管壳式换热器的设计及计算
22 管壳式换热器的结构计算

2.2 管壳式换热器的结构计算•在换热器设计中,传热计算之后即是结构计算。
•结构计算的任务在于确定设备的主要尺寸,对于管壳式换热器,主要包括:•1)计算管程截面积(管子尺寸、数目及程数,管子排列方式)•2)壳体直径•3)壳程截面积•4)计算进出口连接管尺寸2.2.1 管程流通截面积•基本方程为连续性方程单管程换热器的管程流通截面积为:sm w m kg skg M m A w M A t t t t tt t t //,//32管程流体流速,管程流体密度管程流体质量流量,管程流通截面积,−−−−−−−−=ρρ•管长的选用应考虑管材的合理使用和清洗方便,•目前换热管长度与壳体直径之比一般在4~25,通常为6~10,立式换热器以L/D=4~6为宜。
•因我国生产的钢管长度多为6m,故系列标准中的管长有1.5,2,3或6m四种,其中以3m和6m最为普遍。
•如果按上式算出管长过长,则需分程。
上,便于制造。
一封头管箱便进出口连接管做在同所以程数宜取偶数,以增加。
使流动阻力数多增加流体转弯次数同时短路机会增加;程管数减少,占据管板过多面积,排程数过多导致分程隔板每程管数每程管长;管程总长;为:于是管子总数=为:后,管程数管子的长度选为−−−−−−=n ml mL n lL l tt t t t Z n n /Z Z2.2.2壳体直径的确定•换热器壳体内径应等于或稍大于管板直径,通常是根据管径,管数和管子的排列方法,用作图法确定。
当管数较多又要反复计算时,可参考系列标准或通过估算初选外壳直径,待设计完成后再用作图法画出管子的排列图。
为使管子均匀排列,防止流体走“短路”,可以适当增减一定数目的管子或安排一些拉杆。
•初步设计中,可采用下式估算外壳直径:•D S =(b-1)s+2b ′式中:D S ——壳体内径,m ;s——管中心距,m ;b ′——管束中心线上最外层管的中心至壳体内壁的距离,m ,一般取b ′=(1~1.5)d o ;b ——位于管束中心线上管数,其值可由以下公式计算:管子按等边三角形排列时,b=1.1n t 0.5管子按正方形排列时,b=1.19n t 0.5式中:n t ——换热器的总管数。
管壳式换热器的设计

管壳式换热器的设计管壳式换热器是一种常用的换热设备,广泛应用于石油化工、冶金、电力、制药、食品等行业。
它由壳体、管束、管板、管箱等组成,能够有效地将两种介质之间的热量传递。
下面将从换热原理、设计要求和结构设计等方面进行详细介绍。
一、换热原理管壳式换热器通过管壳两侧的介质进行热量传递。
其中,一个介质在管内流动,被称为"壳侧流体",另一个介质在管外流动,被称为"管侧流体"。
壳侧流体通过壳体流动,而管侧流体则通过管束流动。
热量传递主要通过壳侧流体和管侧流体之间的传导和对流传热方式进行。
二、设计要求1.热量传递效果好:要求在换热器内两种介质之间实现高效的热量传递,以满足工艺要求。
2.压力损失小:为了保证介质流动的稳定性和降低能源消耗,设计时需要尽量减小换热器内的动能损失。
3.适应不同工艺条件:换热器的设计要能适应不同的流量、温度和压力等工艺条件的变动。
4.安全可靠:要求在设计中考虑到换热器的安全性和可靠性,尽量减少故障率。
三、结构设计1.壳体:壳体是换热器的外壳,一般采用钢质材料制造。
壳体的选择应考虑到介质的性质、压力和温度等参数,并采取相应的增强措施。
2.管束:管束是由多根管子组成的,一般采用金属材料或塑料制造。
管束的设计要考虑到介质对管材的腐蚀性、温度和压力等参数,同时也要考虑到换热面积的要求。
3.管板:管板位于管束两端,起到支撑和固定管束的作用,一般采用钢质材料制造。
管板的设计要考虑到壳侧和管侧流体的流动特性,并采用合适的孔洞布置,以保证流体的均匀流动。
4.管箱:管箱是安装在管板上的设施,主要用于集流壳侧流体并将其引导出换热器。
管箱的设计应考虑到壳侧流体的流动特性和流量等参数,以实现流体的顺畅流动。
在设计过程中,需要进行换热器的热力计算和结构力学计算,以确定壳体、管束和管板等部件的尺寸和选材。
同时,还需要根据不同工艺和使用条件的要求,进行热交换面积的计算和确定。
管壳式换热器设计选型

一、技术参数:热媒:高温蒸汽:T1=350℃,冷凝水出口温度,T2=90℃。
循环水进出温度:t1=80℃, t2=90℃换热量:W=1200x100x10=1200x104Kcal/h,热交换器形式采用卧式固定管板式换热器,换热管采用不锈钢SUS304壳体采用碳钢Q345R。
二、设计选型:根据GB151-1999《管壳式换热器》标准,及本厂技术样本进行设计计算:热水进出温度:t1=80℃, t2=90℃热媒进出温度:T1=350℃,T2=90℃。
Δt1=T1-t2=260℃,Δt2=T2-t1=10℃Δt1-Δt2 260-10对数温差Δtm= = = 76.7℃根据热交换器换热面积:F=Cr·W/(ε·K·Δtm)其中:Cr: 耗热量系数取(1.1~1.2),取Cr=1.15W:供热量,W=1200×104 Kcal/hε:污垢系数,ε=0.8K:传热系数,取800Kcal/ M2.℃·hΔtm:对数温差, Δtm=76.7℃则: F= Cr·W/(ε·K·Δtm)=281m2根据本厂样本选取型号为:BEM900-290-6000/25X2-1.0/1.0 卧式固定管板式换热器,材质:除换热管为304外,其余全部为碳钢。
浙江杭特容器有限公司2014年4月22日一、技术参数:热媒:高温蒸汽:T1=350℃,冷凝水出口温度,T2=170℃。
循环水进出温度:t1=80℃, t2=90℃换热量:W=1200x100x10=1200x104Kcal/h,热交换器形式采用卧式固定管板式换热器,换热管采用不锈钢SUS304壳体采用碳钢Q345R。
二、设计选型:根据GB151-1999《管壳式换热器》标准,及本厂技术样本进行设计计算:热水进出温度:t1=80℃, t2=90℃热媒进出温度:T1=350℃,T2=170℃。
Δt1=T1-t2=260℃,Δt2=T2-t1=90℃Δt1-Δt2 260-90对数温差Δtm= = = 160℃根据热交换器换热面积:F=Cr·W/(ε·K·Δtm)其中:Cr: 耗热量系数取(1.1~1.2),取Cr=1.15W:供热量,W=1200×104 Kcal/hε:污垢系数,ε=0.8K:传热系数,取800Kcal/ M2.℃·hΔtm:对数温差, Δtm=160℃则: F= Cr·W/(ε·K·Δtm)=135m2根据本厂样本选取型号为:BEM800-135-3700/25X2-1.0/1.0 卧式固定管板式换热器,材质:除换热管为304外,其余全部为碳钢。
管壳式换热器的设计及计算

第一章换热器简介及发展趋势1.1 概述在化工生产中,为了工艺流程的需要,常常把低温流体加热或把高温流体冷却,把液态汽化或把蒸汽冷凝程液体,这些工艺过程都是通过热量传递来实现的。
进行热量传递的设备称为换热设备或换热器。
换热器是通用的一种工艺设备,他不仅可以单独使用,同时又是很多化工装置的组成部分。
在化工厂中,换热器的投资约占总投资的10%——20%,质量约为设备总质量的40%左右,检修工作量可达总检修工作量的60%以上。
由此可见,换热器在化工生产中的应用是十分广泛的,任何化工生产工艺几乎都离不开它。
在其他方面如动力、原子能、冶金、轻工、制造、食品、交通、家电等行业也有着广泛的应用。
70年代的世界能源危机,有力地促进了传热强化技术的发展,为了节能降耗,提高工业生产经济效益,要求开发适用于不同工业过程要求的高效能换热设备[1]。
这是因为,随着能源的短缺(从长远来看,这是世界的总趋势),可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高[2]。
所以,这些年来,换热器的开发与研究成为人们关注的课题,最近,随着工艺装置的大型化和高效率化,换热器也趋于大型化,向低温差设计和低压力损失设计的方向发展。
同时,对其一方面要求成本适宜,另一方面要求高精度的设计技术。
当今换热器技术的发展以CFD(Computational Fluid Dynamics)、模型化技术、强化传热技术及新型换热器开发等形成了一个高技术体系[3]。
当前换热器发展的基本趋势是:继续提高设备的传热效率,促进设备结构的紧凑性,加强生产制造的标准化系列化和专业化,并在广泛的范围内继续向大型化的方向发展。
各种新型高效紧凑式换热器的应用范围将得到进一步扩大。
在压力、温度和流量的许可范围内,尤其是处理强腐蚀性介质而需要使用贵重金属材料的场合下,新型紧凑式换热器将进一步取代管壳式换热器。
总之,为了适应工艺发展的需要,今后在强化传热过程和换热设备方面,还将继续探索新的途径。
管壳式换热器的设计和选用的计算步骤

管壳式换热器的设计和选用的计算步骤设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。
由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力。
根据传热速率基本方程:当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器结构决定的。
可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。
初选换热器的规格尺寸初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式,重新计算。
计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。
计算管、壳程阻力在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。
或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。
这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。
核算总传热系数分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。
如果相差较多,应重新估算。
计算传热面积并求裕度根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。
即裕度为20%左右,裕度的计算式为:某有机合成厂的乙醇车间在节能改造中,为回收系统第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下:表4-18设计条件数据试设计选择适宜的管壳式换热器。
解:a. 传热量Q以原料液为基准亦计入5%的热损失,按以下步骤求得传热量Q。
平均温度℃以上表中混合物的各物性分别由下式求得:混合物:Cp混合物热导率:W/(m℃)混合物密度:kg/m3混合物比热容:kJ/(kg℃)式中为组成为i的摩尔分率,为组分i的质量分率。
管壳式热交换器的热力计算

3. 壳程流通截面积的确定
a. 纵向隔板,要确定其长度。
采用连续性方程。
标准: 使流体在纵向隔板转弯时的流速与各流程中顺管束流动时速度基本相等。 问题: 怎么确定壳程流速?
b. 弓形折流板,要确定其缺口高度。
标准: 流体在缺口处的流通截面积与流体在两折流板间错流的流通截面积 相接近,以免因流动速度变化引起压降。
b) 回弯阻力
Pi 4
wt2
2
Zt
Pa,
Z t 管程数
c) 进、出口连接管阻力
Pi 1.5
2 wn
2
Pa
2. 壳程阻力计算
a) 无折流板 可直接利用直管中沿程阻力计算公式 4A 当量直径 d 自由流通面积和湿周 U b) 弓形折流板 包括了顺流和叉流的复杂流动,有间隙泄漏、旁路等,所以很难准确地计 算阻力 贝尔-台华法 具体方法见课本
四、管壳式热交换器的合理设计
1.流体在热交换器内流动空间的选择原则:
1)提高传热系数小的一侧的换热系数 2)省材料,降低成本 3)便于清洗检修 4)减少和环境的热量交换 5)减少受热不匀造成的热应力 管内:容积流量小的,不清洁易结垢的,压力高的、有腐蚀性的,加热设备 中的高温流体或低温设备中的低温流体 壳体:容量大尤其是气体,刚性结构换热器中对流传热系数较大的流体,饱 和蒸汽等
山东大学· Βιβλιοθήκη 源与动力工程学院 杜文静第二章 管壳式换热器
一.管壳式热交换器的结构计算
结构计算的目的在于确定设备的主要结构参数和尺寸,包括: (1) 计算管程流通截面积,包括确定管子尺寸、数目、管程数,并选择管 子的排列方式等; (2) 确定壳体直径; (3) 计算壳程流通截面积,包括折流板类型; (4) 计算进出口连接管尺寸。
管壳式换热器的设计

管壳式换热器的设计
1.传热面积的计算:传热面积决定了热交换效果的好坏,计算传热面
积是设计的第一步。
传热面积的大小受到工艺需求、流体特性和设备尺寸
等因素的影响。
2.流体流速的选择:流体流速对传热效率有重要影响。
流速不宜过大,以免增加流体阻力和泵耗能,但也不宜过小,以免影响传热效果。
需要通
过经验和实验确定合适的流速范围。
3.换热器的参数选择:根据工艺要求和流体性质选择合适的管壳式换
热器参数,如管子和外壳的材料、厚度和长度等。
一般情况下,不同材料
的换热器对不同的流体具有不同的传热效果和抗腐蚀能力。
4.温度和压力的控制:管壳式换热器工作时,内外两种流体通常以不
同的温度和压力运行,因此需要采取相应的措施确保换热器的安全性能。
这包括选择合适的密封材料、加装安全阀和温控装置等。
5.清洗和维护的考虑:管壳式换热器在长期使用过程中会有积垢和堵
塞的问题,因此需要预留清洗口和维护通道,并定期进行清洗和维护工作,以保证换热器的正常运行。
总之,管壳式换热器的设计需要综合考虑传热效率、流体性质、工艺
要求和设备安全性能等因素,确保换热效果良好、运行安全可靠。
通过合
理的设计和选择,可以使管壳式换热器发挥最佳的效果,实现节能降耗的
目的。
管壳式换热器热力计算

(3)温差修正系数FT 在错流和折流换热器中,温度分布情况相当复杂,可按(2) 中公式计算出逆流的平均温度差,然后乘以修正系数,即 可计算有效平均温差Δtm; Δtm=FTΔtlm
式中 Δtlm——逆流时的对数平均温度差,℃; FT——温差修正系数 (查换热器设计手册中图1-3-6 取得)。
2.对流传热膜系数
(1)算术平均温度差
Δtm1= (Δt1+ Δt2)/2 (2)对数平均温度差
Δtm2= (Δt2- Δt1)/ln (Δt2 / Δt1) 式中 Δtm2——较大的温度差;
Δtm1——较小的温度差。 当Δtm1/ Δtm2<2时,采用算术平均温度差,否则采用对数 平均温度差。在计算平均温度差时,对无相变的对流传热, 逆流的平均温度差大于并流的平均温度差,因而在工业设 计中在工业设计中,在满足工艺条件的情况下,通常选用 逆流。
2.1无相变对流传热的传热膜系数
(1) 管内传热膜系数 流体在管内流动,其流动阻力和传热膜系数与流体在管 内的流动状态有关,流动状态以雷诺数大小来区分。
(1.1)湍流 Re>10000 对于低粘度流体(μi<2μa, μa为常温下水的粘度),可用
αi=0.023λi/ diRei0.8Prin 应用范围:Re>10000,0.7<Pr<120,L/di>60。 当L/di>60时,应将上式乘以[1+(di/L)0.7]进行修正。
奴塞尔特数
Nu=hL/ λ,其中h、L、λ分别为流体的传热系数、特征 长度与导热系数。代表了长度与热边界岑厚度之比,表征 了流体对流换热能力的大小。
1.稳态传热方程
热流体将热量通过某固定面传给冷流体成为传热,稳态传热 的基本方程为:Q=KAΔtm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总之,为了适应工艺发展的需要,今后在强化传热过程和换热设备方面,还将继续探 索新的途径。
强化传热技术
所谓提高换热器性能,就是提高其传热性能。狭义的强化传热系指提高流体和传热面
之间的传热系数。其主要方法归结为下述两个原理,即使温度边界层减薄和调换传热面附
近的流体,前者采用各种间断翅片结构,后者采用泡核沸腾传热[2]。最近还兴起一种EHD
花管(Twisted Tube),这原是瑞士的Allares公司技术,后经布朗公司(Brown Fin tube,Ltd.)改进,是一种高效换热元件[4]。用于有相变强化传热的强化沸腾传热管有:烧结多孔 表面管、机械加工的多孔表面管(如日本的Themoexcel2E管)、电腐蚀加工的多孔表面管
[5]、T型翅片管、ECR4(管和Tube2B型管。从所报导数据来看,在整体低肋管上切纵槽后
当前换热器发展的基本趋势是:继续提高设备的传热效率,促进设备结构的紧凑性, 加强生产制造的标准化系列化和专业化, 并在广泛的范围内继续向大型化的方向发展。 各 种新型高效紧凑式换热器的应用范围将得到进一步扩大。 在压力、温度和流量的许可范围 内,尤其是处理强腐蚀性介质而需要使用贵重金属材料的场合下, 新型紧凑式换热器将进
流路湍流增进器与管内插入物
增进器是在传热面附近设置一个小物体(不一定与传热面相连接),它可以是各种形状 和型式,最常见的是在传热面上等距离设置突起物,通过搅乱流动来达到强化传热的目的[14]。管内插入物有:扭带(Turbu lators)、螺旋片、螺旋线圈(Spirele Elements)和静态 混合器(Ke nics Mixers)。它们适合于强化管内单相流体传热,尤其对强化气体、低雷诺 数或高粘度流体传热更为有效[9]。最近,国外又开发出一种称之为H itran Matrix Elements
右,检修工作量可达总检修工作量的60%以上。由此可见,换热器在化工生产中的应用是
十分广泛的,任何化工生产工艺几乎都离不开它。在其他方面如动力、原子能、冶金、轻 工、制造、食品、交通、家电等行业也有着广泛的应用。
70年代的世界能源危机,有力地促进了传热强化技术的发展,为了节能降耗,提的发展和换热器性能的要求也就更高[2]。所以,这些
再滚压成型的Tube2B型管似乎有较高的传热性能,它可能符合薄液膜面积较大,隧道与 外界液体相通,因而有利于蒸汽流出和液体吸入等要求[6]。俄罗斯也开发出一种称之为“变 形翅片管”[7]的传热管,可用于空分装置的冷凝2蒸发器[8]。用于强化冷凝传热的传热管 有:纵槽管、低螺纹翅片管、锯齿形翅片管(ST管)和径向辐射肋管式翅片管(R管)等。近 年来,Hamon2L ummi公司又新推出一种SRC翅片管(SRC Fin Tube)⑶,用于冷凝传热。 内翅片管与横槽管和螺旋槽管一样, 不但可用于单相对流传热, 也可有效地用于强化管内 流动沸腾传热[9]。而横槽管和螺旋槽管不但能强化管内传热,同时杆(Rod Baffles)、窗 口不排管(NTIW)和波网(Nest)等新壳程结构[10]。随后有人设还能强化管外传热。外翅片管 可以利用液体表面张力减薄冷凝液膜厚度以强化传热, 这一发现大大促进了新型翅片管的 研究开发。人们用不同金属制造不同形状的翅片管,其翅片形状有:三角肋三角槽、梯形
116〜212倍,在相同的传热面积下,能够完成相当于光管168%-200%的传热负荷。ISF
管的强化传热作用主要是内表面和二次流的增加所致。 可用于干式蒸发器, 与目前制冷行 业通用的星形内肋管蒸发器相比, 质量可以减轻近50%。截面管也是近年来国外研究开发
的强化传热元件,可分为蛋形管、豆状管和菱形管,统称为异形管。实验证明,此类管件 与光圆管相比,具有显著的强化传热效果。
肋三角槽、梯形肋梯形槽、三角肋梯形槽和Wolverine Tube2C管等。翅片密度在50〜3000
个翅片,与光管相比, 给热系数可提高1〜12倍[11]。俄罗斯还介绍了1种空冷器用的轧制 翅片管,为双金属管, 每隔1个翅片有切口, 用以强化传热[12]。俄罗斯还有1种金属丝缠 绕的绕丝翅片管[14]和气动喷涂翅片管[13]。内螺旋翅片管(NL管)是美国新开发的1种高效 强化管内相变传热元件, 根据翅片形状不同, 可分为三角肋、梯形肋和矩形肋等, 用于沸 腾传热。内波纹螺纹管在湍流时可使对流传热系数增加1倍多。多头内螺纹管(ISF管)也 是一种高效强化传热管,具有较好的强化管内沸腾传热的性能,传热膜系数为光管的
年来,换热器的开发与研究成为人们关注的课题,最近,随着工艺装置的大型化和高效率 化,换热器也趋于大型化,向低温差设计和低压力损失设计的方向发展。同时,对其一方 面要求成本适宜,另一方面要求高精度的设计技术。当今换热器技术的发展以
CFD(Computational Fluid Dynamics)、模型化技术、强化传热技术及新型换热器开发等 形成了一个高技术体系[3]。
第一章 换热器简介及发展趋势
概述
在化工生产中,为了工艺流程的需要,常常把低温流体加热或把高温流体冷却,把液
态汽化或把蒸汽冷凝程液体,这些工艺过程都是通过热量传递来实现的。进行热量传递的 设备称为换热设备或换热器。换热器是通用的一种工艺设备,他不仅可以单独使用,同时 又是很多化工装置的组成部分。
在化工厂中,换热器的投资约占总投资的10%——20%,质量约为设备总质量的40%左
强化冷凝传热。其所需电场耗用的电力很小。人们想尽各种办法实施强化传热,归结起来 不外乎两条途径,即改变传热面的形状和在传热面上或传热流路径内设置各种形状的湍流 增进器或插入物。
传热面形状的改变
改变传热面形状的方法有多种,其中用于无相变强化传热的有:横槽管、螺旋槽管(S
管)和缩放管。新近又开发出偏置折边翅片管(一种间断翅片管)和螺旋扁管,后者也叫麻
技术,即电气流体力学技术,又称为电场强化冷凝传热技术,进一步强化了对流、冷凝和 沸腾传热, 特别适用于强化冷凝传热,并适用于低传热性介质的冷凝,因而引起人们的 普遍关注[3]。其原理是,对某些不导电液体的表面施以相垂直的电场,使液体表面变得很 不稳定,借冷凝液表面的张力作用和在静电场下液膜的不稳定现象使液膜厚度减薄,从而