不等式及不等式组易错题带答案

合集下载

方程与不等式之不等式与不等式组易错题汇编附答案解析

方程与不等式之不等式与不等式组易错题汇编附答案解析

方程与不等式之不等式与不等式组易错题汇编附答案解析一、选择题1.在数轴上表示不等式x <2的解集,正确的是( )A .B .C .D .【答案】A【解析】【分析】 把不等式x <2的解集在数轴上表示出来可知答案.【详解】在数轴上表示不等式x <2的解集故选:A .【点睛】本题运用了不等式的解集在数轴上的表示方法,体现了数形结合的数学思想.2.若关于x 的不等式mx ﹣n >0的解集是x <13,则关于x 的不等式(m+n )x >n ﹣m 的解集是( ) A .x <﹣12B .x >﹣12C .x <12D .x >12 【答案】A【解析】【分析】 根据不等式mx ﹣n >0的解集是x <13,则0m <,0n <,3m n =,即可求出不等式的解集.【详解】 解:∵关于x 的不等式mx ﹣n >0的解集是x <13, ∴0m <,0n <,3m n =,∴0m n +<,解不等式()m n x n m >-+, ∴n m x m n-<+,∴3132n m n n x m n n n --<==-++; 故选:A.【点睛】 本题考查了解一元一次不等式,以及不等式的性质,解题的关键是熟练掌握解不等式的方法和步骤.3.若关于x 的不等式6234x x a x x +<+⎧⎪⎨+>⎪⎩有且只有三个整数解,则实数a 的取值范围是( )A .15<a ≤18B .5<a ≤6C .15≤a <18D .15≤a ≤18【答案】A【解析】【分析】解不等式组,由有且只有三个整数解确定出a 的范围即可.【详解】 解不等式组得:23x a x >⎧⎪⎨<⎪⎩,即2<x <3a , 由不等式组有且只有三个整数解,得到整数解为3,4,5,∴5<3a ≤6, 解得:15<a≤18,故选:A .【点睛】此题考查了一元一次不等式组的整数解,熟练掌握解不等式组的方法是解本题的关键.4.从4-,1-,0,2,5,8这六个数中,随机抽一个数,记为a ,若数a 使关于x 的不等式组0331016x a x -⎧<⎪⎨⎪+≥⎩无解,且关于y 的分式方程2233y a y y -+=--有非负数解,则符合条件的a 的值的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】由不等式组无解确定出a 的一个取值范围、由分式方程其解为非负数确定a 的一个取值范围,综上可确定a 的最终取值范围,根据其取值范围即可判定出满足题意的值.解:0331016x a x -⎧<⎪⎨⎪+≥⎩①②解①得,x a <解②得,2x ≥∵不等式组无解∴2a ≤ ∵2233y a y y-+=-- ∴83a y -= ∵关于y 的分式方程2233y a y y -+=--有非负数解 ∴803a y -=≥且833a -≠ ∴8a ≤且a≠-1∴综上所述,2a ≤且1a ≠-∴符合条件的a 的值有4-、0、2共三个.故选:C【点睛】本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定a 的取值范围是解决问题的关键.5.若不等式组0,122x a x x -≥⎧⎨->-⎩有解,则a 的取值范围是( ) A .a >-1B .a≥-1C .a≤1D .a <1 【答案】D【解析】【分析】首先分别解出两个不等式的解集,再根据解集的规律:大小小大中间找,确定a 的取值范围是a <1.【详解】解:0122x a x x -≥⎧⎨->-⎩①②, 由①得:x≥a ,由②得:x <1,∵不等式组有解,故选:D .【点睛】此题主要考查了一元一次不等式组的解法,关键是正确解出两个不等式的解集,掌握确定不等式组解集的方法.6.如图,用长为40米的铁丝一边靠墙围成两个长方形,墙的长度为30米,要使靠墙的一边不小于25米,那么与墙垂直的一边的长度x 的取值范围为( )A .0米5x <≤米B .103x ≥米C .0米103x <≤米 D .103米5x ≤≤米 【答案】D【解析】【分析】 设与墙垂直的一边的长为x 米,根据铁丝长40米,墙的长度30米,靠墙的一边不小于25米,列出不等式组,求出x 的取值范围即可.【详解】解:设与墙垂直的一边的长为x 米,根据题意得:4032540330x x -≥⎧⎨-≤⎩, 解得:103≤x≤5; 故选:D .【点睛】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出不等式组,注意本题要用数形结合思想.7.不等式组1240x x >⎧⎨-≤⎩的解集在数轴上可表示为( ) A .B .C .D .【答案】A【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:1240x x >⎧⎨-≤⎩①② ∵不等式①得:x >1,解不等式②得:x≤2,∴不等式组的解集为1<x≤2, 在数轴上表示为:,故选A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.8.下列四个不等式:(1)ac bc >;(2)-ma mb <;22 (3) ac bc >;(4)1a b>,一定能推出a b >的有() A .1个B .2个C .3个D .4个【答案】A【解析】【分析】 根据不等式的性质逐个判断即可求得答案.【详解】解:在(1)中,当c <0时,则有a <b ,故不能推出a >b ,在(2)中,当m >0时,则有-a <b ,即a >-b ,故不能推出a >b ,在(3)中,由于c 2>0,则有a >b ,故能推出a >b ,在(4)中,当b <0时,则有a <b ,故不能推出a >b ,综上可知一定能推出a >b 的只有(3),故选:A .【点睛】本题考查不等式的性质,掌握不等式的性质是解题的关键,特别是在不等式的两边同时乘或除以一个不为0的数或因式时,需要确定该数或因式的正负.9.若某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米,若跑步每分钟可跑210米,问这人完成这段路程,至少要跑多少分钟?设要跑x 分钟,则列出的不等式为( )A .21090(18)2100x x +-≥B .90210(18)2100x x +-≤C .21090(18) 2.1x x +-≤D .21090(18) 2.1x x +->【答案】A【解析】设至少要跑x 分钟,根据“18分钟走的路程≥2100米”可得不等式:210x+90(18–x )≥2100,故选A .10.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( ) A .3a ≤-B .3a <-C .3a >D .3a ≥ 【答案】D【解析】【分析】利用不等式组取解集的方法:大大小小找不到即可得到a 的范围.【详解】∵关于x 的不等式组21x x a <⎧⎨>-⎩无解, ∴a-1≥2,∴a ≥3.故选:D.【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.11.一元一次不等式组2(3)40113x x x +-⎧⎪+⎨>-⎪⎩…的最大整数解是( ) A .1-B .0C .1D .2【答案】C【解析】【分析】解出两个不等式的解,再求出两个不等式的解集,即可求出最大整数解;【详解】 ()2340113x x x ⎧+-⎪⎨+>-⎪⎩①②… 由①得到:2x+6-4≥0,∴x ≥-1,由②得到:x+1>3x-3,∴x <2,∴-1≤x <2,∴最大整数解是1,故选C .【点睛】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.12.若m -n >0,则下列各式中一定正确的是( )A .m >nB .mn >0C .0m n <D .-m >-n【答案】A【解析】∵m -n >0,∴m >n (不等式的基本性质1).故选A.13.下列不等式变形正确的是( )A .由a b >,得ac bc >B .由a b >,得2ax bc >C .由a b >,得ac bc <D .由a b >,得a c b c ->-【答案】D【解析】【分析】根据不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变; ②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变; ③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】A . 若a b >,当c >0时才能得ac bc >,故错误;B . 若a b >,但2,x c 值不确定,不一定得2ax bc >,故错;C . 若a b >,但c 大小不确定,不一定得ac bc <,故错;D . 若a b >,则a c b c ->-,故正确.故选:D【点睛】此题主要考查了不等式的性质,关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.14.如果关于x 的分式方程有负数解,且关于y 的不等式组无解,则符合条件的所有整数a 的和为( )A .﹣2B .0C .1D .3【答案】B【分析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a的和为0.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.15.如果不等式组26x xx m-+<-⎧⎨>⎩的解集为x>4,m的取值范围为()A.m<4 B.m≥4C.m≤4D.无法确定【答案】C【解析】【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m的范围即可.【详解】解不等式﹣x+2<x﹣6得:x>4,由不等式组26x xx m-+<-⎧⎨>⎩的解集为x>4,得到m≤4,【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.16.不等式x ﹣2>的解集是( ) A .x <﹣5B .x >﹣5C .x >5D .x <5【答案】A【解析】【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【详解】去分母得:4x ﹣8>6x +2,移项、合并同类项,得:﹣2x >10,系数化为1,得:x <﹣5.故选A .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.17.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a≤﹣3B .a <﹣3C .a >3D .a≥3 【答案】A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a 的取值范围即可. 【详解】∵不等式组324x a x a <+⎧⎨>-⎩无解, ∴a ﹣4≥3a+2,解得:a≤﹣3,故选A .【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.18.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n【答案】B【解析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【详解】A、将m>n两边都减2得:m﹣2>n﹣2,此选项错误;B、将m>n两边都除以4得:m n44>,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以﹣8,得:﹣8m<﹣8n,此选项错误,故选B.【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.19.若关于x的不等式x<a恰有2个正整数解,则a的取值范围为()A.2<a≤3B.2≤a<3 C.0<a<3 D.0<a≤2【答案】A【解析】【分析】结合题意,可确定这两个正整数解应为1和2,至此即可求出a的取值范围【详解】由于x<a恰有2个正整数解,即为1和2,故2<a≤3故正确答案为A【点睛】此题考查了不等式的整数解,列出关于a的不等式是解题的关键20.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是()A.a<2 B.a>2 C.a≥2D.a≤2【答案】D【解析】【分析】由不等式组无解,利用不等式组取解集的方法确定出a的范围即可.【详解】∵不等式组232x ax a+⎧⎨-⎩><无解,∴a+2≥3a﹣2,解得:a≤2.故选D.【点睛】本题考查了不等式的解集,熟练掌握不等式组取解集的方法是解答本题的关键.。

人教七下 9.1.1不等式及其解集经典题及易错题(含解析)

人教七下 9.1.1不等式及其解集经典题及易错题(含解析)

9.1 不等式及其解集经典题1.小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是()A.18千克B.22千克C.28千克D.30千克分析:我们把这样一个问题如果抽象成数学问题,实际上就是妈妈和小明的体重之和比爸爸的体重轻.设小明的体重为x千克,则x+50<70,在A、B、C、D四个选项中,能使不等式成立的答案只有A项.答案:A2. 用数轴表示不等式34x<的解集正确的是()01010101A B C D分析:根据利用数轴来表示解集的方法可知,当34x<时,用空心圈,所以答案在B和C中,又因为是小于,所以向左画线,即正确的答案是C. 答案:C3.若32是方程23x=的唯一解,则x=12是不等式2x<3的()A.唯一解B.一个根C.一个解D.解集分析:不等式的解集包含着无数个能使不等式左右两边相等的未知数的值,所以x=12是不等式2x<3的一个解.答案:C4.不等式2x-6<0的解集在数轴上表示正确的是().A. B. C. D.分析:根据不等式确定它的解集是x<3,在根据利用数轴来表示不等式的解集的方法确定正确的答案是B.答案:B5. 不等式x≤5的正整数解有()个.A.3B.4C.5D.6分析:根据正整数的概念及不等式解集的概念可知,满足要求的数有1,2,3,4,5共5个,所以答案为C.答案:B6. 在数值-3,-2.5,0,1,123,2,4,5,8中,____________能使不等式3x<12成立.分析:把数值代入不等式,只要能够使不等式成立就可以,-3,-2.5,0,1,123,2这些数代入不等式,都能吏3x<12成立.解答:-3,-2.5,0,1,123,27. 如图所示的两种广告牌,其中图1是由两个等腰直角三角形构成的,图2是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a b,的不等式表示为.分析:从图形的叠放位置可以看出a与b的大小关系是a>b.解答:a>b8. 同桌的甲、乙两名同学,争论着一个问题:甲同学说:“5a>4a”,乙同学说:“这不可能”,请你评说一下两名同学的观点究竟哪个正确?为什么?举例说明.分析: 在题目中a是一个字母,它可以代替任意一个有理数,当a是负数时,5a<4a,当a=0时,5a=4a,当a是正数时,5a>4a.解答:当a是负数时,5a<4a,当a=0时,5a=4a,当当a是负数时,5a<4a,当a=0时,5a=4a,当是正数时,5a>4a.9. 在数轴上表示下列不等式的解集:(1)x≥-3.5 (2)x<-1.52-11-2-3-432-11-2-3-43(3)x≥2 (4)-1≤x<22-11-2-3-432-11-2-3-43分析: 掌握利用数轴来表示不等式的解集的方法,空心点与实心圈的区别与联系,大于与小于画线方向, x≥2根据绝对值的意义可以分为x≥2或x≤-2.解答:(1)(2)2-11-2-3-43(3)(4).10.已知x的12与3的差小于x的-12与-6的和,根据这个条件列出不等式。

不等式及不等式组易错题带答案

不等式及不等式组易错题带答案

不等式易错题一.填空题〔共23小题〕1.〔2021•谷城县校级模拟〕假设不等式组恰有两个整数解.那么实数a的取值范围是.2.〔2021•凉山州〕假设不等式组的解集是﹣1<x<1,那么〔a+b〕2021=.3.〔2021春•金坛市期中〕如果不等式a≤x≤3有且仅有3个整数解,那么a的范围是.4.不等式x<a的非负整数解有3个,那么a的取值范围是.5.〔2021秋•白下区校级月考〕不等式a≤x≤3只有6个整数解,那么a的范围是.6.假设关于x的不等式1﹣|x|>ax的解集中有无穷多个整数,那么a的取值范围是.7.〔2021春•吉州区校级期中〕不等式3x+a≤9有三个非负整数解,那么a的取值范围是.8.〔2021•黄石模拟〕假设不等式的整数解有3个,那么m的取值范围是.9.〔2021秋•常熟市期中〕假设不等式组有4个整数解,那么a的取值范围是.10.〔2021春•成华区期中〕假设关于x的不等式组有5个整数解,那么m的取值范围是.11.假设有5个整数x使得不等式1+a≤x<2成立,那么a的取值范围是.12.〔2021•青羊区校级模拟〕关于x的不等式组的整数解有3个,那么m的取值范围是.13.〔2021春•大邑县校级期中〕假设不等式组有4个整数解,那么m的取值范围是.14.假设不等式组无解,那么m的取值范围是.15.〔2021春•吴江市期末〕假设关于x的不等式2m一1<x<m+l无解,那么m的取值范围是.16.〔2021春•昌宁县校级期末〕假设不等式组无解,那么m的取值范围是.17.〔2021•潍城区模拟〕不等式组无解,那么m的取值范围是.18.〔2021春•化州市期中〕不等式组无解,那么a的取值范围是.19.〔2021春•天长市期末〕不等式ax>b的解集是x<,那么a的取值范围是.20.〔2021春•连云港校级期中〕假设不等式〔2a﹣3〕x<2a﹣3的解集为x>1,那么a的取值范围是.21.〔2021春•雅安校级期中〕关于x的不等式mx<5m的解集是x>5,那么m的取值范围是.22.〔2021春•榕江县校级期末〕不等式组的解集为x>2,那么a的取值范围是.23.〔2021春•金坛市校级月考〕不等式mx﹣2<3x+4的解集是x>,那么m的取值范围是.二.解答题〔共7小题〕24.假设不等式3x<a且只有3个非负整数解,求a的取值范围.25.关于x的不等式组恰有3个整数解,那么a的取值范围是.26.〔2021秋•乐清市校级月考〕关于x的不等式组的解集中的整数恰好有2个,求实数a的取值范围.27.关于x的不等式组有3个整数解,求a的取值范围.28.关于x的不等式组有4个整数解,求a的取值范围.29.关于x的不等式组恰有3个整数解,试求a的取值范围.30.如果不等式〔2a+1〕x>4a+2的解集是x<2,求a的取值范围.1.〔2021•谷城县校级模拟〕假设不等式组恰有两个整数解.那么实数a的取值范围是<a≤1.2.〔2021•凉山州〕假设不等式组的解集是﹣1<x<1,那么〔a+b〕2021=﹣1.3.〔2021春•金坛市期中〕如果不等式a≤x≤3有且仅有3个整数解,那么a的范围是0<a≤1.4.不等式x<a的非负整数解有3个,那么a的取值范围是2<a≤3.5.〔2021秋•白下区校级月考〕不等式a≤x≤3只有6个整数解,那么a的范围是﹣3<a≤﹣2.6.假设关于x的不等式1﹣|x|>ax的解集中有无穷多个整数,那么a的取值范围是a<﹣1或a>1.7.〔2021春•吉州区校级期中〕不等式3x+a≤9有三个非负整数解,那么a的取值范围是0<a≤3.8.〔2021•黄石模拟〕假设不等式的整数解有3个,那么m的取值范围是5<m≤6.9.〔2021秋•常熟市期中〕假设不等式组有4个整数解,那么a的取值范围是2≤a<3.10.〔2021春•成华区期中〕假设关于x的不等式组有5个整数解,那么m的取值范围是﹣2≤m<﹣1.11.假设有5个整数x使得不等式1+a≤x<2成立,那么a的取值范围是﹣5<a≤﹣4.12.〔2021•青羊区校级模拟〕关于x的不等式组的整数解有3个,那么m的取值范围是﹣1≤m<0.13.〔2021春•大邑县校级期中〕假设不等式组有4个整数解,那么m的取值范围是﹣2<m≤﹣1.14.假设不等式组无解,那么m的取值范围是m<﹣.15.〔2021春•吴江市期末〕假设关于x的不等式2m一1<x<m+l无解,那么m的取值范围是m≥2.16.〔2021春•昌宁县校级期末〕假设不等式组无解,那么m的取值范围是m≤11.17.〔2021•潍城区模拟〕不等式组无解,那么m的取值范围是m≤1.18.〔2021春•化州市期中〕不等式组无解,那么a的取值范围是a≤2.19.〔2021春•天长市期末〕不等式ax>b的解集是x<,那么a的取值范围是a<0.20.〔2021春•连云港校级期中〕假设不等式〔2a﹣3〕x<2a﹣3的解集为x>1,那么a的取值范围是a<.21.〔2021春•雅安校级期中〕关于x的不等式mx<5m的解集是x>5,那么m的取值范围是m<0.22.〔2021春•榕江县校级期末〕不等式组的解集为x>2,那么a的取值范围是a≤2.23.〔2021春•金坛市校级月考〕不等式mx﹣2<3x+4的解集是x>,那么m的取值范围是m<3.二.解答题〔共7小题〕24.假设不等式3x<a且只有3个非负整数解,求a的取值范围.25.关于x的不等式组恰有3个整数解,那么a的取值范围是.26.〔2021秋•乐清市校级月考〕关于x的不等式组的解集中的整数恰好有2个,求实数a的取值范围.27.关于x的不等式组有3个整数解,求a的取值范围.28.关于x的不等式组有4个整数解,求a的取值范围.29.关于x的不等式组恰有3个整数解,试求a的取值范围.30.如果不等式〔2a+1〕x>4a+2的解集是x<2,求a的取值范围.。

(易错题精选)初中数学方程与不等式之不等式与不等式组易错题汇编及答案解析

(易错题精选)初中数学方程与不等式之不等式与不等式组易错题汇编及答案解析

(易错题精选)初中数学方程与不等式之不等式与不等式组易错题汇编及答案解析一、选择题1.不等式组213,1510520x x x x -<⎧⎪++⎨-≥⎪⎩的解集在数轴上表示为( ) A . B . C .D .【答案】D【解析】【分析】分别解不等式求出不等式组的解集,由此得到答案.【详解】解213x x -<得x>-1,解1510520x x ++-≥得3x ≤, ∴不等式组的解集是13x -<≤,故选:D.【点睛】此题考查解不等式组,在数轴上表示不等式组的解集,正确解每个不等式是解题的关键.2.不等式组30240x x -≥⎧⎨+>⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】【详解】解:30240x x -≥⎧⎨+>⎩①②, 解不等式①得,x ≤3解不等式②得,x >﹣2在数轴上表示为:.故选D .【点睛】本题考查在数轴上表示不等式组的解集.3.关于x 的不等式组()02332x m x x ->⎧⎨-≥-⎩恰有五个整数解,那么m 的取值范围为( ) A .21m -≤<-B .21m -<<C .1m <-D .2m ≥-【答案】A【解析】【分析】先求出不等式组的解集,然后结合有五个整数解,即可求出m 的取值范围.【详解】 解:()02332x m x x ->⎧⎨-≥-⎩解不等式①,得:x m >,解不等式②,得:3x ≤,∴不等式组的解集为:3m x <≤,∵不等式组恰有五个整数解,∴整数解分别为:3、2、1、0、1-;∴m 的取值范围为21m -≤<-;故选:A .【点睛】本题考查了解不等式组,根据不等式组的整数解求参数的取值范围,解题的关键是正确求出不等式组的解集,从而求出m 的取值范围.4.从4-,1-,0,2,5,8这六个数中,随机抽一个数,记为a ,若数a 使关于x 的不等式组0331016x a x -⎧<⎪⎨⎪+≥⎩无解,且关于y 的分式方程2233y a y y -+=--有非负数解,则符合条件的a 的值的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 由不等式组无解确定出a 的一个取值范围、由分式方程其解为非负数确定a 的一个取值范围,综上可确定a 的最终取值范围,根据其取值范围即可判定出满足题意的值.【详解】 解:0331016x a x -⎧<⎪⎨⎪+≥⎩①②解①得,x a <解②得,2x ≥∵不等式组无解∴2a ≤∵2233y a y y-+=-- ∴83a y -= ∵关于y 的分式方程2233y a y y -+=--有非负数解 ∴803a y -=≥且833a -≠ ∴8a ≤且a≠-1∴综上所述,2a ≤且1a ≠-∴符合条件的a 的值有4-、0、2共三个.故选:C【点睛】本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定a 的取值范围是解决问题的关键.5.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .【答案】D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.6.如图,用长为40米的铁丝一边靠墙围成两个长方形,墙的长度为30米,要使靠墙的一边不小于25米,那么与墙垂直的一边的长度x 的取值范围为( )A .0米5x <≤米B .103x ≥米C .0米103x <≤米 D .103米5x ≤≤米 【答案】D【解析】【分析】 设与墙垂直的一边的长为x 米,根据铁丝长40米,墙的长度30米,靠墙的一边不小于25米,列出不等式组,求出x 的取值范围即可.【详解】解:设与墙垂直的一边的长为x 米,根据题意得:4032540330x x -≥⎧⎨-≤⎩, 解得:103≤x≤5; 故选:D .【点睛】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出不等式组,注意本题要用数形结合思想.7.不等式组30213xx+⎧⎨->⎩…的解集为()A.x>1 B.x≥3C.x≥﹣3 D.x>2【答案】D【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:30213xx+>⎧⎨->⎩①②,由①得,x≥﹣3,由②得,x>2,故此不等式组的解集为:x>2.故选:D.【点睛】本题考查了解一元一次不等式组,解题的关键是分别解出各不等式的解集,利用数轴求出不等式组的解集,难度适中.8.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是()A.a<2 B.a>2 C.a≥2D.a≤2【答案】D【解析】【分析】由不等式组无解,利用不等式组取解集的方法确定出a的范围即可.【详解】∵不等式组232x ax a+⎧⎨-⎩><无解,∴a+2≥3a﹣2,解得:a≤2.故选D.【点睛】本题考查了不等式的解集,熟练掌握不等式组取解集的方法是解答本题的关键.9.已知三个实数a,b,c满足a﹣2b+c<0,a+2b+c=0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【答案】C【解析】【分析】根据a ﹣2b +c <0,a +2b +c =0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况.【详解】∵a ﹣2b +c <0,a +2b +c =0,∴a +c =﹣2b ,∴a ﹣2b +c =(a +c )﹣2b =﹣4b <0,∴b >0,∴b 2﹣ac =222222a c a ac c ac +++⎛⎫-= ⎪⎝⎭=2222042a ac c a c -+-⎛⎫= ⎪⎝⎭…, 即b >0,b 2﹣ac ≥0,故选:C .【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b 和b 2-ac 的正负情况.10.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤【答案】D【解析】【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【详解】由数轴知,此不等式组的解集为-1<x≤3,故选D .【点睛】考查解一元一次不等式组,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11.一元一次不等式组2(3)40113x x x +-⎧⎪+⎨>-⎪⎩…的最大整数解是( ) A .1-B .0C .1D .2【答案】C【解析】【分析】解出两个不等式的解,再求出两个不等式的解集,即可求出最大整数解;【详解】 ()2340113x x x ⎧+-⎪⎨+>-⎪⎩①②… 由①得到:2x+6-4≥0,∴x ≥-1,由②得到:x+1>3x-3,∴x <2,∴-1≤x <2,∴最大整数解是1,故选C .【点睛】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.12.若关于x 的不等式组24x x a<⎧⎨-≤⎩的解集是2x <,则a 的取值范围是( ) A .2a ≥-B .2a >-C .2a ≤-D .2a <-【答案】A【解析】【分析】求出不等式的解集,根据已知不等式组的解集x<2,推出a 42+≥求解即可.【详解】 因为不等式组24x x a <⎧⎨-≤⎩的解集是x<2 所以不等式组2+4<⎧⎨≤⎩x x a 的解集是x<2 根据同小取较小原则可知,a 42+≥ ,故2a ≥-故选:A【点睛】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集和已知得到a42+≥是解此题的关键.13.在数轴上表示不等式x<2的解集,正确的是()A.B.C.D.【答案】A【解析】【分析】把不等式x<2的解集在数轴上表示出来可知答案.【详解】在数轴上表示不等式x<2的解集故选:A.【点睛】本题运用了不等式的解集在数轴上的表示方法,体现了数形结合的数学思想.14.把不等式组的解集表示在数轴上,下列选项正确的是()A. B.C. D.【答案】B【解析】由(1)得x>-1,由(2)得x≤1,所以-1<x≤1.故选B.15.不等式组222xx>⎧⎨-≥-⎩的解集在数轴上表示为( )A.B.C.D.【答案】C【解析】【分析】先解不等式组,然后根据不等式组的解集判断即可.【详解】222x x ①②>⎧⎨-≥-⎩由①,得x >1,由②,得x ≤2,∴不等式组的解集为1<x ≤2,故选C .【点睛】本题考查了不等式的解集,熟练掌握解不等式组是解题的关键.16.不等式组26020x x +>⎧⎨-≥⎩的解集在数轴上表示为( ) A .B .C .D .【答案】C【解析】【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】 解:26020x x +>⎧⎨-≥⎩①②, 由①得:3x >-;由②得:2x ≤,∴不等式组的解集为32x -<≤,表示在数轴上,如图所示:故选:C .【点睛】考核知识点:解不等式组.解不等式是关键.17.不等式x ﹣2>的解集是( ) A .x <﹣5B .x >﹣5C .x >5D .x <5【答案】A【解析】【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【详解】去分母得:4x ﹣8>6x +2,移项、合并同类项,得:﹣2x >10,系数化为1,得:x <﹣5.故选A .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.已知点P (a +1,12a -+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( )A .B .C .D . 【答案】C【解析】试题分析:∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a -+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组;3.关于原点对称的点的坐标.19.关于x 的方程2111ax x x -=++的解为非正数,且关于x 的不等式组22533a x x +⎧⎪+⎨⎪⎩„…无解,那么满足条件的所有整数a 的和是( )A .﹣19B .﹣15C .﹣13D .﹣9 【答案】C【解析】解:分式方程去分母得:ax ﹣x ﹣1=2,整理得:(a ﹣1)x =3,由分式方程的解为非正数,得到 31a -≤0,且 31a -≠﹣1,解得:a <1且a ≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选C.点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.20.不等式组21512xx①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】分析:根据解一元一次不等式组的一般步骤解答,并把解集表示在数轴上,再作判断即可.详解:解不等式①,得:x1<;解不等式②,得:x3≥-;∴原不等式组的解集为:3x1-≤<,将解集表示在数轴上为:故选C.点睛:掌握“解一元一次不等式组的解法和将不等式的解集表示在数轴上的方法”是解答本题的关键.。

初中数学不等式(组)易错题

初中数学不等式(组)易错题

不等式(组)常见易错题分类A组易错题1、直线y=mx+b与y=kx在同一平面直角坐标系中的图象如图所示,则关于x的不等式mx+b<kx的解集为()2、如图,直线y1=kx+2与直线y2=mx相交于点P(1,m),则不等式mx<kx+2的解集是()3、如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n的解集是.4、如图,直线y1=﹣2x与直线y2=kx+b相交于点A(a,2),并且直线y2=kx+b经过x轴上点B(2,0),则不等式(k+2)x+b≥0的解集是5、如图,经过点(4,0)的直线:y=﹣x+b与直线:y=ax交于点P(n,3),则不等式组﹣x+b≥ax>0的解集是.6、如图,直线y1=kx和直线y2=ax+b相交于点(1,2).则不等式组ax+b>kx>0的解集为()7、如图是一次函数y=x+3的图象,当﹣3<y<3时,x的取值范围是()8、解不等式组:,并写出所有非负整数解.9、解不等式组,把解集在所给数轴上表示出来,并写出其整数解.B 组常考题一、已知不等式解集求字母系数的值或其范围1、是否存在整数?423,-<+>-x x m mx m 的解为使不等式?如果存在,求出m 的值,否则说明理由。

3、已知a 、b 为常数,若0>+b ax 的解集是31<x ,则0<-a bx 的解集是( ). 4、如果关于x 的不等式(2a -b )x+a -5b >0的 解为x <107 ,求关于x 的不等式ax >b 的解集. 5、对于x ≥1的一切实数,不等式()12x a -≥a 都成立,则a 的取值范围 ; 二、由已知方程(组)解的取值范围求字母系数的取值范围1、.关于x 的方程632=-x a 的解是非负数,那么a 满足的条件是( )2、k 为何值时,等式|-24+3a|+0232=⎪⎭⎫⎝⎛--b k a 中的b 是负数?3、已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为______________。

(完整版)不等式与不等式组练习题答案

(完整版)不等式与不等式组练习题答案

(完整版)不等式与不等式组练习题答案第九章不等式与不等式组测试1 不等式及其解集学习要求:知道不等式的意义;知道不等式的解集的含义;会在数轴上表⽰解集.(⼀)课堂学习检测⼀、填空题:1.⽤“<”或“>”填空:⑴4______-6; (2)-3______0;(3)-5______-1; (4)6+2______5+2;(5)6+(-2)______5+(-2); (6)6×(-2)______5×(-2). 2.⽤不等式表⽰:(1)m -3是正数______; (2)y +5是负数______; (3)x 不⼤于2______; (4)a 是⾮负数______;(5)a 的2倍⽐10⼤______; (6)y 的⼀半与6的和是负数______;(7)x 的3倍与5的和⼤于x 的31______;(8)m 的相反数是⾮正数______.3.画出数轴,在数轴上表⽰出下列不等式的解集: (1)?>213x(2)x ≥-4.(3)?≤51x(4)?-<312x⼆、选择题:4.下列不等式中,正确的是( ).(A)4385-<-(B)5172< (C)(-6.4)2<(-6.4)3 (D)-|-27|<-(-3)3 5.“a 的2倍减去b 的差不⼤于-3”⽤不等式可表⽰为( ). (A)2a -b <-3 (B)2(a -b )<-3 (C)2a -b ≤-3 (D)2(a -b )≤-3三、解答题:6.利⽤数轴求出不等式-2<x ≤4的整数解.(⼆)综合运⽤诊断⼀、填空题:7.⽤“<”或“>”填空:⑴-2.5______-5.2; (2);125______114--(3)|-3|______-(-2.3); (4)a 2+1______0; (5)0______|x |+4; (6)a +2______a .8.“x 的23与5的差不⼩于-4的相反数”,⽤不等式表⽰为______.⼆、选择题:9.如果a 、b 表⽰两个负数,且a <b ,则( ).(A)1>b a(B)1a 11< (D)ab <110.如图在数轴上表⽰的解集对应的是( ).(A)-2<x <4 (B)-2<x ≤4 (C)-2≤x <4 (D)-2≤x ≤4 11.a 、b 是有理数,下列各式中成⽴的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 12.|a |+a 的值⼀定是( ).(A)⼤于零 (B)⼩于零 (C)不⼤于零 (D)不⼩于零三、判断题:13.不等式5-x >2的解集有⽆数多个. ( ). 14.不等式x >-1的整数解有⽆数多个. ( ).15.不等式32421<<-x 的整数解有0、1、2、3、4. ( ). 16.若a >b >0>c ,则.0>cab( ).四、解答题:17.若a 是有理数,⽐较2a 和3a 的⼤⼩.(三)拓⼴、探究、思考18.若不等式3x -a ≤0只有三个正整数解,求a 的取值范围.19.对于整数a 、b 、c 、d ,定义db a -=,已知3411<<db ,则b +d 的值为______.测试2 不等式的性质学习要求:知道不等式的三条基本性质,并会⽤它们解简单的⼀元⼀次不等式.(⼀)课堂学习检测⼀、填空题:1.已知a <b ,⽤“<”或“>”填空:⑴a +3______b +3; (2)a -3______b -3; (3)3a ______3b ;(4);2______2b a (5);7______7ba -- (6)5a +2______5b +2; (7)-2a -1______-2b -1; (8)4-3b ______6-3a . 2.⽤“<”或“>”填空: (1)若a -2>b -2,则a______b ; (2)若,33ba <则a ______b ; (3)若-4a >-4b ,则a ______b ;(4),22ba -<-则a ______b . 3.不等式3x <2x -3变形成3x -2x <-3,是根据______. 4.如果a 2x >a 2y (a ≠0).那么x______y .⼆、选择题:5.若a >2,则下列各式中错误的是( ). (A)a -2>0 (B)a +5>7 (C)-a >-2 (D)a -2>-4 6.已知a >b ,则下列结论中错误的是( ). (A)a -5>b -5 (B)2a >2b (C)ac >bc (D)a -b >0 7.若a >b ,且c 为有理数,则( ). (A)ac >bc (B)ac <bc (C)ac 2>bc 2 (D)ac 2≥bc 2 8.若由x <y 可得到ax >ay ,应满⾜的条件是( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0三、解答题:9.根据不等式的基本性质解下列不等式,并将解集表⽰在数轴上.(1)x -10<0.(2).621(3)2x ≥5.(4).131-≥-x10.⽤不等式表⽰下列语句并写出解集:⑴8与y 的2倍的和是正数;(2)a 的3倍与7的差是负数.(⼆)综合运⽤诊断⼀、填空题:11.(1)若x <a <0,则把x 2;a 2,ax 从⼩到⼤排列是______.(2)关于x 的不等式mx -n >0,当m ______时,解集是;mnx <当m ______时,解集是?>mn x 12.已知b <a <2,⽤“<”或“>”填空:(1)(a -2)(b -2)______0; (2)(2-a )(2-b )______0; (3)(a -2)(a -b )______0.13.不等式4x -3<4的解集中,最⼤的整数x =______. 14.如果ax >b 的解集为,abx >则a ______0.⼆、选择题:15.已知⽅程7x -2m +1=3x -4的根是负数,则m 的取值范围是( ).(A)25=m (B)25>m (C)25≤m 16.已知⼆元⼀次⽅程2x +y =8,当y <0时,x 的取值范围是( ).(A)x >4 (B)x <4 (C)x >-4 (D)x <-4 17.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是( ).(A)a <2 (B)a <3 (C)a <4 (D)a <5三、解答题:18.当x 取什么值时,式⼦563-x 的值为(1)零;(2)正数;(3)⼩于1的数.(三)拓⼴、探究、思考19.若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .20.解关于x 的不等式ax >b (a ≠0).测试3 解⼀元⼀次不等式会解⼀元⼀次不等式.(⼀)课堂学习检测⼀、填空题:1.⽤“>”或“<”填空:(1)若x ______0,y <0,则xy >0;(2)若ab >0,则b a ______0;若ab <0,则ab______0; (3)若a -b <0,则a ______b ;(4)当x >x +y ,则y ______0.2.当a ______时,式⼦152-a 的值不⼤于-3.3.不等式2x -3≤4x +5的负整数解为______.⼆、选择题:4.下列各式中,是⼀元⼀次不等式的是( ).(A)x 2+3x >1(B)03<-yx (C)5511≤-x(D)31312->+x x 5.关于x 的不等式2x -a ≤-1的解集如图所⽰,则a 的取值是( ).(A)0 (B)-3 (C)-2 (D)-1三、解下列不等式,并把解集在数轴上表⽰出来:6.2(2x -3)<5(x -1). 7.10-3(x +6)≤1.8.?-->+22531x x 9.-≥--+612131y y y10.求不等式361633->---x x 的⾮负整数解.11.求不等式6)125(53)34(2+<-x x 的所有负整数解.(⼆)综合运⽤诊断⼀、填空题:12.已知a <b <0,⽤“>”或“<”填空:⑴2a ______2b ;(2)a 2______b 2;(3)a 3______b 3;(4)a 2______b 3;(5)|a |______|b |(6)m 2a ______m 2b (m ≠0). 13.⑴已知x <a 的解集中的最⼤整数为3,则a 的取值范围是______;(2)已知x >a 的解集中最⼩整数为-2,则a 的取值范围是______.⼆、选择题:14.下列各对不等式中,解集不相同的⼀对是( ).(A)72423xx +<-与-7(x -3)<2(4+2x ) (B)3921+<-x x 与3(x -1)<-2(x +9) (C)31222-≥+x x 与3(2⼗x )≥2(2x -1) (D)x x ->+414321与3x >-1 15.如果关于x 的⽅程5432bx a x +=+的解不是负值,那么a 与b 的关系是( ) (A)b a 53>(B)a b 53≥(C)5a =3b(D)5a ≥3b三、解下列不等式:16.(1)3[x -2(x -7)]≤4x . (2).17)10(2383+-≤--y y y(3).151)13(21+<--y y y (4)-+≤--+15)2(22537313x x x(5)).1(32)]1(21[21-<---x x x x (6)->+-+2503.002.003.05.09.04.0x x x四、解答题:17.已知⽅程组?-=++=+②①m y x m y x 12,312的解满⾜x +y <0.求m 的取值范围.18.x 取什么值时,代数式413--x 的值不⼩于8)1(32++x 的值.19.已知关于x 的⽅程3232xm x x -=--的解是⾮负数,m 是正整数,求m 的值.*20.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4 )5(的解集.(三)拓⼴、探究、思考21.适当选择a 的取值范围,使1.7<x <a 的整数解:(1)x 只有⼀个整数解; (2)x ⼀个整数解也没有.22.解关于x 的不等式2x +1≥m (x -1).(m ≠2)23.已知A =2x 2+3x +2,B =2x 2-4x -5,试⽐较A 与B 的⼤⼩.测试4 实际问题与⼀元⼀次不等式学习要求:会从实际问题中抽象出不等的数量关系,会⽤⼀元⼀次不等式解决实际问题.(⼀)课堂学习检测⼀、填空题:1.若x 是⾮负数,则5231x-≤-的解集是______. 2.使不等式x -2≤3x +5成⽴的负整数有______. 3.代数式231x-与代数式x -2的差是负数,则x 的取值范围为______ 4.6⽉1⽇起,某超市开始有偿..提供可重复使⽤的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装⼤⽶3公⽄、5公⽄和8公⽄.6⽉7⽇,⼩星和爸爸在该超市选购了3只环保购物袋⽤来装刚买的20公⽄散装⼤⽶,他们选购的3只环保购物袋⾄少..应付给超市______元.⼆、选择题:5.三⾓形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ). (A)13cm (B)6cm (C)5cm (D)4cm6.⼀商场进了⼀批商品,进价为每件800元,如果要保持销售利润不低于15%,则售价应不低于( ). (A)900元 (B)920元 (C)960元 (D)980元三、解答题:7.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?8.某次数学竞赛活动,共有16道选择题,评分办法是:答对⼀题给6分,答错⼀题倒扣2分,不答题不得分也不扣分.某同学有⼀道题未答,那么这个学⽣⾄少答对多少题,成绩才能在60分以上?(⼆)综合运⽤诊断⼀、填空题:9.直接写出解集:(1)4x -3<6x +4的解集是______; (2)(2x -1)+x >2x 的解集是______;(3)5231052--≤-x x x 的解集是______. 10.若m >5,试⽤m 表⽰出不等式(5-m )x >1-m 的解集______.⼆、选择题:11.初三⑴班的⼏个同学,毕业前合影留念,每⼈交0.70元,⼀张彩⾊底⽚0.68元,扩印⼀张相⽚0.50元,每⼈分⼀张,将收来的钱尽量⽤掉的前提下,这张相⽚上的同学最少有( ). (A)2⼈ (B)3⼈ (C)4⼈(D)5⼈12.某出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不⾜1km 按1km 计).某⼈乘这种出租车从甲地到⼄地共⽀付车费19元,设此⼈从甲地到⼄地经过的路程是x km ,那么x 的最⼤值是( ). (A)11 (B)8 (C)7 (D)5三、解答题:13.已知:关于x 、y 的⽅程组?-=++=+134,123p y x p y x 的解满⾜x >y ,求p 的取值范围.14.某⼯⼈加⼯300个零件,若每⼩时加⼯50个可按时完成;但他加⼯2⼩时后,因事停⼯40分钟.那么这个⼯⼈为了按时或提前完成任务,后⾯的时间每⼩时他⾄少要加⼯多少个零件?(三)拓⼴、探究、思考15.某商场出售A 型冰箱,每台售价2290元,每⽇耗电1度;⽽B 型节能冰箱,每台售价⽐A ⾼出10%,但每⽇耗电0.55度.现将A 型冰箱打折出售(打九折后的售价为原价的⼗分之九),问商场最多打⼏折时,消费者购买A 型冰箱才⽐购买B 型冰箱更合算?(按使⽤期10年,每年365天,每度电0.4元计算)16.某零件制造车间有20名⼯⼈,已知每名⼯⼈每天可制造甲种零件6个或⼄种零件5个,且每制造⼀个甲种零件可获利150元,每制造⼀个⼄种零件可获利260元,在这20名⼯⼈中,车间每天安排x 名⼯⼈制造甲零件,其余⼯⼈制造⼄种零件.⑴若此车间每天所获利润为y (元),⽤x 的代数式表⽰y ;(2)若要使每天所获利润不低于24000元,⾄少要派多少名⼯⼈去制造⼄种零件?测试5 ⼀元⼀次不等式组(⼀)学习要求:会解⼀元⼀次不等式组,并会利⽤数轴正确表⽰出解集.(⼀)课堂学习检测⼀、填空题:1.解不等式组?>--<+)2(223)1(,423x x 时,解⑴式,得______,解(2)式,得______.于是得到不等式组的解集是______.2.解不等式组-≥--≥-)2(21)1(,3212x x 时,解⑴式,得______,解(2)式,得______,于是得到不等式组的解集是______.3.⽤字母x 的范围表⽰下列数轴上所表⽰的公共部分: (1)________________________;(2)_______________________; (3)________________________.⼆、选择题:4.不等式组+<+>-5312,243x x x 的解集为( ).(A)x <-4 (B)x >2 (C)-4<x <2 (D)⽆解5.不等式组?>+<-023,01x x 的解集为( ).(A)x >1(B)132<<-x(C)32-三、解下列不等式组,利⽤数轴确定不等式组的解集.6.≥-≥-.04,012x x7.?>+≤-.074,03x x8.??+>-≤-.3342,121x x x x9.-5<6-2x <3.四、解答题:10.解不等式组??<-+≤+321),2(352x x x x 并写出不等式组的整数解.(⼆)综合运⽤诊断⼀、填空题:11.当x 满⾜______时,235x-的值⼤于-5⽽⼩于7. 12.不等式组≤-+<25 12,912x x x x 的整数解为______.⼆、选择题:13.如果a >b ,那么不等式组?<<.,b x a x 的解集是( ).(A)x <a(B)x <b(C)b <x <a(D)⽆解14.不等式组?+>+≤+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2 (C)m <1 (D)m >1三、解答题:15.求不等式组73123<--≤x 的整数解.16.解不等式组??-<-->-->+.3273,4536,7342x x x x x x17.当k 取何值时,⽅程组-=+=-52,53y x k y x 的解x 、y 都是负数?18.已知?+=+=+122,42k y x k y x 中的x 、y 满⾜且0<y -x <1,求k 的取值范围.(三)拓⼴、探究、思考19.已知a 是⾃然数,关于x 的不等式组?>-≥-.02,43x a x 的解集是x >2,求a 的值.20.关于x 的不等式组?->-≥-.123,0x a x 的整数解共有5个.求a 的取值范围.测试6 ⼀元⼀次不等式组(⼆)学习要求:进⼀步掌握⼀元⼀次不等式组.(⼀)课堂学习检测1.直接写出解集:(1)->>3,2x x 的解集是______;(2)-<<3,2x x 的解集是______;(3)??-><32x x 的解集是______;(4)??-<>3,2x x 的解集是______.2.⼀个两位数,它的⼗位数字⽐个位数字⼩2,如果这个数⼤于20且⼩于40,那么此数为______.⼆、选择题:3.如果式⼦7x -5与-3x +2的值都⼩于1,那么x 的取值范围是( ).(A)76<x (B)31>x (C)7631<4.已知不等式组?->--+-≤-).23(2)1(53,1)1(3)3(2x x x x x 它的整数解⼀共有( ).(A)1个(B)2个(C)3个(D)4个5.若不等式组?>≤1有解,则k 的取值范围是( ).(A)k <2 (B)k ≥2 (C)k <1三、解下列不等式组,并把解集在数轴上表⽰出来:6.??>-<-322,352x x x x7.??->---->-.6)2(3)3(2,132x x xx8.+>-≤+).2(28,142x x x9..234512x x x -≤-≤-(⼆)综合运⽤诊断⼀、填空题:10.不等式组<->+233,152x x 的所有整数解的和是______,积是______.11.k 满⾜______时,⽅程组?=-=+.4,2y x k y x 中的x ⼤于1,y ⼩于1.⼆、解下列不等式组:12.<+->+--.1)]3(2[21,312233x x x x x13.>-->-->-24,255,13x x x x x x三、解答题:14.k 取哪些整数时,关于x 的⽅程5x +4=16k -x 的根⼤于2且⼩于10? 15.已知关于x 、y 的⽅程组?-=-+=+3472m y x m y x ,的解为正数.(2)化简|3m +2|-|m -5|.(三)拓⼴、探究、思考16.若关于x 的不等式组+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.测试7 利⽤不等关系分析实际问题学习要求:利⽤不等式(组)解决较为复杂的实际问题;感受不等式(组)在实际⽣活中的作⽤.(⼀)课堂学习检测列不等式(组)解应⽤题:1.⼀个⼯程队原定在10天内⾄少要挖掘600m 3的⼟⽅.在前两天共完成了120m 3后,接到要求要提前2天完成掘⼟任务.问以后⼏天内,平均每天⾄少要挖掘多少⼟⽅?2.某城市平均每天产⽣垃圾700吨,由甲、⼄两个垃圾⼚处理.如果甲⼚每⼩时可处理垃圾55吨,需花费550元;⼄⼚每⼩时处理45吨,需花费495元,如果规定该城市每天⽤于处理垃圾的费⽤的和不能超过7150元,问甲⼚每天⾄少要处理多少吨垃圾?3.若⼲名学⽣,若⼲间宿舍,若每间住4⼈将有20⼈⽆法安排住处;若每间住8⼈,则有⼀间宿舍的⼈不空也不满,问学⽣有多少⼈?宿舍有⼏间?4.今年5⽉12⽇,汶川发⽣了⾥⽒8.0级⼤地震,给当地⼈民造成了巨⼤的损失.某中学全体师⽣积极捐款,其中九年级的3个班学⽣的捐款⾦额如下表:⽼师统计时不⼩⼼把墨⽔滴到了其中两个班级的捐款⾦额上,但他知道下⾯三条信息:信息⼀:这三个班的捐款总⾦额是7700元;信息⼆:(2)班的捐款⾦额⽐(3)班的捐款⾦额多300元;信息三:(1)班学⽣平均每⼈捐款的⾦额⼤于..51元...48元,⼩于请根据以上信息,帮助⽼师解决:①(2)班与(3)班的捐款⾦额各是多元;②(1)班的学⽣⼈数.(⼆)综合运⽤诊断5.某学校计划组织385名师⽣租车旅游,现知道出租公司有42座和60座客车,42座客车的租⾦为每辆320元,60座客车的租⾦为每辆460元.(1)若学校单独租⽤这两种客车各需多少钱?(2)若学校同时租⽤这两种客车8辆(可以坐不满),⽽且⽐单独租⽤⼀种车辆节省租⾦,请选择最节省的租车⽅案.(三)拓⼴、探究、思考A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建⼀间A型板房和⼀间B型板房所需板材及能安置的⼈数板房型号甲种板材⼄种板材安置⼈数A型板房54m226m2 5B型板房78m241m28问:这400间板房最多能安置多少灾民?全章测试(⼀)⼀、填空题:1.⽤“>”或“<”填空:(1)m +3______m -3;(2)4-2x ______5-2x ;(3);23______13--yy (4)a <b <0,则a 2______b 2;(5)若23yx -<-,则2x ______3y . 2.若使3233->-yy 成⽴,则y ______. 3.不等式x >-4.8的负整数解是______.⼆、选择题:4.x 的⼀半与y 的平⽅的和⼤于2,⽤不等式表⽰为( ).(A)2212>+y x (B)2212>++y x (C)222>+y x(D)221>+y x5.因为-5<-2,所以( ). (A)-5x <-2x (B)-5x >-2x (C)-5x =-2x (D)三种情况都可能 6.若a ≠0,则下列不等式成⽴的是( ). (A)-2a <2a (B)-2a <2(-a )(C)-2-a <2-a(D)aa 2(D)x >-1三、解不等式(组),并把解集在数轴上表⽰出来:9..11252476312-+≥---x x x10.<+-+--≤+.121331),3(410)8(2x x x x四、解答题:11.x 取何整数时,式⼦729+x 与2143-x 的差⼤于6但不⼤于8.12.当k 为何值时,⽅程1)(5332+-=-k x k x 的解是(1)正数;(2)负数;(3)零.13.已知⽅程组?-=+=-k y x k y x 513,2的解x 与y 的和为负数.求k 的取值范围.14.不等式m m x ->-2)(31的解集为x >2.求m 的值.15.某车间经过技术改造,每天⽣产的汽车零件⽐原来多10个,因⽽8天⽣产的配件超过200个.第⼆次技术改造后,每天⼜⽐第⼀次技术改造后多做配件27个,这样只做了4天,所做配件个数就超过了第⼀次改造后8天所做配件的个数.求这个车间原来每天⽣产配件多少个?16.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼⼲和⽜奶的标价各是多少?全章测试(⼆) ⼀、填空题1.当m______时,⽅程5(x-m)=-2有⼩于-2的根.2.满⾜5(x-1)≤4x+8<5x的整数x为______.3.若11=--xx,则x的取值范围是______.4.已知b<0<a,且a+b<0,则按从⼩到⼤的顺序排列a、-b、-|a|、-|-b|四个数为______.⼆、选择题5.若0<a<b<1,则下列不等式中,正确的是( ).,11;11;1;1babababa<><>④③②①(A)①、③(B)②、③(C)①、④(D)②、④6.下列命题结论正确的是( ).(A)(1)、(2)、(3)(B)(2)、(3)(C)(3)(D)没有⼀个正确7.若不等式(a+1)x>a+1的解集是x<1,则a必满⾜( ).(A)a<0 (B)a>-1 (C)a<-1 (D)a<18.已知x<-3,那么|2+|3+x||的值是( ).(A)-x-1 (B)-x+1 (C)x+1 (D)x-19.如下图,对a、b、c三种物体的重量判断正确的是( ).(A)a<c(B)a<b(C)a>c(D)b<c三、解不等式(组):10.3(x+2)-9≥-2(x-1).11..57321<+<-x12.>--+<-.041131xxxx13.求≤-->32,134xxx的整数解.14.如果关于x的⽅程3(x+4)-4=2a+1的解⼤于⽅程3)43(41xa的解,求a的取值范围.15.某单位要印刷⼀批北京奥运会宣传资料,在需要⽀付制版费600元和每份资料0.3元印刷费的前提下,甲、⼄两个印刷⼚分别提出了不同的优惠条件,甲印刷⼚提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,⼄印刷⼚提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费。

最新初中数学方程与不等式之不等式与不等式组易错题汇编附答案(1)

最新初中数学方程与不等式之不等式与不等式组易错题汇编附答案(1)

最新初中数学方程与不等式之不等式与不等式组易错题汇编附答案(1)一、选择题1.不等式组53643x x x +>⎧⎨+>-⎩的整数解的个数是( ) A .2B .3C .4D .5【答案】C【解析】【分析】先分别求出每一个不等式的解集,然后确定出不等式组的解集,最后确定整数解的个数即可.【详解】 53643x x x +>⎧⎨+>-⎩①②, 由①得:x>-2,由②得:x<3,所以不等式组的解集为:-2<x<3,整数解为-1,0,1,2,共4个,故选C .【点睛】本题考查了一元一次不等式组的整数解,熟练掌握解一元一次不等式组的方法以及解集的确定方法是解题的关键.解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了.2.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2B .m >-3C .-3<m <2D .m <3或m >2 【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩, 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.3.若关于x 的不等式mx ﹣n >0的解集是x <13,则关于x 的不等式(m+n )x >n ﹣m 的解集是( ) A .x <﹣12B .x >﹣12C .x <12D .x >12 【答案】A【解析】【分析】 根据不等式mx ﹣n >0的解集是x <13,则0m <,0n <,3m n =,即可求出不等式的解集.【详解】 解:∵关于x 的不等式mx ﹣n >0的解集是x <13, ∴0m <,0n <,3m n =,∴0m n +<,解不等式()m n x n m >-+, ∴n m x m n -<+, ∴3132n m n n x m n n n --<==-++; 故选:A.【点睛】本题考查了解一元一次不等式,以及不等式的性质,解题的关键是熟练掌握解不等式的方法和步骤.4.不等式组360420x x +≥⎧⎨->⎩的所有整数解的和为( ) A .1B .1-C .2D .2-【答案】D【分析】求出不等式组的解集,再把所有整数解相加即可.【详解】360420x x +≥⎧⎨->⎩360x +≥解得2x ≥-420x ->解得2x >∴不等式组的解集为22x -≤<∴不等式组的所有整数解为2,1,0,1--∴不等式组的所有整数解之和为21012--++=-故答案为:D .【点睛】本题考查了解不等式组的问题,掌握解不等式组的方法是解题的关键.5.若关于x 的不等式(-1) 1m x m <-的解集为1x >,则m 的取值范围是( ) A .1m >B .1m <C .1m ≠D .1m =【答案】B【解析】【分析】根据不等式的基本性质3,两边都除以m-1后得到x >1,可知m-1<0,解之可得.【详解】∵不等式(m-1)x <m-1的解集为x >1,∴m-1<0,即m <1,故选:B .【点睛】此题考查不等式的解集,熟练掌握不等式的基本性质是解题的关键.6.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .【答案】D【解析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.7.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是( ) A .a <2B .a >2C .a≥2D .a≤2【答案】D【解析】【分析】由不等式组无解,利用不等式组取解集的方法确定出a 的范围即可.【详解】 ∵不等式组232x a x a +⎧⎨-⎩><无解,∴a +2≥3a ﹣2,解得:a ≤2. 故选D .【点睛】本题考查了不等式的解集,熟练掌握不等式组取解集的方法是解答本题的关键.8.下列命题中逆命题是真命题的是( )A .若a > 0,b > 0,则a·b > 0B .对顶角相等C .内错角相等,两直线平行D .所有的直角都相等 【答案】C【解析】【分析】先写出各命题的逆命题,再分别根据不等式的性质、对顶角、平行线的性质、角的概念逐项判断即可.A 、逆命题:若0a b ->,则0,0a b >>反例:2,1a b ==-时,2(1)0a b -=-->即此逆命题是假命题,此项不符题意B 、逆命题:如果两个角相等,那么这两个角是对顶角相等的角不一定是对顶角即此逆命题是假命题,此项不符题意C 、逆命题:两直线平行,内错角相等此逆命题是真命题,此项符合题意D 、逆命题:相等的角都是直角此逆命题是假命题,此项不符题意故选:C .【点睛】本题考查了不等式的性质、对顶角、平行线的性质、角的概念,熟记各性质与定义是解题关键.9.不等式组30240x x -≥⎧⎨+>⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】【详解】 解:30240x x -≥⎧⎨+>⎩①②, 解不等式①得,x ≤3解不等式②得,x >﹣2在数轴上表示为:.故选D .【点睛】本题考查在数轴上表示不等式组的解集.10.下列不等式变形中,一定正确的是( )A .若ac bc >,则a b >B .若a b >,则22ac bc >C .若22a b c c>,则a b > D .若0a >,0b >,且11a b >,则a b > 【答案】C【解析】【分析】 根据不等式的基本性质分别进行判定即可得出答案.【详解】 A .当c <0,不等号的方向改变.故此选项错误;B .当c=0时,符号为等号,故此选项错误;C .不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D .分母越大,分数值越小,故此选项错误.故选:C .【点睛】此题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.11.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2【答案】C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a −3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a −3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.12.根据不等式的性质,下列变形正确的是( )A .由a >b 得ac 2>bc 2B .由ac 2>bc 2得a >bC .由–12a >2得a<2 D .由2x+1>x 得x<–1 【答案】B【解析】【分析】 根据不等式的性质,逐一判定即可得出答案.【详解】解:A、a>b,c=0时,ac2=bc2,故A错误;B、不等式两边同时乘以或除以同一个正数,不等号的方向不变,故B正确;C、不等式两边同时乘以或除以同一个负数,不等号的方向改变,而且式子右边没乘以﹣2,故C错误;D、不等式两边同时加或减同一个整式,不等号的方向不变,故D错误.故选:B.【点睛】本题主要考查了不等式的性质,熟练应用不等式的性质进行推断是解题的关键.13.不等式组354xx≤⎧⎨+>⎩的最小整数解为()A.-1 B.0 C.1 D.2【答案】B【解析】【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解求最小值.【详解】解:354xx≤⎧⎨+>⎩①②解①得x≤3,解②得x>-1.则不等式组的解集是-1<x≤3.∴不等式组整数解是0,1,2,3,最小值是0.故选:B.【点睛】本题考查一元一次不等式组的整数解,确定x的范围是本题的关键.14.不等式组3433122xx x-≥⎧⎪⎨-<+⎪⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】A【解析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).【详解】3433122x x x -≥⎧⎪⎨-<+⎪⎩①② 解①,得1x ≤-解②,得5x >-所以不等式组的解集是51x -<≤-在数轴表示为故选:A【点睛】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.15.不等式组2131x x +≥-⎧⎨<⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】分别求出各不等式的解集,并在数轴上表示出来,找出符合条件的选项即可.【详解】解不等式2x+1≥﹣3得:x≥﹣2,不等式组的解集为﹣2≤x <1,不等式组的解集在数轴上表示如图:【点睛】本题考查了在数轴上表示一元一次不等式组的解集及解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答本题的关键.16.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.3【答案】B【解析】【分析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a的和为0.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.17.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3【答案】A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.18.若关于x的不等式x<a恰有2个正整数解,则a的取值范围为()A.2<a≤3B.2≤a<3 C.0<a<3 D.0<a≤2【答案】A【解析】【分析】结合题意,可确定这两个正整数解应为1和2,至此即可求出a的取值范围【详解】由于x<a恰有2个正整数解,即为1和2,故2<a≤3故正确答案为A【点睛】此题考查了不等式的整数解,列出关于a的不等式是解题的关键19.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩……无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣9【答案】C【解析】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到31a-≤0,且31a-≠﹣1,解得:a<1且a≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选C.点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.20.若关于x的不等式组无解,且关于y的分式方程有非正整数解,则符合条件的所有整数k的值之和为()A .﹣7 B.﹣12 C.﹣20 D.﹣34【答案】B【解析】【分析】先根据不等式组无解解出k的取值范围,再解分式方程得y=,根据方程有解和非正整数解进行综合考虑k的取值,最后把这几个数相加即可.【详解】∵不等式组无解,∴10+2k>2+k,解得k>﹣8.解分式方程,两边同时乘(y+3),得ky﹣6=2(y+3)﹣4y,解得y=.因为分式方程有解,∴≠﹣3,即k+2≠﹣4,解得k≠﹣6.又∵分式方程的解是非正整数解,∴k+2=﹣1,﹣2,﹣3,﹣6,﹣12.解得k=﹣3,﹣4,﹣5,﹣8,﹣14.又∵k>﹣8,∴k=﹣3,﹣4,﹣5.则﹣3﹣4﹣5=﹣12.故选:B.【点睛】本题主要考查解不等式组、解分式方程的方法,解决此题的关键是理解不等式组无解的意义,以及分式方程有解的情况.。

不等式易错点

不等式易错点

易错07 不等式易错点1 分式不等式【例1】(1)(2020·江苏)不等式2302x x +≥-的解集为 。

(2)(2020·福建省永泰县城关中学)不等式2312x x +≤+的解集为 。

【答案】(1)32x x ⎧≤-⎨⎩或}2x >(2){}|21x x -<≤- 【解析】(1)分式不等式2302x x +≥-等价于230x +=或()()2320x x +->,即32x =-或32x <-或2x >, 故解集为32x x ⎧≤-⎨⎩或}2x >.(2)2312x x +≤+可得102x x +≤+,从而()()12020x x x ⎧++≤⎨+≠⎩,解得21x -<≤-, 【举一反三】易错导图易错详讲【易错总结】解分式不等式的步骤:(1)移项,把分式不等式一边化为0;(2)通分,化不等式为()0()f xg x >或()0()f x g x ≥形式,转化时应使得(),()f x g x 中最高次项系数为正, (3)转化,化为()()0f x g x >或()()0()0f xg x g x ≥⎧⎨≠⎩,(4)得解.1.(2020·利辛县阚疃金石中学)不等式13x x-≤的解集为______________. 【答案】{0x x 或1}2x ≤-【解析】不等式13x x -≤移项通分可得:120x x --≤,即120xx +≥,所以(12)00x x x +≥⎧⎨≠⎩,解得0x >或12x ≤-,故答案为:{0x x 或1}2x ≤-.2.不等式2115x x +≥--的解集为________.【答案】4{|3x x ≤或5}x > 【解析】原不等式移项得21105x x ++≥-,通分整理得3405x x -≥-, 等价于(34)(5)050x x x --≥⎧⎨-≠⎩,解得43x ≤或5x >.故答案为:4{|3x x ≤或5}x > 3.(2020·北京市昌平区前锋学校)不等式2112x x +≥-的解集为________ 【答案】(,3](2,)-∞-+∞【解析】原不等式等价于21102x x +-≥-,即302x x +≥-,即(3)(2)0,2,x x x +-≥⎧⎨≠⎩因此,原不等式的解集为(,3](2,)-∞-+∞.故答案为:(,3](2,)-∞-+∞易错点2 穿根引线【例2】(2020·吴起高级中学)不等式()()()21120x x x +-->的解集为______________.【答案】()()(),11,12,-∞--+∞【解析】不等式()()()21120x x x +-->等价于()()10120x x x +≠⎧⎨-->⎩,解得()()(),11,12,x ∈-∞--+∞.故答案为:()()(),11,12,-∞--+∞.【举一反三】1.(2020·上海普陀·曹杨二中)不等式()()()()2321120x x x x++--≤的解集为________【答案】(]{}[],211,2-∞--【解析】如下图所示:根据图象可知:当2x-≤或1x=-或12x≤≤时,()()()()2321120x x x x++--≤,所以不等式的解集为:(]{}[],211,2-∞--,故答案为:(]{}[],211,2-∞--.2.(2020·云南省保山第九中学)不等式(2)3x xx+<-的解集为()A.{|2x x<-,或03}x<<B.{|22x x-<<,或3}x>C.{|2x x<-,或0}x>D.{|0x x<,或3}x<【答案】A原不等式可转化为()()230x x x+-<,结合数轴标根法可得,2x<-或03x<<.即不等式的解集为{|2x x<-,或03}x<<.故选:A.3.(2020·江苏省响水中学)不等式2(1)0x x-<的解集为()A.{|0x x<或01}x<<B.{|1x x<-或01}x<<【易错总结】利用“穿针引线法”求解高次不等式的解集时,注意从数轴的右上方开始,每经过一个因式对应的数轴上点,要判断该因式是奇次还是偶次,如果是奇次,则穿过该点,如果是偶次,则选择穿而不过.C .{|10x x -<<或1}x >D .{|1x x <-或1}x >【答案】B【解析】2(1)0x x -<等价于(1)(1)0x x x -+<,根据穿根法可得1x <-或01x <<.故选:B.易错点3 基本不等式取“=”【例3】已知a ,b >0且a +b =1,给出下列不等式: ①ab ≤14;②1174ab ab +≥≤;④112a b+≥. 其中正确的序号是( )A .①②B .②③④C .①②③D .①③④ 【答案】C【解析】∵a ,b ∈R +,a +b =1,∴ab ≤2a b +⎛⎫⎪⎝⎭2=14,当且仅当12a b ==时,等号成立,故①正确; 令y=ab +1ab ,设t ab =由①可知104t <≤ ,则1y t t =+在104t <≤上单调递减,故当14t =时,y 有最小值117444+=,故②正确;)2=a +b +a +b +a +b =2,故③正确;112a b + ()11332222b a a b a b a b ⎛⎫=++=++≥ ⎪⎝⎭332222=⨯+=, 当且仅当b a= 时,等号成立,故④不正确.故选:C 【举一反三】1.(2020·平遥县综合职业技术学校)已知0x >,0y >,且10xy =,则下列说法正确的是( )A .当x y ==25x y+取得最小值B .当x y ==25x y+取得最大值C .当2x =,5y =时,25x y+取得最小值 D .当2x =,5y =时,25x y+取得最大值 【答案】C 【解析】0x ,0y >,且10xy =,20x∴>,50y >,101xy =,252x y ∴+≥==, 当且仅当25x y=即2x =,5y =时,等号成立, 所以当2x =,5y =时,25x y+取得最小值,最小值为2. 故选:C .2.已知27101x x y x ++=+(1x ≠-),则y 的取值范围为( )A .(,2][2,)-∞-+∞B .(,1][3,)-∞-⋃+∞C .(,1][7,)-∞-⋃+∞D .(,1][9,)-∞⋃+∞【答案】D【解析】由题意,22710(1)5(1)44(1)5111x x x x y x x x x ++++++===++++++,当10x +>即1x >-时,4(1)5591y x x =+++≥=+,当且仅当411x x +=+即1x =时,等号成立; 当10x +<即1x <-时,4(1)5511y x x ⎡⎤=--+-+≤-=⎢⎥+⎣⎦, 当且仅当()411x x -+=-+即3x =-时,等号成立; ∴y 的取值范围为(,1][9,)-∞⋃+∞. 故选:D.易错点4 分类讨论【例4】(2020·北京八中月考)解关于x 的不等式(m 为任意实数):()2220mx m x +--<【答案】答案见解析【解析】当0m =时,原不等式化为220x -<,解得1x <; 当0m ≠时,原不等式可化为()()120x mx -+<,即11x =,22x m=-. 当0m >时,20x <,则原不等式的解集为21x x m ⎧⎫-<<⎨⎬⎩⎭当0m <时,20x >,当21m-=,即2m =-时,有121x x ==,则原不等式的解集为{}1x x ≠; 当21m -<,即2m <-时,则原不等式的解集为2x x m ⎧<-⎨⎩或}1x >当21m ->,即20m -<<时,则原不等式的解集为.2x x m ⎧>-⎨⎩或}1x <【举一反三】1.(2020·云南昆明二十三中)解关于x 不等式2325()ax x ax a R -+>-∈.【答案】答案见解析【解析】不等式化为()2330ax a x +-->,即()()310ax x -+>当0a =时,不等式为330x -->,解得1x <-,当0a >时,31a >-,解得不等式为1x <-或3x a >, 当0a <时,若31a >-,即3a <-时,解得不等式为31x a-<<,若31a =-,即3a =-时,不等式无解, 若31a <-,即30a -<<时,解得不等式为31x a<<-, 综上,3a <-时,不等式的解集为31,⎛⎫- ⎪⎝⎭a ;3a =-时,不等式无解;30a -<<时,不等式的解集为3,1⎛⎫- ⎪⎝⎭a ;0a =时,不等式的解集为(),1-∞-;0a >时,不等式的解集为()3,1,⎛⎫-∞-⋃+∞ ⎪⎝⎭a .2.解不等式:2(2)10ax a x +++>. 【答案】答案见解析.【解析】①当0a =时,不等式为210x +>,解集为12x x ⎧⎫>-⎨⎬⎩⎭,②当0a ≠时,22(2)440a a a ∆=+-=+>,恒有两个实根122a x a --=,222a x a --+=,当0a ><,解集为22a x x a ⎧--⎪<⎨⎪⎩或x >⎪⎭;当0a <时,222424a a a a,解集为x ⎧⎪<<⎨⎪⎪⎩⎭,综上所述:0a =时,解集为12x x ⎧⎫>-⎨⎬⎩⎭;0a >时,解集为x x ⎧⎪<⎨⎪⎩或x >⎪⎭;0a <时,解集为22a x a ⎧--⎪<<⎨⎪⎪⎩⎭.3.(2020·安徽省亳州市第一中学)解关于x 的不等式:()21220ax a x +-->.【答案】当0a =时,解集为()2,+∞,当0a >时,解集为:()1(,)2,a -∞-⋃+∞,当102a -<<时,不等式的解集为:12,a ⎛⎫-⎪⎝⎭,当12a <-时,不等式的解集为:1,2a ⎛⎫- ⎪⎝⎭, 当12a =-时,不等式的解集为:∅. 【解析】①当0a =时,原不等式可化为:20x ->,可得不等式的解集为()2,+∞, ②当0a >时,原不等式可化为:1(2)0x x a ⎛⎫-+> ⎪⎝⎭, 不等式的解集为:()1(,)2,a-∞-⋃+∞; ③当0a <时,原不等式可化为:1(2)0x x a ⎛⎫-+< ⎪⎝⎭, 当102a -<<时,不等式的解集为:12,a ⎛⎫- ⎪⎝⎭,当12a <-时,不等式的解集为:1,2a ⎛⎫- ⎪⎝⎭,当12a =-时,不等式的解集为:∅. 易错点5 恒成立和存在问题【例5】(1)设函数()222f x ax x =-+,对任意的()1,4x ∈都有()0f x >,则实数a 的取值范围是( )A .[)1,+∞B .1,12⎛⎫⎪⎝⎭C .1,2⎡⎫+∞⎪⎢⎣⎭D .1,2⎛⎫+∞⎪⎝⎭(2)(2020·吉林汽车区第三中学)若“R x ∃∈,22390x ax -+<”,则实数a 的取值范围是( )A .(),22,⎡-∞-+∞⎣ B .(-C .((),-∞-⋃+∞D .-⎡⎣【答案】(1)D (2)C【解析】(1)∵对任意的()1,4x ∈,都有()2220f x ax x =-+>恒成立,∴()2221111242x a x x ⎡⎤-⎛⎫>=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦对任意的()1,4x ∈恒成立, ∵1114x <<,∴2111120,422x ⎡⎤⎛⎫⎛⎤--∈⎢⎥ ⎪ ⎥⎝⎭⎝⎦⎢⎥⎣⎦,∴实数a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.故选:D. (2)因为R x ∃∈,22390x ax -+<,所以()234290a ∆=--⨯⨯>,解得a >a <-.故选:C.【举一反三】1.(2020·辽源市第五中学校)若不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的最小值是( )A .0B .2-C .52-D .3-【答案】C【解析】因为不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,所以1a x x ⎛⎫≥-+⎪⎝⎭对一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立, 所以max 110,2a x x x ⎡⎤⎛⎫⎛⎫⎛⎤≥-+∈ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎦⎣⎦⎝⎭, 又因为()1f x x x =+在10,2⎛⎤ ⎥⎝⎦上单调递减,所以()min 1522f x f ⎛⎫== ⎪⎝⎭,所以52a ≥-,所以a 的最小值为52-, 故选:C. 2.(2020·浙江)已知关于x 的不等式2230ax x a -+<在(]0,2上有解,则实数a 的取值范围是( )A .⎛-∞ ⎝⎭ B .4,7⎛⎫-∞ ⎪⎝⎭ C .⎫∞⎪⎪⎝⎭ D .4,7⎛⎫+∞ ⎪⎝⎭【答案】A【解析】(]0,2x ∈时,不等式可化为32a ax x+<; 当0a =时,不等式为02<,满足题意;当0a >时,不等式化为32x x a +<,则223x a x >=,当且仅当x =所以a ,即0a <<; 当0a <时,32x x a+>恒成立;综上所述,实数a 的取值范围是(,3-∞ 答案选A 3.(2020·江苏省邗江中学)命题“2,2390x R x ax ∃∈-+<”为假命题,则实数a 的取值范围为( )A .)(⎡∞⋃-∞⎣+B .⎡⎣C .)⎡∞⎣D .(-∞ 【答案】B 【解析】“2,2390x R x ax ∃∈-+<”为假命题,等价于“2,2390x R x ax ∀∈-+≥”为真命题,所以()2=3890a ∆-⨯≤所以a ⎡∈⎣,则实数a 的取值范围为⎡⎣.故选:B. 4.(2020·江苏周市高级中学)已知函数()24x x a f x x++=,若对于任意[)1,x ∈+∞,()0f x >恒成立,则实数a 的取值范围为( )A .[)5,+∞B .()5,-+∞C .()5,5-D .[]5,5-【答案】B 【解析】因为对于任意[)1,x ∈+∞,()0f x >恒成立,所以240x x a ++>对[)1,x ∈+∞恒成立, 所以()2max 4a x x>--,[)1,x ∈+∞, 又因为24y x x =--的对称轴为2x =-,所以24y x x =--在[)1,+∞上单调递减,所以()()2max 4145x x--=--=-,所以5a >-,故选:B.1.(2020·湖南)若不等式212x mx +>在R 上恒成立,则实数m 的取值范围是() A .()(),11,-∞-⋃+∞B .(][),11,-∞-+∞C .[]1,1-D .()1,1-【答案】D【解析】由题意,一元二次不等式2210x mx -+>在R 上恒成立,所以()2240m ∆=--<,解得()1,1m ∈-.故选:D. 2.(2020·云南昆明一中)不等式111x ≥-的解集为( ) A .(-∞,1)∪[2,+∞)B .(-∞,0]∪(1,+∞)C .(1,2]D .[2,+∞) 【答案】C【解析】不等式111x -等价于(1)(2)0x x --且10x -≠,解得12x <, ∴不等式的解集为(1,2].故选:C .3.(2020·江苏省响水中学)已知函数()()2221f x m x mx =+++R ,则实数m 的取值范围是( ) A .[]22-,B .[]1,2-C .[][)2,12,--+∞ D .(][),12,-∞-⋃+∞ 【答案】B【解析】因为函数()()2221f x m x mx =+++R ,避错强化所以()22210m x mx +++≥对任意x ∈R 恒成立, 若20m +=,即2m =-时,则不等式可化为410x -+≥,解得14x ≤,不满足题意; 若20m +≠,即2m ≠-时,只需()2204420m m m +>⎧⎨∆=-+≤⎩,解得12m -≤≤. 故选:B.4.关于x 的不等式22(1)(1)10a x a x ----<的解集为R ,则实数a 的取值范围为( )A .3,15⎛⎫- ⎪⎝⎭ B .3,15⎡⎤-⎢⎥⎣⎦C .3,1{1}5⎛⎤-⋃- ⎥⎝⎦D .3,15⎛⎤- ⎥⎝⎦【答案】D 【解析】当210a -=时,1a =±,若1a =,则原不等式可化为10-<,显然恒成立;若1a =-,则原不等式可化为210x -<,不恒成立,所以1a =-舍去;当210a -≠时,因为22(1)(1)10a x a x ----<的解集为R ,所以只需210a -<且22[(1)]4(1)0a a ∆=--+-<,解得315a -<<. 综上,实数a 的取值范围为3,15⎛⎤- ⎥⎝⎦.故选:D.5.(2020·浙江温州)若关于x 的不等式220x ax +-<在区间[]1,5上有解,则实数a 的取值范围是( ) A .23,15⎛⎫- ⎪⎝⎭ B .23,5⎛⎤-∞- ⎥⎝⎦ C .(),1-∞ D .(],1-∞【答案】C【解析】因为关于x 的不等式220x ax +-<在区间[]1,5上有解, 所以222x a x x x-<=-在[1,5]上有解, 易知2=-y x x 在[1,5]上是减函数,所以[1,5]x ∈时,max2211x x ⎛⎫-=-= ⎪⎝⎭, 所以1a <.故选:C6.(2020·山西)若关于x 的不等式22840x x a --+≤在13x ≤<内有解,则实数a 的取值范围是( ) A .12a ≥B .10a ≤C .12a ≤D .10a ≥【答案】C【解析】由题意,可得2284a x x -≥--,设()()222842212f x x x x =--=--,若13x ≤<,则()1210f x -≤≤-,不等式22840x x a --+≤在13x ≤<内有解,则只需()min a f x -≥,即12a -≥-,解得12a ≤.故选:C7.(2020·北京人大附中高三月考)已知方程210x ax +-=在区间[]0,1上有解,则实数a 的取值范围是( )A .[)0,+∞B .(),0-∞C .(],2-∞D .[]2,0- 【答案】A【解析】方程210x ax +-=在区间[]0,1上有解,当0x =时,方程无解; 当01x <≤时,则有211x a x x x-==-,令1()g x x x =-, 2221(1)'()10x g x x x -+=--=<,即()g x 在01x <≤时为减函数, 由于(1)0g =,所以,当01x <≤时,()0g x ≥,所以,只要0a ≥,方程210x ax +-=在区间[]0,1上有解故选:A8.(2020·湖北高三月考)若[]1,2x ∃∈-,使得不等式220x x a -+<成立,则实数a 的取值范围为( ) A .3a <-B .0a <C .1a <D .3a >-【答案】C【解析】因为[]1,2x ∃∈-,使得不等式220x x a -+<成立,所以[]1,2x ∃∈-,使得不等式2+2a x x <-成立,令2()2f x x x =-+,[]1,2x ∈-, 因为对称轴为1x =,[]1,2x ∈-所以max ()(1)1f x f ==,所以1a <,故选:C9.(2020·福建厦门一中)(多选)使得2601x x x -->-成 立的充分非必要条件有( ) A .{}21x x -<<B .{}3x x >C .{}01x x <<D .{21x x -<<或}3x > 【答案】ABC 【解析】由2601x x x -->-可得()()()1320x x x --+>,如下图所示:所以,不等式2601x x x -->-的解集为{21x x -<<或}3x >, A 、B 、C 选项中的集合均为集合{21x x -<<或}3x >的真子集, 因此,使得2601x x x -->-成 立的充分非必要条件有A 、B 、C 选项. 故选:ABC.10.(2020·江苏省太湖高级中学)(多选)已知命题2:,10p x R x ax ∃∈++>,则命题p 成立的一个充分不必要条件可以是下列选项中的( )A .[1,1]a ∈-B .(2,2)a ∈-C .[2,2]a ∈-D .1{}2a ∈ 【答案】ABCD【解析】因为命题2:,10p x R x ax ∃∈++>,且函数21y x ax =++开口向上,所以当命题p 为真命题时,a R ∈,故命题p 的等价条件为a R ∈,故命题p 成立的一个充分不必要条件可以是a R ∈的真子集,故ABCD 均满足,故选:ABCD.11.(2020·湖南)(多选)下列结论正确的是( )A .当x >02 B .当x >3时,x +1x的最小值是2 C .当x <32时,2x -1+423x -的最小值是4 D .设x >0,y >0,且2x +y =1,则21x y+的最小值是9 【答案】AD【解析】对于选项A ,当0x >0>2≥=,当且仅当1x =时取等号,结论成立,故A 正确;对于选项B ,当3x >时,12x x +≥=,当且仅当1x =时取等号,但3x >,等号取不到,因此1x x +的最小值不是2,故B 错误;对于选项C ,因为32x <,所以320x ->,则4421322222332y x x x x ⎛⎫=-+=--++≤-=- ⎪--⎝⎭,当且仅当43232x x -=-,即12x =时取等号,故C 错误;对于选项D ,因为0x >,0y >,则()222521512y x x y x y x y x y ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当22y x x y =,即13x y ==时,等号成立,故D 正确. 故选:AD .12(2020·福建福州)(多选)若0,0m n >>,且111m n +=,则下列说法正确的是( ) A .mn 有最大值4B .2211m n +有最小值12C .0,0m n ∀>>≤D .0,0m n ∃>>,使得2m n +=【答案】BC 【解析】因为111m n +=,所以111m n =+≥4mn ≥,故A 不正确; 又2221111221()142m n m n mn +=+-≥-=,故B 正确;211()12m n =+≤=≤,故C 正确; 联立2111m n m m+=⎧⎪⎨+=⎪⎩,得22m n mn +=⎧⎨=⎩,所以,m n 是方程2220x x +=-的两根,又此方程无解,故不存在0,0m n >>使得2m n +=,故D 不正确.故选:BC13.(2020·江苏高一期中)(多选)下列函数中最小值为2的是( )A .1y x x=+ B.y = C.y = D .4(2)2y x x x =+>-+ 【答案】BD【解析】0x <时,10y x x=+<,A 错;0>,2y =≥==,即1x =时等号成立,B 正确;同理2y =≥,=等号才能成立,=故2取不到,C 错;2x >-,则20x +>,14(2)22222y x x x x =+=++-≥=++,当且仅当422x x +=+,即0x =时等号成立,D 正确. 故选:BD .14.(2020·江苏常熟中学)不等式2411x x x --≥-的解集为______.【答案】[1,1)[3,)-+∞ 【解析】不等式2411x x x --≥-化为24101x x x ---≥-,22301x x x --≥-,(1)(3)(1)010x x x x +--≥⎧⎨-≠⎩, 解得3x ≥或11x -≤<.故答案为:[1,1)[3,)-+∞.15.(2020·江苏省响水中学高一期中)设集合{}{}20215,0A x x B x x a =≤-≤=+< ,若A B =∅ ,则实数a 的取值围为_________. 【答案】14a ≥- 【解析】因为{}{}20215,0A x x B x x a =≤-≤=+<,且AB =∅, 所以{}21,302x x a ⎡⎤⋂+<=∅⎢⎥⎣⎦ ,即 当132x ≤≤时,2≥-a x 恒成立,()2max 14a x ≥-=-,所以14a ≥-. 故答案为: 14a ≥-16.关于x 的不等式240x x m --≥对任意[]1,1x ∈-恒成立,则实数m 的取值范围是_______.【答案】3m ≤-【解析】∵22()4(2)4f x x x m x m =--=---在[]1,1-上为减函数,且不等式240x x m --≥对任意[]1,1x ∈-恒成立,则只需min ()(1)30f x f m ==--≥,即3m ≤-.故答案为:3m ≤-.17.(2020·江苏镇江)已知命题“R x ∀∈,210x ax ++>”是假命题,则实数a 的取值范围为______.【答案】(,2][2,)-∞-+∞【解析】∵命题“R x ∀∈,210x ax ++> ”是假命题,∴R x ∃∈,210x ax ++≤是真命题,即R x ∃∈使不等式210x ax ++≤有解;所以240a ∆=-≥,解得:2a ≤-或2a ≥.∴实数a 的取值范围是(,2][2,)-∞-+∞.故答案为:(,2][2,)-∞-+∞.18.(2020·浙江杭州·高三期中)已知0x >,0y >,且21x y +=,则2112y x y++的最小值为________.12【解析】因为21x y +=,0x >,0y >,则210y x =->,所以01x <<, 所以2111121112111y x y x x x xx --+=+=-+++++- ()()()2112111111121211211x x x x x x x x -⎡⎤+⎛⎫=-++++-=-++++⎡⎤⎢⎥ ⎪⎣⎦+-+-⎝⎭⎣⎦ ()(2111111131313211222x x x x ⎡-⎡⎤+=-+++≥-++=-++=⎢⎢⎥+-⎢⎣⎦⎣当且仅当()21111x x x x-+=+-,即3x =-3+01x <<范围内,舍去)时,等号成立. 12. 19.(2020·江苏南京河西外国语学校)在实数范围内解下列不等式.(1)2340x x -->;(2)213x x-≤-. 【答案】(1){x 1x <-或43x >};(2)5,(3,)2⎛⎤-∞+∞ ⎥⎝⎦. 【解析】(1)不等式2340x x -->可化为(1)(34)0x x +->,解得1x <-或43x >, 所以该不等式的解集为{1x x <-或43x ⎫>⎬⎭;(2)∵213x x -≤-,∴2303x x x--+≤-, 即2503x x -≥-,所以(25)(3)0x x --≥且30x -≠ 解得:3x >或52x ≤, 故不等式的解集是5,(3,)2⎛⎤-∞+∞ ⎥⎝⎦.20.(2020·上海市崇明中学高三期中)解下列不等式:(1)212302x x -+-≤; (2)5331x x +-≤.【答案】(1)35,⎛⎡⎫+-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭;(2)[3,1)-. 【解析】(1)由212302x x -+-≤可得: 20461x x ≤-+,解得:x 或x ≥,故解集为:35,⎛⎡⎫+-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭ (2)由5331x x +-≤化简为:531x x +--3≤0, 即261x x +-≤0,等价于(26)(1)010x x x +-≤⎧⎨-≠⎩, 解得31x -≤<,故解集为[3,1)-.218.(2020·黑龙江牡丹江一中高三开学考试(理))解下列不等式. (1)(1)(2)(3)0x x x x -+->;(2)2112x x +≥-. 【答案】(1)(,2)(0,1)(3,)-∞-+∞;(2)(,3](2,)-∞-+∞. 【解析】(1)方程(1)(2)(3)0x x x x -+-=的根为:2,0,1,3-,利用数轴穿根法可得:所以不等式的解集为(,2)(0,1)(3,)-∞-+∞; (2)()()212131*********x x x x x x x x +++≥⇒-≥⇒≥⇒+-≥---且2x ≠, 解得(,3](2,)x ∈-∞-+∞. 22.(2020·湖北武汉)解关于x 的不等式(ax -1)(x +1)>0.【答案】答案不唯一,具体见解析.【解析】若a =0,则原不等式为一元一次不等式()10x -+>,解得1x <-,故解集为(-∞,-1). 当a ≠0时,方程(ax -1)(x +1)=0的两根为x 1=1a ,x 2=-1. 当a >0时,12x x >,所以解集为(-∞,-1)∪1,a ⎛⎫+∞ ⎪⎝⎭; 当-1<a <0,即1a <-1时,所以解集为1,1a ⎛⎫- ⎪⎝⎭; 当a <-1,即0>1a >-1时,所以解集为11,a ⎛⎫- ⎪⎝⎭; 当a =-1时,不等式化为()210x -+>,所以解集为∅.23(2020·辽宁沈阳二中)解关于x 的不等式2(41)40ax a x -++>.【答案】答案见解析【解析】由题意可知,2(41)40ax a x -++>可化为(1)(4)0ax x --> (1)当0a =时,不等式化为40x -<,解得4x <,(2)当10a <时,不等式化为()140x x a ⎛⎫--< ⎪⎝⎭,解得14x a <<, (3)当104a <<时,不等式化为1(4)0x x a ⎛⎫--> ⎪⎝⎭,解得1x a <或4x >, (4)当14a=时,不等式化为2(4)0x ->,解得4x ≠,(5)当14a >时,不等式化为1(4)0x x a ⎛⎫--> ⎪⎝⎭,解得4x <或1x a >, 综上所述,0a =时,不等式的解集为(,4)-∞0a <时,不等式的解集为1,4a ⎛⎫ ⎪⎝⎭; 14a >时,不等式的解集为1,(4,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭; 14a =时,不等式的解集为(,4)(4,)-∞+∞; 104a <<时,不等式的解集为1(,4),a ⎛⎫-∞⋃+∞ ⎪⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式易错题
一.填空题(共23小题)
1.(2012•谷城县校级模拟)若不等式组恰有两个整数解.则实数a的取值范围是.
2.(2009•凉山州)若不等式组的解集是﹣1<x<1,则(a+b)2009=.
3.(2012春•金坛市期中)如果不等式a≤x≤3有且仅有3个整数解,那么a的范围
是.
4.不等式x<a的非负整数解有3个,则a的取值范围是.
5.(2012秋•白下区校级月考)不等式a≤x≤3只有6个整数解,则a的范围是.
6.若关于x的不等式1﹣|x|>ax的解集中有无穷多个整数,则a的取值范围是.
7.(2014春•吉州区校级期中)已知不等式3x+a≤9有三个非负整数解,则a的取值范围是.
8.(2013•黄石模拟)若不等式的整数解有3个,则m的取值范围是.
9.(2011秋•常熟市期中)若不等式组有4个整数解,则a的取值范围是.
10.(2012春•成华区期中)若关于x的不等式组有5个整数解,则m的取值范围是.
11.若有5个整数x使得不等式1+a≤x<2成立,则a的取值范围是.
12.(2013•青羊区校级模拟)已知关于x的不等式组的整数解有3个,则m的取值范围是.
13.(2012春•大邑县校级期中)若不等式组有4个整数解,则m的取值范围是.
14.若不等式组无解,则m的取值范围是.
15.(2009春•吴江市期末)若关于x的不等式2m一1<x<m+l无解,则m的取值范围是.
16.(2010春•昌宁县校级期末)若不等式组无解,则m的取值范围是.17.(2011•潍城区模拟)不等式组无解,则m的取值范围是.18.(2011春•化州市期中)不等式组无解,则a的取值范围是.19.(2009春•天长市期末)不等式ax>b的解集是x<,则a的取值范围是.
20.(2011春•连云港校级期中)若不等式(2a﹣3)x<2a﹣3的解集为x>1,则a的取值范围是.
21.(2009春•雅安校级期中)已知关于x的不等式mx<5m的解集是x>5,则m的取值范围是.
22.(2009春•榕江县校级期末)不等式组的解集为x>2,则a的取值范围
是.
23.(2014春•金坛市校级月考)不等式mx﹣2<3x+4的解集是x>,则m的取值范围


二.解答题(共7小题)
24.若不等式3x<a且只有3个非负整数解,求a的取值范围.
25.已知关于x的不等式组恰有3个整数解,则a的取值范围是.
26.(2013秋•乐清市校级月考)已知关于x的不等式组的解集中的整数恰好有2个,求实数a的取值范围.
27.已知关于x的不等式组有3个整数解,求a的取值范围.
28.已知关于x的不等式组有4个整数解,求a的取值范围.
29.已知关于x的不等式组恰有3个整数解,试求a的取值范围.
30.如果不等式(2a+1)x>4a+2的解集是x<2,求a的取值范围.
1.(2012•谷城县校级模拟)若不等式组恰有两个整数解.则实
数a的取值范围是<a≤1.
2.(2009•凉山州)若不等式组的解集是﹣1<x<1,则(a+b)2009=﹣1.
3.(2012春•金坛市期中)如果不等式a≤x≤3有且仅有3个整数解,那么a的范围是0<a≤1.
4.不等式x<a的非负整数解有3个,则a的取值范围是2<a≤3.
5.(2012秋•白下区校级月考)不等式a≤x≤3只有6个整数解,则a的范围是﹣3<a≤﹣2.
6.若关于x的不等式1﹣|x|>ax的解集中有无穷多个整数,则a的取值范围是a<﹣1或a>1.
7.(2014春•吉州区校级期中)已知不等式3x+a≤9有三个非负整数解,则a的取值范围是0<a≤3.
8.(2013•黄石模拟)若不等式的整数解有3个,则m的取值范围是5<m≤6.9.(2011秋•常熟市期中)若不等式组有4个整数解,则a的取值范围是2≤a<3.
10.(2012春•成华区期中)若关于x的不等式组有5个整数解,则m的取
值范围是﹣2≤m<﹣1.
11.若有5个整数x使得不等式1+a≤x<2成立,则a的取值范围是﹣5<a≤﹣4.12.(2013•青羊区校级模拟)已知关于x的不等式组的整数解有3个,则m的取值范围是﹣1≤m<0.
13.(2012春•大邑县校级期中)若不等式组有4个整数解,则m的取值范围是﹣2<m≤﹣1.
14.若不等式组无解,则m的取值范围是m<﹣.
15.(2009春•吴江市期末)若关于x的不等式2m一1<x<m+l无解,则m的取值范围是m≥2.
16.(2010春•昌宁县校级期末)若不等式组无解,则m的取值范围是m≤11.17.(2011•潍城区模拟)不等式组无解,则m的取值范围是m≤1.18.(2011春•化州市期中)不等式组无解,则a的取值范围是a≤2.19.(2009春•天长市期末)不等式ax>b的解集是x<,则a的取值范围是a<0.
20.(2011春•连云港校级期中)若不等式(2a﹣3)x<2a﹣3的解集为x>1,则a的取值范围是a<.
21.(2009春•雅安校级期中)已知关于x的不等式mx<5m的解集是x>5,则m的取值范围是m<0.
22.(2009春•榕江县校级期末)不等式组的解集为x>2,则a的取值范围是a≤2.23.(2014春•金坛市校级月考)不等式mx﹣2<3x+4的解集是x>,则m的取值范围

m<3.
二.解答题(共7小题)
24.若不等式3x<a且只有3个非负整数解,求a的取值范围.
25.已知关于x的不等式组恰有3个整数解,则a的取值范围是.26.(2013秋•乐清市校级月考)已知关于x的不等式组的解集中的整数恰好有2个,求实数a的取值范围.
27.已知关于x的不等式组有3个整数解,求a的取值范围.
28.已知关于x的不等式组有4个整数解,求a的取值范围.29.已知关于x的不等式组恰有3个整数解,试求a的取值范围.30.如果不等式(2a+1)x>4a+2的解集是x<2,求a的取值范围.。

相关文档
最新文档