炸的难易程度。
一般采用爆炸概率法来测定。
几种炸药的撞击感度与摩擦感度见表2-1。
表2-1 几种炸药的撞击感度与摩擦感度表注梯恩梯(TNT);黑索金(RDX)。
(3)炸药的起爆感度。
炸药的起爆感度是指在该炸药引爆时,使猛炸药发生爆轰的难易程度。
猛炸药对起爆药爆轰的感度,一般用最小起爆药量来表示。
在一定试验条件下,使1g猛炸药完全爆轰所需的最小起爆药量称为极限起爆药量。
在工程爆破中,习惯用雷管感度来区分工业炸药的起爆感度。
能用一发8号工业雷管可靠起爆的炸药称之为具有雷管感度;凡不能用一发8号工业雷管可靠起爆的炸药称其不具有雷管感度。
(4)影响炸药敏感度的几个主要因素。
①温度的影响:炸药随着外界温度的增高,各项感度也随之增加,在高温环境下实施爆破作业应引起高度重视;②炸药密度的影响:一般情况下,随着装药密度的增加,炸药起爆感度会下降;当粉状铵梯炸药的装药密度大于 1.2g/cm3时,容易出现拒爆;③炸药颗粒度的影响:炸药的颗粒度主要影响炸药的爆轰感度,炸药颗粒越小,其爆轰感度越大;④炸药物理状态和晶体形态的影响:铵梯炸药受潮结块时,感度明显下降;因此,在雨季和潮湿环境下保管和使用铵梯炸药时,应采取有效的防潮措施;硝化甘油炸药在冬季冻结时,晶体形态发生变化,其感度明显提高。
【DOC】炸药的爆炸热化学与爆炸反应方程式

第二章 炸药的爆炸热化学与爆炸反应方程式2.1 预备知识2.1.1 化学反应的热效应化学反应时,除少数的热中性反应外,都伴有热量的变化。
若使反应产物的温度回到反应的起始温度,这时反应体系所放出或吸收的热量就称为化学反应的热效应。
显然这样定义的热效应是等温过程的热效应。
通常用符号Q 表示,且规定放出热量为正,吸收热量为负,单位:kJ·mol -1或kJ·kg -1,通常有两种形式的热效应,即等容热效应与等压热效应。
等容热效应:化学反应过程是等容的,体积不变化,用Q v 表示。
等压热效应:化学反应过程是等压的,压力不变化,用Q P 表示。
下面讨论Q v 与Q p 关系:由热力学第一定律可得:-△E=Q+A (2-1) 式中,△E ——系统的内能增量; Q ——系统向外界所放出的热量; A ——系统向外界所作的功。
假定只有体积功,而无非体积功(非体积功如:粘滞力、重力做功等),则: 对于等容过程:A =⎰21V V PdV =0∴-∆E = Q v (2-2) 对于等压过程:-∆E = Q p +P ∆V∴Q p = -∆E -P ∆V =-﹙-∆E +P 2V 2-P 1V 1﹚=-[(E 2+ P 2V 2)-(E 1+P 1V 1)] =-(H 2-H 1)即Q p =-∆H (2-3)由(2-2)、(2-3)式可得:Q v = Q p + P ∆V = Q p +P ﹙V 2-V 1﹚ (2-4)设爆炸反应前后温度不变(温度改变在本问题所研究的反应过程没有意义),产物与反应物的性质满足理想气体的状方程,即:PV =nRT (2-5)故有PV 2=n 2RT , PV 1=n 1RT 成立。
由(2-4)、(2-5)式得:Q v =Q p +(n 2-n 1)RT = Q p +∆nRT (2-6)当T =298K 时,RT =2.478 kJ·mol -1∴Q v =Q p +2.478∆n (kJ ) (2-7)其中n 2、n 1为产物和反应物的气态摩尔数。
第二章炸药的爆炸性能及其参数

2.1.3 炸药化学反应基本形式
A
缓慢分解
反映炸药 的化学安 定性
B
燃烧与爆燃
对爆破材料的安 全生产,加工,运 输保管以及过期 变质炸药的销毁
1 P1(K 1) P0 (K 1) 0 P0 (K 1) P1(K 1)
cn KP1V1
T1
P1V1 P0V0
T0
冲击波特征
1) 冲击波的波速对未扰动介质而言是超音速的。 2) 冲击波的波速对波后介质而言是亚音速的。 3) 冲击波的波速与波的强度有关。由于稀疏波的侵蚀和不可逆的能量 损耗,其强度和对应的波速将随传播距离增加而衰减。传播一定距离后, 冲击波就会蜕变为压缩波,最终衰减为音波。 4) 冲击波波阵面上的介质状态参数(速度、压力、密度、温度)的变 化是突跃 的,波阵面可以看做是介质中状态参数不连续的间断面。冲击波 后面通常跟有稀疏波。 5) 冲击波通过时,静止介质将获得流速,其方向与波传播方向相同, 但流速值小于波速。 6) 冲击波对介质的压缩不同于等熵压缩。冲击波形成时,介质的熵将 增加。 7) 冲击波以脉冲形式传播,不具有周期性。 8) 当很强的入射冲击波在刚性障碍物表面发生反射时,其反射冲击波波 阵面上 的压力是入射冲击波波阵面上压力的8倍,由于反射冲击波对目标 的破坏性更大,因此在进行火工品车间.仓库等有关设计时应尽量避免可能 造成的冲击波反射。
爆轰产物与有毒气体
(1)爆轰产物 :
炸药爆轰时,化学反应区反应终了瞬间的化学反应产物 。它是计算 爆轰反应热效应的依据。
(2)爆炸产物 :
2工业炸药(1)

国内部分重铵油炸药性能
国外重铵油炸药的主要性能
★铵松蜡与铵沥蜡炸药 铵松蜡炸药以硝酸铵、松香、石蜡为原 料(柴油1.5%); 铵沥蜡炸药以硝酸铵、沥青、石蜡为原 料, 二者均采用轮碾热混加工制备,有一定 抗水性能。
★第三节 含水硝铵类炸药
浆状炸药——抗水性强,密度高,爆炸威力较大,成 本低,在露天水孔爆破中有广泛应用。 水胶炸药——水胶炸药与浆状炸药的区别在于使用敏 化剂的不同,它采用水溶性甲胺硝酸盐作敏化剂,其 爆轰感度比浆状炸药高(引进美国杜邦公司)。 乳化炸药——乳化炸药是以无机含氧酸盐水溶液为分 散相,以不溶于水的可液化的碳质燃料为连续相,借 助乳化剂的乳化作用和敏化剂(包括敏化气泡)的敏 化作用而制成的一种油包水(W/O)型乳脂状混合炸 药。密度1.05~1.35g/cm3有乳白色、淡黄色、银灰色等 各种颜色的产品。
2、常用工业炸药分类
1)按炸药主要化学成分分类。 (1)硝铵类炸药——以硝酸铵为主要成分的炸药,是 目前国内用量最大,品种最多的一大类混合炸药。 (2)硝化甘油类炸药——以硝化甘油或硝化甘油、硝 化乙二醇为主要成分的炸药。 (3)芳香族硝基化合物类炸药。主要是苯及其同系物 的硝基化合物,如TNT、黑索金等。 (4)其他工业炸药。指不属于以上三类的工业炸药。 例如黑火药和雷管起爆药等 2)按炸药组成分类: (1)单质炸药 (2)混合炸药
2、常用工业炸药分类
为工业炸药系列(属于猛炸药),主要有: ——铵梯炸药 ——铵油炸药 ——铵松蜡炸药 ——含水炸药 ——煤矿许用炸药 上述统称硝铵类炸药,其性能很大一部分取决于硝酸 铵的性质。
二、工业炸药的基本组成
1、工业炸药的基本组成 氧化剂:硝酸铵、硝酸钠、硝酸钾 还原剂:柴油、木粉 敏化剂:单质猛炸药 防水剂: 安定剂: 抗冻剂: 2、硝酸铵的性质
3、炸药的爆炸性能

是单位质量炸药爆炸时生成的气体在标准 状态下所占的体积。
爆温
炸药爆炸时所放出的热量将爆炸产物热达 到的最高温度称为爆温。
爆热
是在一定条件下单位质量炸药爆炸 时放出的热量。
爆速
是炸药爆炸时爆轰波沿炸药药内部传播的速度。
第二节 炸药的爆炸参数与性能
1 炸药的爆炸参数
1、爆速 1.1 定义
爆轰波在炸药药柱中的传播速度称为爆轰速度,简称爆速。
要素三
变化过程能产生大量的气体产物 炸药爆炸产生的高压气体(作功的介质)具有膨 胀做功的能力。
第一节 炸药的爆炸现象与条件
3
爆炸
反应的速度和传爆的速度极高,可达 到每秒数千千米。爆炸的传播靠冲击 波,在爆炸界面附近,发生压力、温 度的急剧升高。爆炸过程是很不稳定 的,不是过渡到更大爆速的爆轰,就 是衰减到很小爆速的爆燃直至熄灭。 因此,爆炸只是爆炸变化过程中的一 种过渡状态。
物理爆炸:爆炸前后只是物质形态发生变化,而物质的化学成 分和性质没有发生变化的爆炸现象,称为物理爆炸。
分类
化学爆炸:爆炸前后不仅物质形态发生变化,而且物质的化学 成分和性质也发生变化的爆炸现象,称为化学爆炸。
核爆炸:由核裂变、核聚变或发生物质湮灭等释放出巨大能量 而引起的爆炸称为核爆炸,核爆炸在瞬间施放出极大的能量。
第二节 炸药的爆炸参数与性能
2 炸药的爆炸性能
1、做功能力 炸药的做功能力是指炸药爆炸对周围 介质所做的总功,又称爆力或威力。
A Qv
1
V1 V0
K 1
V1:爆炸产物膨胀前的体积 V0:爆炸产物膨胀到常温时的体积
1) 炸药的最大做功能力随爆热的增大而 增大;
2) 爆热的实际做功能力与比容V0有关, V0越大,效率越高。
03第二章2 爆破理论与技术

硝酸铵-2700m/s;
3. 影响爆速的因素
①药卷直径: 临界直径(小于则不爆)、 极限直径 (大于也不提高)
二号岩石铵梯炸药临界直径15mm
② 炸药密度:单质炸药(密好)、混合炸药(最佳密度)
③药卷外壳:外壳限制爆轰产物侧飞,直径小提高爆速明显,大时不明显。 ④ 炸药的粒度:越细,临界直径和极限直接减小,爆速提高。 ⑤ 起 爆 能 的 大 小 : 如 TNT 粒 径 1.0~1.6mm , ρ=1.0g/cm3 , 装 药 直 径
21mm时,强起爆能3600m/s,弱起爆能1000m/s;当硝化甘油装药直径
21mm 时 , 用 6 号 雷 管 起 爆 , 爆 速 2000m/s , 用 8 号 雷 管 起 爆 , 爆 速 8000m/s以上。
• 六、间隙效应(沟槽效应)
• 由于药卷与炮眼孔壁间存在间隙,先爆的将后 部药卷压密,从而发生爆轰中断或变为燃烧。不偶 合值=炮眼直径/药卷直径=1.12-1.76时会发生。 消除方法: 1、采用偶合散装炸药; 2、控制药卷与炮眼间隙尺寸; 3、在药卷间套硬纸板等; 4、采用小直径炸药、水胶或乳化炸药,岩石2#药 卷累计长度多为600-800mm。
2. 炸药的氧平衡分类
① K > 0 ,正氧平衡炸药,( NO 、 NO2—— 吸热反应,有毒,促使 瓦斯爆炸) ②K<0,负氧平衡炸药,(CO——有毒,C、H2——不能放出最大 热量) ③K=0,零氧平衡炸药(放出最大热量) 3. 混合炸药的配制 例如:铵油炸药(硝酸铵与柴油)中,加入4%的木粉作松散剂,按零 氧平衡设计配方。 设100g铵油炸药中含硝酸铵x克,柴油y克,则 x + y = 100-4 = 96 0.2x-3.42y-1.37×4 = 0 解之: x = 92.21g y = 3.79g
炸药爆炸的热力学参数(正式版)

文件编号:TP-AR-L5811In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.(示范文本)编订:_______________审核:_______________单位:_______________炸药爆炸的热力学参数(正式版)炸药爆炸的热力学参数(正式版)使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。
材料内容可根据实际情况作相应修改,请在使用时认真阅读。
一、爆热炸药在爆炸分解时释放出的热量称为爆热。
爆热等于炸药的反应热与爆炸产物生成热之差,其单位为千焦耳/千克(kJ/kg),工业炸药的爆炸一般在3300KJ/~5900kJ/kg之间,爆炸热可根据爆炸生成气体的种类和数量进行计算,也可用量热器直接测量。
爆热是炸药做功的能源,也是决定炸药爆速的重要因素之一,它与炸药的其他许多性能有首直接或间接的关系。
因此,提高爆热和炸药威力对于矿山爆破具有重要的实际意义。
爆热不仅决定于炸药的组成和配方,而且受到装药条件的影响,因此,即使是同一种炸药,装药条件不同,产生的爆热也不同。
二、爆温炸药释放出的热量将爆轰产物加热到最高的温度称为爆温。
即爆炸热量尚未耗散、全部赋于存于爆炸产物时,爆炸产物所达到的最高温度。
常用工业火药、炸药的爆炸的烛温在2300~4300之间。
提高炸药的爆温可以增加炸药膨胀做功的能力。
提高爆温的途径是增加爆热和减少爆炸产物的热容。
炸药的爆炸参数与性能

炸药的爆炸参数与性能一、炸药的爆炸参数(一)爆速爆速是炸药爆炸时爆轰波沿炸药内部传播的速度。
炸药爆速的高低与许多因素有关,首先取决于炸药自身的性质,其次还与装药直径、装药密度以及颗粒度、外壳、附加物等因素有关。
爆速是炸药的重要参数之一。
爆速愈高,炸药的爆炸能力愈大。
常用工业炸药的爆速通常为3000-4000m/s,低爆速炸药的爆速通常为2000m/s左右。
(二)爆热爆热是在一定条件下单位质量炸药爆炸时放出的热量,通常用符号Q v表示。
爆热是炸药爆炸做功的能量指标。
常用工业炸药的爆热为3000-4000kJ/kg。
(三)爆温爆温是炸药爆炸时放出的热量使爆炸产物定容(指爆炸产物的容积与炸药爆炸前的体积相同的情况)加热所达到的最高温度(℃)。
一般来讲,炸药的爆温愈高,气体产物的压力就愈大,对外界做功的能力也就愈大。
在实际应用中,不是爆温愈高愈好。
通常水下爆破炸药要求有较高的爆温,以提高水中爆破效果;对于煤矿安全炸药则要求有较低的爆温,以降低点燃瓦斯的可能性。
常用工业炸药的爆温为2300-3000℃,单质炸药的爆温为3000-5000℃。
(四)爆容爆容又称炸药的比容,是单位质量炸药爆炸时生成的气体产物在标准状态下(0℃和0.101MPa) 所占的体积(%) 。
通常炸药的爆容愈大,做功能力也愈大。
爆容只是一定条件下的相对值。
常用工业炸药的爆容为900L/kg左右。
(五)爆压爆压是炸药爆炸时生成的高温高压气体产生的压力。
通常有两个含义:(1)指爆轰压力,又称C-J压力,它是炸药爆炸时爆轰波阵面上的压力p1。
常用工业炸药的爆轰压为3000-3500MPa。
爆轰压可由试验测定,也可由理论计算得出。
(2)指爆炸产物压力,它是炸药爆炸做功时爆炸产物的压力p2,通常爆炸产物压力是爆轰压力的一半左右。
二、炸药的爆炸性能(一)做功能力炸药爆炸对周围介质所做的总功称为炸药的做功能力。
炸药的做功能力又称爆力或威力,它是炸药的爆炸产物对周围介质做功的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热感度和机械感度
热感度 (sensitivity to heat)是指在热的作用下,炸药发生爆炸的难易程度。
热感度通常用爆发点(ignition point)来表示.
爆发点----在一定实验条件下,规定的时间内,将炸药加热到爆炸 是所需要的最底加热温度。
热作用的方式主要有两种:均匀加热、火焰点火 。
影响有毒气体生成量的主要因素
A
炸药的氧平衡
B
化学反应的完全程度
生成H2S、SO2 等有毒气体
炸药外壳为涂蜡纸壳
C
D
爆破岩石内含硫
2.2.3 炸药热化学参数
1kg炸药爆炸生成气体产物换算为标准状态下的体积称为爆容 爆容 (specific volume)(单位:L/kg)。 爆容越大,炸药做功能力越强。
他炸药起爆) 炸药的起爆机理(原理)P17页图
热点起爆理论
热点起爆 理论
热点起爆理论又称热点学说
热点学说认为:炸药在受到机械作用时,绝大部分的机 械能量首 先转化为热能。由于机械作用不可能是均匀的,因 此,热能不是作用在整个炸药上,而只是集中在炸药的局部范 围内,并形成热点。在热点处的炸药首先发生热分解,同时放 出热量,放出的热量又促使炸药的分解速度迅速增加。如果炸 药中形成热点的数目足够多,且尺寸又足够大,热点的温度升 高到爆发点后,炸药便在这些点被激发并发生爆炸,最后引起 部分炸药乃至整个炸药的爆炸。
炸药爆炸波
爆炸波
(detonation wave)
爆速
在炸药中传播的伴随有快速化学反应区的冲击波称为爆炸波。 (detonation velocity)
爆炸波沿炸药装药传播的速度称为爆速。
爆炸波特征:
① 爆炸波只存在于炸药的爆炸过程中。爆炸波的传播随着炸药爆轰结束而中止。 ② 爆炸波总带着一个化学反应区,它是爆炸波得以稳定传播的基本保证。习惯上把
尽管反应非常迅速,且放出很多的热量,反应放出的热 量足以把反应产物加热到3000K,但终究由于没有气体产物 生成,没有把热能转变为机械能的媒介,无法对外做功,所 以不具有爆炸性。
2.1.3 炸药化学反应基本形式
A
缓慢分解
反映炸药 的化学安 定性
B
燃烧与爆燃
对爆破材料的安 全生产,加工,运 输保管以及过期 变质炸药的销毁
氧平衡的关系:
1.正氧平衡(含氧量多余时) 2.负氧平衡(含氧量不足) 3.零氧平衡(含氧量相等)
氧平衡的计算
令炸药的通式:
CaHbNcOd 则氧平衡的计算式(单质炸药):
K 1 d (2a b / 2)16100%
M
式中
K 炸药的氧平衡值;
M 炸药的摩尔质量(g/mol);
16 氧的摩尔质量(g/mol)
0-2区间称为爆炸波波阵面的宽度,其数值约0.1~1.0cm,视炸药的种类而异。 ③ 爆炸波具有稳定性,即波阵面上的参数及其宽度不随时间而变化,直至爆炸终了.
爆炸波的结构
波阵面
2-2面为爆炸化学反应区的末端面,称为爆轰波波阵面。
C—J面
爆轰波结构示意图 (Chapaman-Jouguet plane ) 常把满足一定假设条件的理想爆轰波波阵面简称为C—J面
爆热
单位质量炸药爆炸时所释放的热量称为爆热 (explosion heat)
(单位:J/kg 或kJ/kg )。 爆炸瞬间固体炸药变成气体产物,这些产物来不
及膨胀,爆炸已经结束,因而可以认为爆炸过程是定容过程。
爆温 (explosion temperature)指炸药爆炸时放出的能量将爆炸产物加热到的最高温度。
第二章 炸药爆炸基本理论
主要内容 :
2.1 炸药及基本概念 2.2 炸药化学反应及热化学参数
2.3 炸药感度、起爆 2.4 炸药爆炸原理 2.5炸药爆轰理论 炸药爆 炸性能
2.1炸药及爆炸的基本概念
炸药 (explosive) :
在一定条件下,能够发生快速化学反应,放出能量, 生成气体产物,显示爆炸效应(explosive effect)的化合 物或混合物。
感 (sensitivity)指在外界能量的作用下,炸药发生爆炸的难易程度。
度
起爆感度
火焰感度
(sensitivity to initiation)
(sensitivity to flame)
冲击波感度
(sensitivity to shock wave)
感度
摩擦感度
(sensitivity to friction)
称为声速。
2.4.2冲击波的形成
冲击波
(shock wave)
冲击波是一种在介质中以超声速传播的并具有压力突然跃升然后慢慢下 降特征的一种高强度压缩波。
冲击波形成原理示意图 R—活塞与气体的界面 A—各个瞬时的波阵面;P—管中空气压力
冲击波基本方程
c V0
P1 P0 V0 V1
u1 (P1 P0 )(V0 V1)
起爆冲能感度(又称为爆炸感度或起爆感度)
起爆感 度
(sensitivity to initiation)
炸药的起爆感度:是指在其他炸药(起爆药、起爆
具等)的爆炸作用下,猛炸药发生爆炸的难易程度。
爆炸的感度与热感度、冲击感度有关。
凡能用1发8号工业雷管可靠起爆的炸药称其具有雷管感度; 凡不能用1发8号工业雷管可靠起爆的炸药称其不具有雷管感度
x y 100%
xa yb c
例:
用硝酸铵、TNT和木粉配制零氧平衡的岩石炸药,试求出 其取值范围并选定一组配方。
解:
设1单位质量炸药中含硝酸铵为x,TNT为y,木粉为z。
已知各组中的氧平衡(查表):硝酸铵20%,TNT-74%, 木粉-138%,按零氧平衡配制时应有:
x y z 100% 0.2x 0.74y 1.38z 0
混合炸药氧平衡的计算
计算公式:
K 1 d 、 (2a b / 2)16100%
1000
或者
K ki xi
式中 ki
xi 分别为第 i 组分的氧平衡值和质量的百分数
氧平衡的三种类型
K>0
正氧平衡
K=0
零氧平衡
K<0
负氧平衡
混合炸药配方计算
含两种成分的混合炸药配比:
设x、y分别为炸药中氧化剂和可燃剂的配比,a、 b、c分别为这两种成分和混合后氧平衡值,则有 :
均匀灼烧机理 A
均匀灼烧机理又称整体反应机理
化学反应在整个爆炸波波阵面上同时进行。 ①炸药中含有的微小气
泡(气体或蒸气)在受
稀疏波
(expansion wave)
受扰动后波阵面上介质的压力、密度均减小的波称为稀疏波或膨胀波。
波 动----扰动自进而远的传播,这种现象称~ 波 头(波阵面)----扰动去与非扰动区之间的界面。 波 速----波阵面的传播速度。 按波内质点运动方向分: 1.纵波:介质受压缩或膨胀 2.横波:介质引起的切变 按阵面形状不同分:平面波、柱面波、球面波 按波强度分:弹性波、弹塑性波、冲击波 音波---称声波,在介质中传播的弱扰动纵波。传播速度
设y 0
得
x 87.34%
z
12.66%
再设z 0
得
x 78.72%
y
21.28%
三种成分的取值范围为: 硝酸铵 x 78.72 ~ 87.34% ,TNT y 0 ~ 21.28%
木粉 z 0 ~ 12.66%
可取TNT含量y=10%,代入上方程组解得: x 83.3%
z 6.7%
都很有必要
C
爆炸与爆轰
炸药以每秒数百 米至数千米的高 速进行爆炸反应
爆轰 爆炸速度增长到稳定爆速(stationary detonation velocity)的最 大值 ,以每秒数千米的最大稳定速度进行的反应过程。
2.2.1 炸药氧平衡与反应产物
炸药的 (Oxygen balance)
氧平衡
炸药内含氧量与可燃元素充分氧化所需 氧量之间的关系为氧平衡。 养系数---指炸药中含氧量与可燃元素充分氧化 所需氧量之比。 氧平衡用每克炸药中剩余或不足氧量的克数或 质量分数来表示。
影响炸药感度因素
1 炸药温度的影响
影响炸 药感度 的因素
2 炸药物理状态与晶体形态的影响 3 炸药颗粒度的影响 4 装药密度的影响
5 附加物的影响
2.4炸药爆炸理论
波
扰动在介质中的传播称为波。
物质在外界的作用下状态参数会发生一定的变化,物质局部状态的变化称为扰动
压缩波
(pressure wave) 受扰动后波阵面上介质的压力、密度均增大的波称为压缩波。
静电感度
(electrostatic sensitivity )
撞击感度
(sensitivity to impact)
(sensitivity to heat) 热感度
其他感度
炸药对不同形式的外界能量作用所表现的感度是不一样的。故不能 简单地以炸药对某种起爆能的感度等效地衡量它对另一种起爆能的感度。
热点形成的原因:
( 1)炸药内部的空气间隙或者微小气泡等在机械作用下受到了绝热 压缩;
( 2)受磨擦作用后,在炸药的颗粒之间、炸药与杂质之间以及炸药 与容器内壁之间出现的局部加热;
(3) 炸药由于黏滞性流动而产生的热点。
炸药起爆(E:放出的热能P17页图2.4)
炸药爆炸的能量图
2.3 .2 炸药感度 :敏感程度
爆炸的分类:
物理爆炸(不发生化学变化 ) 核爆炸 (核裂变或核聚变 ) 化学爆炸(有新的物质生成 )
化学爆炸三要素
1
2
3
反应的放热性 反应过程的高 反应中生成大
速度
量气体产物