不等式与不等式组分析
人教版数学七年级下册第61课时《不等式与不等式组复习》教案

人教版数学七年级下册第61课时《不等式与不等式组复习》教案一. 教材分析《不等式与不等式组复习》这一课时,是人教版数学七年级下册的教学内容。
本课时主要对不等式与不等式组的概念、性质、解法等进行复习,旨在帮助学生巩固已学知识,提高解决问题的能力。
教材通过对不等式与不等式组的复习,使学生能够熟练运用不等式解决实际问题,为后续学习更高级的数学知识打下基础。
二. 学情分析学生在之前的学习中已经掌握了不等式与不等式组的基本概念、性质和解法。
但部分学生在解不等式组时,对不等号的方向变化、解集的表示方法等方面容易出错。
因此,在复习过程中,教师需要针对这些薄弱环节进行重点讲解和练习,提高学生的解题技能。
三. 教学目标1.知识与技能:使学生熟练掌握不等式与不等式组的概念、性质和解法,能灵活运用不等式解决实际问题。
2.过程与方法:通过复习不等式与不等式组,培养学生分析问题、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。
四. 教学重难点1.重点:不等式与不等式组的概念、性质和解法。
2.难点:不等式组的解集表示方法和在实际问题中的应用。
五. 教学方法采用讲解法、例题解析法、练习法、小组讨论法等,结合多媒体教学手段,引导学生主动参与复习过程,提高复习效果。
六. 教学准备1.教材、课件和教学资源。
2.练习题和测试题。
3.黑板、粉笔等教学工具。
七. 教学过程利用课件展示不等式与不等式组在实际生活中的应用场景,引导学生回顾已学知识,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT展示不等式与不等式组的概念、性质和解法,让学生对所学知识有一个全面的了解。
在呈现过程中,教师要点拔重点,解答学生的疑问。
3.操练(10分钟)让学生独立完成练习题,检验学生对不等式与不等式组的掌握程度。
教师巡回指导,对学生在解题过程中遇到的问题进行解答。
4.巩固(10分钟)针对学生在操练过程中出现的问题,教师进行讲解和总结,帮助学生巩固知识点。
初一数学不等式

初一(七年级)下册数学不等式与不等式组【知识梳理】1.判断不等式是否成立:关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以)了一个负数。
因此,在判断不等式成立与否或由不等式变形求某些字母的范围时,要认真观察不等式的形式与不等号方向。
2.解一元一次不等式(组):解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质。
一元一次不等式(组)常与分式、根式、一元二次方程、函数等知识相联系,解决综合性问题。
3.求不等式(组)的特殊解:不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集,然后再找到相应的答案。
注意应用数形结合思想。
4.列不等式(组)解应用题:注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题。
重要性质:• 1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
表达式:如果a>b,那么a±c>b±c如果a<b,那么a±c<b±c• 2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
表示式:如果a>b,并且c>0,那么ac>bc(或a/c>b/c)如果a<b,并且c>0,那么ac<bc(或a/c>b/c)• △3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变表达式:如果a>b,并且c<0,那么ac<bc(或a/c<b/c)如果a<b,并且c<0,那么ac>bc(或a/c>b/c)拓展:把不等式的性质和等式的性质结合起来,试着总结出他们之间的联系和区别。
不等式或不等式组的解法笔记

不等式或不等式组的解法笔记《不等式或不等式组的解法笔记》1.引言在数学中,不等式是我们经常遇到的一类问题。
与等式不同的是,不等式中的符号可以是大于、小于、大于等于或小于等于,在求解过程中会涉及到一些特殊的方法和技巧。
本文将从基本概念出发,逐步介绍不等式的解法,帮助读者更好地理解并掌握不等式的解题技巧。
2.基本概念不等式是一个数学表达式,用不等号连接两个表达式,表示这两个表达式的大小关系。
a>b、a<b、a≥b、a≤b都是不等式。
不等式的解即是找到一组满足不等式条件的变量取值范围。
在解不等式时,我们通常需要用到一些基本的不等式性质,比如两边同时加减相同的数不等式的大小关系不变,两边同时乘除正数不等式的大小关系不变,而乘除负数时需要改变不等式的方向等。
3.一元一次不等式的解法对于一元一次不等式ax+b>0或ax+b<0,我们可以通过移项和分析系数的正负来解题。
具体来说,当a>0时,不等式的解集为(-∞,-b/a)或(-b/a, +∞);当a<0时,解集为(-∞, -b/a)或(-b/a, +∞)。
4.一元二次不等式的解法对于一元二次不等式ax^2+bx+c>0或ax^2+bx+c<0,我们通常可以通过判别式Δ=b^2-4ac来确定不等式的解的范围。
当Δ>0时,不等式有两个不相等的实数根x1、x2,解集为(-∞, x1)并(x2, +∞);当Δ=0时,方程有两个相等的实数根x1=x2,解集为{x1};当Δ<0时,方程没有实数根,不等式无解。
5.多元不等式组的解法对于多元不等式组,我们通常需要通过代数方法或图形法来求解。
在代数方法中,可以通过变量替换、加减消元、乘除整理等步骤来逐步化简不等式组,最终得到每个变量的取值范围。
在图形法中,可以将不等式用图形的方式表示出来,通过观察不同图形的交集关系来求解不等式组的解。
6.个人观点和总结不等式是数学中重要的概念之一,掌握不等式的解法将有助于我们更好地理解和应用数学知识。
不等式与不等式组

不等式与不等式组在数学中,不等式是描述数之间关系的一种表达方式。
不等式可以用于求解线性方程组、判断函数的增减性以及解决许多实际问题。
本文将介绍不等式及不等式组的概念、性质和解法。
1. 不等式的定义和性质不等式是用符号>、<、≥或≤表示数值之间相对大小关系的数学表达式。
其中,>表示大于,<表示小于,≥表示大于等于,≤表示小于等于。
例如,对于两个实数a和b,若a>b,则称a大于b,记作a>b。
不等式满足如下的性质:(1)传递性:如果a>b,b>c,那么a>c。
(2)反对称性:如果a>b且b>a,那么a=b。
(3)加法性:如果a>b,那么a+c>b+c,其中c为任意实数。
(4)乘法性:如果a>b且c>0,那么ac>bc。
2. 不等式的解法要求解一个不等式,需要确定不等式的解集。
解集是满足不等式条件的所有的实数集合。
(1)一元一次不等式的解法一元一次不等式是指只含有一个未知数的一次方程。
解一元一次不等式的方法与解一元一次方程相类似。
例如,对于不等式2x+3<7,我们可以按照如下步骤解题:2x+3<72x<4x<2因此,解集为x<2。
(2)一元二次不等式的解法一元二次不等式是指含有一个未知数的二次方程。
解一元二次不等式的方法与解一元二次方程相类似。
例如,对于不等式x^2-5x+6>0,我们可以按照如下步骤解题:(x-2)(x-3)>0根据零点的性质,我们可以得出两个解为x<2或x>3。
(3)不等式组的解法不等式组是由多个不等式组成的方程组。
解不等式组的方法与解方程组类似,需要找到所有满足所有不等式条件的解。
例如,考虑以下不等式组:x+y>32x-y<2我们可以通过图像法或代入法求解不等式组。
最终我们得到解集为x>1,y>2。
3. 不等式的应用不等式在实际问题中有着广泛的应用。
不等式与不等式组的知识点

不等式与不等式组的知识点不等式与不等式组的知识点一、不等式的定义不等式是数学中用来表示两个数之间的大小关系的一种符号,他们通常使用箭头或相等号和符号连接。
在不等式中,将数字分为“左边”和“右边”,而箭头或符号则指示左边的数字要大于、小于、等于或不等于右边的数字。
例如,5<7表示5小于7,3>2表示3大于2,4≠8表示4不等于8,以及6≤9表示6小于或等于9。
二、不等式组的定义不等式组是指多个不等式组成的数学结构,能够用来描述一个特定的解决方案。
例如,在x + 2y ≥ 6 和 x - y ≤ 4 的不等式组中,每个不等式都有一个独立的变量,即x和y,并且它们之间具有相互作用,即它们可以用来确定一个特定的解决方案。
三、不等式与不等式组的解决方法1.解不等式解不等式是指求出满足不等式的所有可能的解的过程。
首先,需要确定不等式的类型,因为不同类型的不等式有不同的解决方法。
其次,需要对不等式进行消去或求解,使其右边的数字变为0。
最后,根据不等式的类型,求出所有可能的解。
2.解不等式组解不等式组是指求出满足不等式组中所有不等式的解的过程。
首先,需要将不等式组中的不等式进行消去或求解,使其右边的数字变为0。
其次,根据消去后的不等式,对不等式组中的变量进行求值,以确定其解。
最后,需要检查求得的解是否满足不等式组中的所有不等式,如果满足,则该解即为不等式组的解。
四、不等式与不等式组的应用1.不等式的应用不等式在日常生活中有着广泛的应用,例如可以用来确定某个数字是否在一定范围之内,也可以用来确定某个数字是否等于另一个数字。
例如,可以使用不等式来判断温度是否低于20度,由此可以判断是否需要加衣服。
此外,还可以使用不等式来确定某个数字是否等于另一个数字,例如可以用来判断两个数字是否相等。
2.不等式组的应用不等式组在商业、金融、经济和其他领域的应用非常广泛,例如在金融领域,可以使用不等式组来判断投资是否能够获得最大的收益;在经济领域,可以使用不等式组来判断某项投资是否会产生最大的利润等。
不等式与不等式组知识点归纳

第九章 不等式与不等式组一、知识结构图二、知识要点(一、)不等式的概念1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。
不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。
3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。
4、解不等式:求不等式的解集的过程,叫做解不等式。
⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(3215、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。
规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。
(二、)不等式的基本性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。
用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。
用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。
用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式。
《不等式的性质》不等式与不等式组PPT优秀课件
(2)6x<5x-1;
x<-1
(4)1-1x≥x-2.
3
x≤9
4
8.【例4】(创新题)四个小朋友玩跷跷板,他们的体重分别为 P,Q,R,S,如图所示,则他们的体重大小关系是( D )
A.P>R>S>Q C.S>P>Q>R
B.Q>S>P>R D.S>P>R>Q
小结:关键是两两间大小关系要先表示或判定出来.
4
精典范例
5.【例1】利用不等式的性质,填“>”或“<”.
(1)若x>y,则x-10 > y-10;
(2)若-1.25y<10,则y > -8;
(3)若a<b且k>0,则k+a < k+b;
(4)若-1m>-1n,则 m < n;
2
2
(5)若a>b,则2a+1 > 2b+1;
(6)若a<b且c>0,则ac+c < bc+c.
第九章 不等式与不等式组
不等式的性质
学习目标
1.(课标)探索不等式的基本性质. 2.掌握不等式的三个性质并且能正确应用. 3.理解解不等式的概念. 4.(课标)能解数字系数的一元一次不等式.
知识要点
知识点一:不等式的性质 (1)不等式的性质1 文字语言:不等式两边加(或减)同一个数(或式子),不等号的方 向 不变 . 符号语言:如果a>b,那么a±c > b±c.
★.(新题速递)(人教7下P121改编)根据等式和不等式的基本 性质,我们可以得到比较两数大小的方法: 若a-b>0,则a>b;若a-b=0,则a=b; 若a-b<0,则a<b.反之也成立. 这种比较大小的方法称为“求差法比较大小”. 请运用这种方法尝试解决下面的问题: 比较4+3a2-2b+b2与3a2-2b+1的大小. 解:∵4+3a2-2b+b2-(3a2-2b+1)=b2+3>0, ∴4+3a2-2b+b2>3a2-2b+1.
初中数学不等式与不等式组学习技巧
初中数学不等式与不等式组学习技巧学习初中数学不等式与不等式组时,以下是一些有效的学习技巧:1.理解定义和基本概念:首先确保你清楚不等式与不等式组的定义和基本概念。
不等式是用不等号(如大于、小于、大于等于、小于等于、不等于)连接两个数学表达式,而不等式组则是由多个不等式组成的集合。
2.学习不等式的解法:掌握解一元一次不等式的基本步骤和方法。
了解如何移项、合并同类项、去括号等基本操作,并注意在处理不等号时的方向变化。
3.学习不等式组的解法:不等式组的解集是所有不等式解集的交集。
学习如何求解不等式组,包括找出每个不等式的解集,然后找出它们的公共解集。
4.利用数轴表示解集:不等式和不等式组的解集可以在数轴上表示。
学会在数轴上标出不等式的解集,通过观察数轴上的区间来找出不等式组的解集。
5.进行大量的练习:通过做大量的练习题来巩固对不等式与不等式组概念和解法的理解。
从简单的题目开始,逐步挑战更复杂的题目,提升自己的解题能力。
6.关联和对比:将不等式与等式、方程进行对比和关联,理解它们之间的联系和区别。
同时,比较一元一次不等式与一元一次方程的解法,找出它们的相似之处和差异。
7.掌握实际问题的建模:不等式与不等式组常用于解决实际问题。
学会将实际问题转化为数学模型(即不等式或不等式组),然后求解。
8.总结归纳:将学习到的不等式与不等式组的知识和技巧进行归纳整理,形成自己的知识体系。
这样可以帮助你更好地记忆和应用这些知识。
9.参加讨论和求助:与同学或老师讨论不等式与不等式组相关的问题,通过交流和分享来加深对它们的理解。
遇到难以解决的问题时,及时向老师或同学求助。
10.持续复习:定期复习不等式与不等式组的概念和解法,确保你能够长期记忆和应用它们。
在复习过程中,可以不断回顾和巩固之前学过的知识,形成更加完整的知识体系。
遵循这些学习技巧,你将能够更好地掌握初中数学中的不等式与不等式组知识,提高解题能力。
专题08不等式与不等式组【解析版】
专题08不等式与不等式组一.选择题(共8小题)1.(2022•娄底)不等式组的解集在数轴上表示正确的是( )A.B.C.D。
【分析】先求出不等式组的解集,再确定符合条件的选项.【解析】,解①,得x≤2,解②,得x>﹣1.所以原不等式组的解集为:﹣1<x≤2.故符合条件的选项是C.故选:C.2.(2022•嘉兴)不等式3x+1<2x的解集在数轴上表示正确的是( )A.B.C.D.【分析】根据解不等式的方法可以解答本题.【解析】3x+1<2x,移项,得:3x﹣2x<﹣1,合并同类项,得:x<﹣1,其解集在数轴上表示如下:,故选:B.【点评】本题考查解一元一次不等式、在数轴上表示不等式的解集,解答本题的关键是明确解一元一次不等式的方法.3.(2022•衡阳)不等式组的解集在数轴上表示正确的是( )A.B.C.D.【分析】首先解每个不等式,然后把每个不等式的解集在数轴上表示即可.【解析】,解①得x≥﹣1,解②得x<3.则表示为:故选:A.【点评】本题考查了不等式组的解法以及用数轴表示不等式的解集,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.4.(2022•株洲)不等式4x﹣1<0的解集是( )A.x>4B.x<4C.x>D.x<【分析】根据解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1解不等式即可.【解析】∵4x﹣1<0,∴4x<1,∴x<.故选:D.【点评】本题考查了解一元一次不等式,掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1是解题的关键.5.(2022•武威)不等式3x﹣2>4的解集是( )A.x>﹣2B.x<﹣2C.x>2D.x<2【分析】按照解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1即可得出答案.【解析】3x﹣2>4,移项得:3x>4+2,合并同类项得:3x>6,系数化为1得:x>2.故选:C.【点评】本题考查了解一元一次不等式,掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1是解题的关键.6.(2022•宿迁)如果x<y,那么下列不等式正确的是( )A.2x<2y B.﹣2x<﹣2y C.x﹣1>y﹣1D.x+1>y+1【分析】根据不等式的性质逐个判断即可.【解析】A、∵x<y,∴2x<2y,故本选项符合题意;B、∵x<y,∴﹣2x>﹣2y,故本选项不符合题意;C、∵x<y,∴x﹣1<y﹣1,故本选项不符合题意;D、∵x<y,∴x+1<y+1,故本选项不符合题意;故选:A.【点评】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.7.(2022•滨州)把不等式组中每个不等式的解集在一条数轴上表示出来,正确的为( )A.B.C.D.【分析】先解出不等式组中的每一个不等式的解集,然后即可写出不等式组的解集,再在数轴上表示出每一个不等式的解集即可.【解析】解不等式x﹣3<2x x>﹣3,解不等式,得x≤5,故原不等式组的解集是﹣3<x≤5,其解集在数轴上表示如下:故选:C.【点评】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法,会在数轴上表示不等式组的解集.8.(2022•邵阳)关于x的不等式组有且只有三个整数解,则a的最大值是( )A.3B.4C.5D.6【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分表示出不等式组的解集,根据解集有且只有三个整数解,确定出a的范围即可.【解析】,由①得:x>1,由②得:x<a,解得:1<x<a,∵不等式组有且仅有三个整数解,即2,3,4,∴4<a≤5,∴a的最大值是5,故选:C.【点评】此题考查了一元一次不等式组的整数解,熟练掌握不等式组的解法是解本题的关键.二.多选题(共1小题)(多选)9.(2022•湘潭)若a>b,则下列四个选项中一定成立的是( )A.a+2>b+2B.﹣3a>﹣3b C.>D.a﹣1<b﹣1【解析】A.a+2>b+2,∵a>b,∴a+2>b+2,故A选项符合题意;B.﹣3a>﹣3b,∵a>b,∴﹣3a<﹣3b,故B选项不符合题意;C.>,∵a>b,∴>,故C选项符合题意;D.a﹣1<b﹣1,∵a>b,∴a﹣1>b﹣1,故D选项不符合题意;故选:AC.【点评】本题主要考查不等式的性质,熟练掌握不等式的性质是解题的关键.三.填空题(共4小题)10.(2022•绍兴)关于x的不等式3x﹣2>x的解集是 x>1 .【分析】根据解一元一次不等式步骤即可解得答案.【解析】∵3x﹣2>x,∴3x﹣x>2,即2x>2,解得x>1,故答案为:x>1.【点评】本题考查解一元一次不等式,解题的关键是掌握解一元一次不等式的基本步骤.11.(2022•安徽)不等式≥1的解集为 x≥5 .【分析】先去分母、再移项即可.【解析】≥1,x﹣3≥2,x≥3+2,x≥5.故答案为:x≥5.【点评】本题考查的是解一元一次不等式,掌握解一元一次不等式是解答本题的关键.12.(2022•丽水)不等式3x>2x+4的解集是 x>4 .【分析】先移项,再合并同类项即可.【解析】3x>2x+4,3x﹣2x>4,x>4,故答案为:x>4.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.13.(2022•达州)关于x的不等式组恰有3个整数解,则a的取值范围是 2≤a<3 .【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解析】,解不等式①得:x>a﹣2,解不等式②得:x≤3,∴不等式组的解集为:a﹣2<x≤3,∵恰有3个整数解,∴0≤a﹣2<1,∴2≤a<3,故答案为:2≤a<3.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同理的答案.四.解答题(共19小题)14.(2022•武汉)解不等式组请按下列步骤完成解答.(1)解不等式①,得 x≥﹣3 ;(2)解不等式②,得 x<1 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是 ﹣3≤x<1 .【分析】分别解这两个不等式,把不等式①和②的解集在数轴上表示出来,找到解集的公共部分即可得到原不等式组的解集.【解析】(1)解不等式①,得:x≥﹣3;(2)解不等式②,得:x<1;(3)把不等式①和②的解集在数轴上表示出来为:(4)原不等式组的解集为:﹣3≤x<1.故答案为:(1)x≥﹣3;(2)x<1;(4)﹣3≤x<1.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,体现了数形结合的思想,在数轴上找到解集的公共部分是解题的关键.15.(2022•常德)解不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解析】由5x﹣1>3x﹣4,得:x>﹣,由﹣≤﹣x,得:x≤1,则不等式组的解集为﹣<x≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(2022•乐山)解不等式组.请结合题意完成本题的解答(每空只需填出最后结果).解:解不等式①,得 x>﹣2 .解不等式②,得 x≤3 .把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为 ﹣2<x≤3 .【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解析】解不等式①,得x>﹣2.解不等式②,得x≤3.把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为﹣2<x≤3,故答案为:x>﹣2,x≤3,﹣2<x≤3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(2022•陕西)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解析】由x+2>﹣1,得:x>﹣3,由x﹣5≤3(x﹣1),得:x≥﹣则不等式组的解集为x≥﹣1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(2022•天津)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得 x≥﹣1 ;(Ⅱ)解不等式②,得 x≤2 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 ﹣1≤x≤2 .【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解析】(Ⅰ)解不等式①,得x≥﹣1;(Ⅱ)解不等式②,得x≤2;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣1≤x≤2,故答案为:x≥﹣1,x≤2,﹣1≤x≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(2022•宁波)(1)计算:(x+1)(x﹣1)+x(2﹣x).(2)解不等式组:.【分析】(1)根据平方差公式和单项式乘多项式展开,合并同类项即可得出答案;(2)分别解这两个不等式,根据不等式解集的规律即可得出答案.【解析】(1)原式=x2﹣1+2x﹣x2=2x﹣1;(2),解不等式①得:x>3,解不等式②得:x≥﹣2,∴原不等式组的解集为:x>3.【点评】本题考查了整式的混合运算,解一元一次不等式组,掌握同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.20.(2022•怀化)解不等式组,并把解集在数轴上表示出来.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解析】,解不等式①,得:x>2,解不等式②,得:x≤3,∴原不等式组的解集是2<x≤3,其解集在数轴上表示如下:.【点评】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解答本题的关键是明确解一元一次不等式的方法.21.(2022•湖州)解一元一次不等式组.【分析】分别解这两个一元一次不等式,然后根据求不等式组解集的规律即可得出答案.【解析】解不等式①得:x<2,解不等式②得:x<1,∴原不等式组的解集为x<1.【点评】本题考查了解一元一次不等式组,掌握同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.22.(2022•扬州)解不等式组并求出它的所有整数解的和.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后即可求得该不等式组所有整数解的和.【解析】,解不等式①,得:x≥﹣2,解不等式②,得:x<4,∴原不等式组的解集是﹣2≤x<4,∴该不等式组的整数解是﹣2,﹣1,0,1,2,3,∵﹣2+(﹣1)+0+1+2+3=3,∴该不等式组所有整数解的和是3.【点评】本题考查一元一次不等式组的整数解、解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.23.(2022•温州)(1)计算:+(﹣3)2+3﹣2﹣|﹣|.(2)解不等式9x﹣2≤7x+3,并把解集表示在数轴上.【分析】(1)根据算术平方根、有理数的乘方、负整数指数幂和绝对值可以解答本题;(2)先解出不等式的解集,再在数轴上表示出其解集即可.【解析】(1)+(﹣3)2+3﹣2﹣|﹣|=3+9+﹣=12;(2)9x﹣2≤7x+3,移项,得:9x﹣7x≤3+2,合并同类项,得:2x≤5,系数化为1,得:x≤2.5,其解集在数轴上表示如下:.【点评】本题考查实数的运算、解一元一次不等式,解答本题的关键是明确实数运算的运算法则和解一元一次不等式的方法.24.(2022•江西)(1)计算:|﹣2|+﹣20;(2)解不等式组:.【分析】(1)根据绝对值的性质,算术平方根的意义,零指数幂的意义解答即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解析】(1)原式=2+2﹣1,=3.(2)解不等式①得:x<3,解不等式②得:x>1,∴不等式组的解集为:1<x<3.【点评】本题考查的是实数的运算和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.(2022•连云港)解不等式2x﹣1>,并把它的解集在数轴上表示出来.【分析】去分母、移项、合并同类项可得其解集.【解析】去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>﹣1+2,合并同类项,得:x>1,将不等式解集表示在数轴上如下:.【点评】此题考查了解一元一次不等式的基本能力,熟练掌握解一元一次不等式的步骤是解题的关键.26.(2022•舟山)(1)计算:﹣(﹣1)0.(2)解不等式:x+8<4x﹣1.【分析】(1)根据立方根和零指数幂可以解答本题;(2)根据解一元一次不等式的方法可以解答本题.【解析】(1)﹣(﹣1)0=2﹣1=1;(2)x+8<4x﹣1移项及合并同类项,得:﹣3x<﹣9,系数化为1,得:x>3.【点评】本题考查解一元一次不等式、实数的运算,熟练掌握运算法则和解一元一次不等式的方法是解答本题的关键.27.(2022•金华)解不等式:2(3x﹣2)>x+1.【分析】利用解不等式的方法解答即可.【解析】去括号得:6x﹣4>x+1,移项得:6x﹣x>4+1,合并同类项得:5x>5,∴x>1.【点评】本题主要考查了解一元一次不等式,熟练掌握解一元一次不等式的方法是解题的关键.28.(2022•自贡)解不等式组:,并在数轴上表示其解集.【分析】先求出不等式的解集,求出不等式组的解集即可.【解析】由不等式3x<6,解得:x<2,由不等式5x+4>3x+2,解得:1,∴不等式组的解集为:﹣1<x<2,∴在数轴上表示不等式组的解集为:【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.29.某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?【分析】(1)根据购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元,可以列出相应的二元一次方程组,然后求解即可;(2)根据要求篮球不少于30个,且总费用不超过5500元,可以列出相应的不等式组,从而可以求得篮球数量的取值范围,然后即可写出相应的购买方案.【解析】(1)设篮球的单价为a元,足球的单价为b元,由题意可得:,解得,答:篮球的单价为120元,足球的单价为90元;(2)设采购篮球x个,则采购足球为(50﹣x)个,∵要求篮球不少于30个,且总费用不超过5500元,∴,解得30≤x≤33,∵x为整数,∴x的值可为30,31,32,33,∴共有四种购买方案,方案一:采购篮球3020个;方案二:采购篮球31个,采购足球19个;方案三:采购篮球32个,采购足球18个;方案四:采购篮球33个,采购足球17个.【点评】本题考查二元一次方程组的应用、一元一次不等式组的应用,解答本题的关键是明确题意,列出相应的方程组和不等式组.30.(2022•泸州)某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.(1)A,B两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?【分析】(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,根据“购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,利用总价=单价×数量,结合购进A种农产品的件数不超过B种农产品件数的3倍且总价不超过5400元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,设两种农产品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.【解析】(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,依题意得:,解得:.答:每件A种农产品的价格是120元,每件B种农产品的价格是150元.(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,依题意得:,解得:20≤m≤30.设两种农产品全部售出后获得的总利润为w元,则w=(160﹣120)m+(200﹣150)(40﹣m)=﹣10m+2000.∵﹣10<0,∴w随m的增大而减小,∴当m=20时,w取得最大值,此时40﹣m=40﹣20=20.答:当购进20件A种农产品,20件B种农产品时获利最多.【点评】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式.31.(2022•邵阳)2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?【分析】(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,利用进货总价=进货单价×进货数量,结合购进“冰墩墩”摆件和挂件共100个且共花费了11400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180﹣m)个,利用总利润=每个的销售利润×销售数量(购进数量),即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解析】(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,依题意得:,解得:.答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180﹣m)个,依题意得:(60﹣50)m+(100﹣80)(180﹣m)≥2900,解得:m≤70.答:购进的“冰墩墩”挂件不能超过70个.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.32.(2022•宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为 300 元;乙超市的购物金额为 240 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?【分析】(1)利用总价=单价×数量,可求出购买30件这种文化用品所需原价,再结合两超市给出的优惠方案,即可求出在两家超市的购物金额;(2)设购买x件这种文化用品,当0<x≤40时,在甲超市的购物金额为10x元,在乙超市的购物金额为8x元,显然在乙超市支付的费用较少;当x>40时,在甲超市的购物金额为(6x+160)元,在乙超市的购物金额为8x元,分6x+160>8x,6x+160=8x及6x+160<8x三种情况,可求出x的取值范围或x的值,综上,即可得出结论.【解析】(1)∵10×30=300(元),300<400,∴在甲超市的购物金额为300元,在乙超市的购物金额为300×0.8=240(元).故答案为:300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的购物金额为10x元,在乙超市的购物金额为0.8×10x=8x(元),∵10x>8x,∴选择乙超市支付的费用较少;当x>40时,在甲超市的购物金额为400+0.6(10x﹣400)=(6x+160)(元),在乙超市的购物金额为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.【点评】本题考查了一元一次不等式的应用以及一元一次方程的应用,根据两超市给出的优惠方案,用含x的代数式表示出在两家超市的购物金额是解题的关键.。
最新初中数学方程与不等式之不等式与不等式组解析含答案(3)
最新初中数学方程与不等式之不等式与不等式组解析含答案(3)一、选择题1.关于x 的不等式组x 15x 322x 2x a 3><+⎧-⎪⎪⎨+⎪+⎪⎩只有4个整数解,则a 的取值范围是( ) A .145a 3-≤≤-B .145a 3-≤<-C .145a 3-<≤-D .145a 3-<<- 【答案】C【解析】【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解:不等式组的解集是2-3a <x <21,因为不等式组只有4个整数解,则这4个解是20,19,18,17.所以可以得到16≤2-3a <17,解得-5<a≤-143. 故选:C .【点睛】此题考查解不等式组,正确解出不等式组的解集,正确确定2-3a 的范围,是解决本题的关键.2.若a b <,则下列变形错误的是( )A .22a b <B .22a b +<+C .1122a b <D .22a b -<- 【答案】D【解析】【分析】根据不等式的性质解答.【详解】∵a b <,∴22a b <,故A 正确;∵a b <,∴22a b +<+,故B 正确;∵a b <,∴1122a b <,故C 正确; ∵a b <,∴2-a>2-b ,故D 错误,故选:D.【点睛】此题考查不等式的性质,熟记性质定理并运用解题是关键.3.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2 B .m >-3 C .-3<m <2 D .m <3或m >2【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩ , 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.4.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.8【答案】C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x )≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.5.若关于x 的不等式mx ﹣n >0的解集是x <13,则关于x 的不等式(m+n )x >n ﹣m 的解集是( ) A .x <﹣12B .x >﹣12C .x <12D .x >12 【答案】A【解析】【分析】 根据不等式mx ﹣n >0的解集是x <13,则0m <,0n <,3m n =,即可求出不等式的解集.【详解】 解:∵关于x 的不等式mx ﹣n >0的解集是x <13, ∴0m <,0n <,3m n =,∴0m n +<,解不等式()m n x n m >-+, ∴n m x m n -<+, ∴3132n m n n x m n n n --<==-++; 故选:A.【点睛】本题考查了解一元一次不等式,以及不等式的性质,解题的关键是熟练掌握解不等式的方法和步骤.6.若m n >,则下列不等式中成立的是( )A .m+a<n+bB .ma>nbC .ma 2>na 2D .a-m<a-n【答案】D【解析】【分析】根据不等式的性质判断.【详解】A. 不等式两边加的数不同,错误;B. 不等式两边乘的数不同,错误;C. 当a =0时,错误;D. 不等式两边都乘−1,不等号的方向改变,都加a ,不等号的方向不变,正确;点睛:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.7.若关于x 的不等式6234x x a x x +<+⎧⎪⎨+>⎪⎩有且只有三个整数解,则实数a 的取值范围是( )A .15<a ≤18B .5<a ≤6C .15≤a <18D .15≤a ≤18【答案】A【解析】【分析】解不等式组,由有且只有三个整数解确定出a 的范围即可.【详解】 解不等式组得:23x a x >⎧⎪⎨<⎪⎩,即2<x <3a , 由不等式组有且只有三个整数解,得到整数解为3,4,5,∴5<3a ≤6, 解得:15<a≤18,故选:A .【点睛】此题考查了一元一次不等式组的整数解,熟练掌握解不等式组的方法是解本题的关键.8.不等式组13x x -≤⎧⎨<⎩的解集在数轴上可以表示为( ) A .B .C .D .【答案】B【解析】【分析】分别解不等式组中的每一个不等式,再求解集的公共部分.【详解】由-x≤1,得x≥-1,则不等式组的解集为-1≤x <3.故选:B .此题考查在数轴上表示不等式的解集.解题关键是求不等式组的解集,判断数轴的表示方法,注意数轴的空心、实心的区别.9.某商品的标价比成本价高%a ,根据市场需要,该商品需降价%b .为了不亏本,b 应满足( )A .b a ≤B .100100a b a ≤+C .100a b a ≤+D .100100a b a ≤- 【答案】B【解析】【分析】根据最大的降价率即是保证售价大于等于成本价,进而得出不等式即可.【详解】解:设成本为x 元,由题意可得:()()1%1%x a b x +-?,整理得:100100b ab a +?, ∴100100a b a≤+, 故选:B .【点睛】 此题主要考查了一元一次不等式的应用,得出正确的不等关系是解题关键.10.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <,则k 的取值范围为( ) A .1k >B .1k <C .1k ³D .1k ≤【答案】C【解析】【分析】首先将不等式组中的不等式的解集分别求出,根据题意得出关于k 的不等式,求出该不等式的解集即可.【详解】 解不等式组29611x x x k +>+⎧⎨-<⎩可得:21x x k <⎧⎨<+⎩, ∵该不等式组的解集为:2x <,∴12k +≥,∴1k ≥,故选:C.【点睛】本题主要考查了解一元一次不等式组的运用,熟练掌握相关方法是解题关键.11.若关于x 的不等式x <a 恰有2个正整数解,则a 的取值范围为( )A .2<a ≤3B .2≤a <3C .0<a <3D .0<a ≤2【答案】A【解析】【分析】结合题意,可确定这两个正整数解应为1和2,至此即可求出a 的取值范围【详解】由于x<a 恰有2个正整数解,即为1和2,故2<a ≤3故正确答案为A【点睛】此题考查了不等式的整数解,列出关于a 的不等式是解题的关键12.不等式组32110x x -<⎧⎨+≥⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】 32110 x x -<⎧⎨+≥⎩①② 解不等式①得,1x <,解不等式②得,1x ≥-所以,不等式组的解集为:-11x ≤<,在数轴上表示为:故选D.【点睛】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.13.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折 【答案】B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.14.在数轴上表示不等式x <2的解集,正确的是( )A .B .C .D .【答案】A【解析】【分析】 把不等式x <2的解集在数轴上表示出来可知答案.【详解】在数轴上表示不等式x <2的解集故选:A .【点睛】本题运用了不等式的解集在数轴上的表示方法,体现了数形结合的数学思想.15.若不等式组236x x x m -<-⎧⎨<⎩无解,那么m 的取值范围是( ) A .m >2B .m <2C .m ≥2D .m ≤2 【答案】D【解析】【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m 的取值范围.【详解】解:236x x x m -<-⎧⎨<⎩②①由①得,x >2,由②得,x <m ,又因为不等式组无解,所以根据“大大小小解不了”原则,m ≤2.故选:D .【点睛】此题考查解一元一次不等式组,解题关键在于掌握求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.16.若m -n >0,则下列各式中一定正确的是( )A .m >nB .mn >0C .0m n <D .-m >-n【答案】A【解析】∵m -n >0,∴m >n (不等式的基本性质1).故选A.17.不等式组0321x a x -<⎧⎨-≤-⎩的整数解共有3个,则a 的取值范围是( ) A .45a <<B .45a <≤C .45a ≤<D .45a ≤≤【答案】B【解析】【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到a 的范围.【详解】0321x a x -<⎧⎨-≤-⎩①②, 由①解得:x <a ,由②解得:x≥2,故不等式组的解集为2≤x <a ,由不等式组的整数解有3个,得到整数解为2,3,4,则a 的范围为4<a≤5.故选:B .【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.18.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a≤﹣3B .a <﹣3C .a >3D .a≥3【答案】A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a 的取值范围即可. 【详解】∵不等式组324x a x a <+⎧⎨>-⎩无解, ∴a ﹣4≥3a+2,解得:a≤﹣3,故选A .【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.19.若不等式组1,1x x m <⎧⎨>-⎩恰有两个整数解,则m 的取值范围是( ) A .10m -≤< B .10m -<≤ C .10m -≤≤ D .10m -<<【答案】A【解析】∵不等式组11x x m <⎧⎨>-⎩有解, ∴不等式组的解集为m-1<x<1,∵不等式组11x x m <⎧⎨>-⎩恰有两个整数解, ∴-2≤m-1<-1,解得10m -≤<,故选A.20.已知a >b ,则下列不等式中,正确的是( )A .-3a >-3bB .3a ->3b -C .3-a >3-bD .a-3>b-3【答案】D【解析】【分析】由题意可知,根据不等式的性质,看各不等式是加(减)什么数或乘(除)以哪个数得到的,用不用变号即可求解.【详解】A.a >b ,-3a <-3b ,故A 错误;B.a >b ,3a -<3b - ,故B 错误; C.a >b ,3-a <3-b ,故C 错误; D. a >b ,a -3>b -3,故D 正确;故答案为:D.【点睛】本题考查了不等式的性质,熟练掌握该知识点是本题解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3x x
6 1
0.
解:根据实数的除数法则:同号两数相除得正数,异号两数相除得
负数,
3x 6 0
因此,原不等式可转化为(1)x 1 0 或
23xx160 0
解(1)得:无解,解(2)得: 2 x 1
所以原不等式的解集是 2 x 1
请仿照上述方法解下列分式不等式:
(1)x 4
2x 5
应用题常用方法
(1)理解题意,辨析问题类型 工程、行程、利润问题、方案设计问题等 (2)寻找关键词,挖掘隐含信息,建等式或不等式 共需、同时、刚好、恰好、相同……,此类关键词往往是建等式,根 据未知量、已知量与等量关系确定合适的方程。 不超过、不多于、少于、至少……,此类关键词往往是建不等式,可 借助列表(如按照车型、运费、载重、面积、造价等)分类整合信息 ,按照每类信息分别列不等式(组)。 隐含条件挖掘:原材料供应型(使用量≤供应量)、容器容量型(载 重量≥货物量) 最大利润、最省钱、运费最少、尽可能少、最小值……,往往是借助 函数解决.把问题表达成函数(一次函数、二次函数),通过不等式 确定自变量取值范围,后根据增减性确定最值. (3)根据实际情况,验证结果 结果要符合实际情况,有实际意义.
例2(2014年四川巴中)定义新运算:对于任意实数a,b 都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法 运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知 识解决问题:若3△x的值大于5而小于9,求x的取值范围.
解:3△x=3x﹣3﹣x+1=2x﹣2,
根据题意得:
w=2 x+3(20-x)=-x+60 ∵w随x的增大而减小,且7≤x≤9,n为整 数. 故当x取最大值x=9时,w的值最小 此时,w最小=-9+60=51(万元) ∴方案三最省钱,最少费用为51万元.
例2 (2014河南)某商店销售10台A型和20台B型电脑的利润为 4000元,销售20台A型和10台B型电脑的利润为3500元.) (1)求每台A型电脑和B型电脑的销售利润; (2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A型电脑的2倍。设购进A掀电脑x台 ,这100台电脑的销售总利润为y元。 ①求y与x的关系式; ②该商店购进A型、B型各多少台,才能使销售利润最大? (3)实际进货时,厂家对A型电脑出厂价下调m(0<m< 100)元,且限定商店最多购进A型电脑70台。若商店保持两 种电脑的售价不变,请你以上信息及(2)中的条件,设计 出使这100台电脑销售总利润最大的进货方案。
例1 (2014•北京)解不等式 1 x 1≤ 2 x 1,并把它的解集在
2
32
数轴上表示出来.
解: 去分母得 3x-6≤4x-3 ∴x≥-3
在数轴上表示如下:
【注意】在数轴上表示不等式的解集,>,≥向右画; <,≤向左画),在表示解集时“≥”,“≤”要用实心 圆点表示;“>”,“<”要用空心圆点表示.
(1)如何合理分配建造A,B型号“沼气池”的个数, 才能满足条件,满足条件的方案有几种?通过计算分别写 出各种方案;
(2)试说明在(1)中的各种建造方案中,哪种建造方 案最省钱,最少的费用需要多少万元?
【分析】
① 找出关键词:“共20个”、 “不超过 365m2”、 “共有492户”;
② 根据关键词,挖掘隐含信息(使用量≤供应 量),建等式或不等式;
(2)方法一:算数方法直接计算三种方 案的费用,比较出最省钱的方案.
方案一:7×2+13×3=53(万元) 方案二:8×2+12×3=52(万元) 方案三:9×2+11×3=51(万元) ∵51<52<53 ∴方案三最省钱,最少费用为51万元.
方法二:借助一次函数求费用最小值. 设建造A,B两种型号的沼气池共需w万 元,根据题意得:
例4 某村庄计划建造A,B两种型号的沼气池共20个,以 解决该村所有农户的燃料问题.两种型号沼气池的占地面 积,可供使用农户数及造价见下表:
占地面积 使用农户数
造价
型号 (单位:m2/个 ) (单位:户/个) (单位:万元/个)
A 15 B 20
பைடு நூலகம்
18
2
30
3
已知可供建造沼气池的占地面积不超过365m2,该村 农户共有492户.
0 (2) x 2
2x 6
0
解:根据实数的除数法则,异号两数相
除,得负.因此原不等式可转化为:
(1)2xx
4 5
0 0
(2)
x 4 0 2x 5 0
解(1)得:无解; 解(2)得 2.5 x 4
所以原不等式的解集是 2.5 x 4
考点二 一元一次不等式与一元一次不等式组的应用
③ 根据实际情况,验证结果,结果要符合实际 情况,有实际意义;
(1)解:设建造A型号的沼气池x个,则建造B 型号的沼气(20-x)个.
依题意得: 15x+20(20-x)≤365 18x+30(20-x)≥492
解这个不等式组,得7≤x≤9 ∵x为正整数,∴x=7,8,9 满足条件的方案有3种: 方案一,A型7个,B型13个; 方案二,A型8个,B型12个; 方案三,A型9个,B型11个;
北师大版九年级数学第一轮复习
不等式与不等式组
不等式的基本性质1:不等式两边都加上(或减去)同一 个整式,不等号的方向 不变 ;
不等式的基本性质2:不等式两边都乘以(或除以)同一 个正数,不等号的方向 不变 ;
不等式的基本性质3:不等式两边都乘以(或除以)同一 个负数,不等号的方向 改变 .
考点一 一元一次不等式与一元一次不等式组的解法
解:(1)设每台A型电脑的销售利润为a
元,每台B型电脑的销售利润为b元,则有
10a 20b 4000 解得 a=100
20a
10b=3500
b=150
即每台A型电脑的销售利润为100元, 每台B型电脑的销售利润为150元
,
解得:<x< .
【练习题】
1.(2014广东省梅州)若x>y,则下列式子中错误的
是(D ) A x-3>y-3 B x > y
33
C x+3>y+3 D -3x>-3y
2.不等式.
的所有整数解的和是 -2
3.(2014宁夏)不等式组 是( ) 来源:Z
A
其解集在数轴
例3
(2014湖南张家界)阅读材料:解分式不等式