杆的扭转定理和公式
工程力学C-第9章 扭转

max
84.88MPa
16
min max
10 42.44MPa 20
§9-6 圆轴扭转破坏与强度条件
一、圆轴扭转时的破坏现象
脆性材料扭转破坏
沿450螺旋曲面被拉断
塑性材料扭转破坏
沿横截面被剪断
二、圆轴扭转的强度条件
D 1.192 得: d1
2
D2
A空 A实 4
(1 0.8 )
d1
4
2
0.512
例6 传动轴AB传递的功率为 P =7.5kW, 转速n=360r/min。轴的 AC 段为实心圆轴, CB 段为空心圆轴。已知:D =30mm,d =20mm。试计算AC段的最大剪应力,CB 段横截面上内、外缘处的剪应力。 解: (1)计算外力偶矩和扭矩 P AC段最大剪应力: m 9549 198.9N m n Tmax D 1max 37.5 10 6 Pa 37.5MPa T m 198.9N m I P1 2 (2)计算极惯性矩 CB段上内外缘的剪应力: D 4 T d 8 4 AC段:I P1 7.95 10 m 2内 I P2 2 32 D 4 4 31.2 10 6 Pa 31.2MPa (1 ) CB段:I P 2 T D 32 2外 8 4 6.38 10 m I P2 2 46.8 10 6 Pa 46.8MPa (3)计算应力
A
ρτ
ρ
dA T
d 2 G ρ dA T dx A
令:
ρ dA I P
2 A
极惯性矩
d G IP T dx
(仅供参考)第十九章-扭转的强度与刚度计算

一、外力偶矩的计算
前面已经指出 ,使轴产生扭转变形的是外力偶矩。但是作用于轴上的外力偶矩往
往不是直接给出的,而是给定轴所传递的功率和轴的转速。以图 19-3 所示的传动轴为例,
由电动机的转速和功率可以求出传动轴 AB 的转速及通过皮带轮输入的功率。功率由皮
带轮传到轴 AB 上,再经右端的齿轮输出。设通过皮带轮给 AB 轴输入的功率为 N(kW),
因为 1kW=1000N·m/s 因此每秒钟输入功应为 : W = N ×1000(N ⋅ m)
(a)
电动机是通过皮带轮以力偶矩 Me 作用于 AB 轴上的,若 AB 轴的转速为每分钟 n 转,
则力偶矩 Me 在每秒内完成的功应为 :
W = 2π × n × Me(N ⋅ m)
(b)
60
因为 Me 所完成的功也就是皮带轮给 AB 轴输入的功,故(a)、(b)两式应相等,这
据微元的平衡要求,不仅左右一对面上有大小相等,方向相反的剪应力 τ ,在上下一对
面也必须有剪应力τ ′ ,而且由力矩平衡条件 ∑ mz = 0 有:
(τtdy)dx = (τ ′tdx)dy
由此得到:
τ =τ′
(19-2)
这表明,在相互垂直的两个微面上,剪应力总是成对出现的,它们数值相等,而方
向均垂直于两微面的交线,或指向或背离这一交线。这就是剪应力互等定理。
利用第三节中的(b)式和(c)式,上式可以写成:
φ
φ
图 19-9
u = 1 τγ 2
再由剪切胡克定律(式 19-3)得:
u = 1 τγ = τ 2 2 2G
46
第四节 圆轴扭转时的应力与变形
一、横截面上剪应力计算公式
圆轴扭转时,在已知横截面上的扭矩后,还应进一步研究横截面上的应力分布规律,
杆的扭转定理和公式

圆截面杆的扭转外力与内力Il圆杆扭转切应力与强度条件Il圆杆扭转变形与刚度条件Il 圆杆的非弹性扭转1. 外力与内力杆件扭转的受力特点是在垂直于其轴线的平面内作用有力偶(图2∙2 -Ia ),其变形特点是在任意两个截面绕轴线发生相对转动。
轴类构件常有扭转变形发生。
作用在传动轴上的外力偶矩m通常是根据轴所传递的功率N和转速n(r∕min)来计算。
当N的单位为千瓦(kW)时啊= $549一Nw(2- 2-1)n当N的单位为马力(HP)时时m= 7024—N■畑(2-2-2)n扭转时的内力为扭矩T,用截面法求得。
画岀的内力图称为扭矩图(或T图),如图2∙2-1b所示图2 ∙2 -1 圆杆的扭转2. 圆杆扭转切应力与强度条件r p时,某横截面上任意C点(图2∙2-2 )的切应力公式为Tr式中T―― C点所在横截面上的扭矩P――C点至圆心的距离L P――横截面对圆心的极惯性矩,见当应力不超过材料的剪切比例极限表2-2-1等直杆扭转时的截面几何性质图2 ∙2 -2 切应力分布圆杆横截面上的切应力 r 沿半径呈线性分布,其方向垂直于半径(图 周各点上,其计算公式为丁二至 (2-2-A )等截面杆的最大切应力发生在T maX 截面(危险截面)的圆周各点(危险点)上。
其强度条件为≤[r ]C2-2— 了)式中,[T ]为许用扭转切应力,与许用拉应力[σ ]的关系为:[T ]= (0.5〜0.6 )[ σ ](塑性材料)或[T ]= (0.50.6 ) [ σ ](脆性材料)3.圆杆扭转变形与刚度条件在比弹性范围内,圆杆在扭矩T 作用下,相中为 L 的两截面间相对扭转角为式中,[θ ]为圆杆的许用单位扭转角(°) /m4.圆杆的非弹性扭转讨论圆杆扭转时切应力超过材料的比例极限并进入塑性状态的情况。
对于加工硬化材料,如果材料的应2 ∙3 -2 )。
模截面上的最大切应力在圆 式中G ――材料的切变模量 单位扭转角公式为式中GL P 抗扭刚度圆杆上与杆轴距离为 P 外(图 rad (2-2-6)180毋二一π2 ∙2 -2 TIT—Cy 阳 (JLF)的切应变r 为(2-2-7)(2(2-2-9)圆杆表面处的最大切应变为”二扈¢2-2-10)式中,r ——圆杆的半径等截面圆杆的最大单位扭转角,发生在 段内, 其刚度条件为ISOεj HbSKJZ r尹](2- 2-12)相应的切应力r max可以从应力-应变图求得。
材料力学第四章 扭转

max
T GI p
180
(/m)
×
例5 图示圆轴,已知mA =1kN.m, mB =3kN.m, mC
=2kN.m;l1 =0.7m,l2 =0.3m;[]=60MPa,[ ]=0.3°/m,
G=80GPa;试选择该轴的直径。
mA
mB mC 解: ⑴按强度条件
A
l1
B l2 C
max
9.55
200 300
6.37
(kN m)
×
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
T2 m2 m3 (4.78 4.78) 9.56kN m
T
2 r02
t
T 2 A0
t
T
A0为平均半径所作圆的面积。
×
三、切应力互等定理:
´
a
b
dy
´
c
z
dx
d t
mz 0; t dxdy t dxdy
'
这就是切应力互等定理:在单元体相互垂直的两个截面
上,切应力必然成对出现,且数值相等,两者都垂直于两平
面的交线,其方向或共同指向交线,或共同背离交线。
垂直,则杆件发生的变形为扭转变形。
A
B O
A
BO
m
m
——扭转角(两端面相对转过的角度)
——剪切角,剪切角也称切应变。
×
§4–2 扭转的内力—扭矩与扭矩图
一、扭矩 圆杆扭转横截面的内力合成
结果为一合力偶,合力偶的力偶 矩称为截面的扭矩,用T 表示之。 m
材料力学 第4章_扭转

d x d z d y d y d z d x 0
返回
4. 切应力互等定理
切应力互等定理: 也称切应力双生定理, 指在单元体相互垂直的两 个面上,切应力必成对存 在,且数值相等;两者都 垂直于两个平面的交线, 方向共同指向或背离这一 交线。
纯剪切
BC B
TCD mB mC 700N m
(b)
TDA mA 1146N m
可见:主动轮与从动轮位置不 同,轴内最大扭矩也不同,显 然(a)方案比(b)方案合理。
返回
§4.3 圆轴扭转时的应力与强度条件
返回总目录
一、薄壁圆筒扭转时的切应力 1. 变形现象 圆周线大小、形状、间距 不变,纵向线相同倾斜。 2. 横截面上应力分析 因纵向纤维无正应变, 有角应变,因此横截面上 无,有, 与圆周相切。 又因壁很薄,可近似认 为沿壁厚应力相等。
第4章 扭转
第4章 扭转
§4.1 扭转的概念 §4.2 外力偶矩、扭矩和扭矩图
§4.3 圆轴扭转时的应力与强度条件
§4.4 圆杆扭转时的变形及刚度条件
§4.5 非圆截面杆的扭转概念
§4.1 扭转的概念
返回总目录
工程中的受扭转杆件
拧紧螺母的工具杆产生扭转变形
返回
工程中的受扭转杆件
返回
工程中的受扭转杆件
r
d dx
横截面上任一点的 ⊥半 径,并与该点到轴线的距离 成正比。
返回
4. 应力公式 静力关系
T
dA
横截面上分布内力系对 圆心的矩等于扭矩T。
T d A A d d 2 G d A G d A A dx dx A
材料力学 第三章 扭 转

T2
T1
d
T3
Mx1=0.5kN· m
Mx2 =0.32kN· m lAB=300mm G=80GPa d=50mm
B
T2
φAB
lAB
A T1
lAC d φAC
C T3
B
lAB
A
lAC
C
M x1l AB j AB = GI P 500 0.3 = 9 80 10 0.054 32
r O
Mx
几何分析
变 形 应变分布
物理关系
应力分布
平面假定 静力学方程
应力公式
1. 变形几何关系
周线
a b c d
T
周线
a c d
γ
T
φ
b
纵线
dx
纵线
dx
a
c
a
γ
c c' d d'
b
d
b
(1)变形后所有圆周线的大小、形状和间距均不变,绕杆轴线相对转动。 (2)所有的纵线都转过了同一角度g。
T
周线
A
dρ
ρ o
ρ2dA
∫ 0ρ2·2πρdρ =
π d = 32
4
d/2
d
3 Ip π d Wp = r = 16
2. 空心圆截面
π D 4 - π d 4 π D 4(1-α4) Ip= 32 32 = 32 α=d/D
ρ o
dρ
π D3 Wp = 16 (1-α4)
d D
3.薄壁圆环截面
I P = 2r0
故该轴满足切应力强度要求。
二、刚度计算 等直圆杆扭转的刚度条件为
θ max = Mxmax ≤[θ] GI
扭转实验原理及目的

扭转实验原理及目的
扭转实验是一种经典的科学实验方法,通常用于探究物体在外力作用下的扭转行为以及相关的物理规律。
其原理基于扭转力矩和物体转动惯量之间的关系。
在扭转实验中,首先需要准备一个具有一定长度的杆状物体或轴,称为扭转杆。
扭转杆的一端固定,另一端可自由转动。
接着,在扭转杆上加上一个或多个力矩传感器,以测量施加到扭转杆上的力矩大小。
在实验中,可以改变施加到扭转杆上的力矩大小,记录下对应的扭转角度。
根据牛顿第二定律和扭转杆的几何形状特征,可以推导出扭转力矩与扭转角度之间的数学关系。
具体来说,扭转力矩正比于扭转角度,并且与扭转杆的几何形状参数有关,如杆长、横截面形状等。
扭转实验的目的包括但不限于以下几个方面:
1. 研究材料的机械性质:由于不同材料的力学性质不同,进行扭转实验可以研究不同材料的扭转刚度、弹性模量等参数,深入了解材料的性质。
2. 确定物体的转动惯量:通过扭转实验可以测量得到物体的转动惯量,这对于物体的旋转运动、惯性特性等的研究具有重要意义。
3. 验证物理定律或模型:扭转实验中,可以将得到的实验数据
与理论模型进行对比,从而验证相关的物理定律或模型的准确性和适用范围。
总之,扭转实验通过测量扭转力矩和扭转角度之间的关系,可以研究物体的转动行为和相关物理规律,具有重要的科学意义和应用价值。
材料力学(扭转) PPT课件

y
3、斜截面上的 应力分析
x
n
x
z
t
Fn 0 dA zdAcos sin dAsin cos 0
Ft 0 dA dAcos cos dAsin sin 0
sin 2
讨论:
外力偶矩的计算、扭矩和扭矩图
功率、转速和外力偶矩之间的关系
ω = 2π n /60 ,1 kW = 1000 N•m/s
功率:P 角速度: 转速:n 外力偶矩:T 功率、转速和外力偶矩之间的关系:
T P P 2n
若功率P的单位为千瓦,转速n的单位为转/分:
T 9549 P ( N m) n
T
第三章 扭转
§3-2 外力偶矩、扭矩和扭矩图
例4-1 NA=19kW,NB=44kW,
TA
NC=25kW, n=150rpm
求:作图示传动轴的扭矩图
解:1. 求外力偶
TA
TA= 9549 19 =1210Nm
150
同样 TB=2800Nm, TC=1590Nm
TA
Mn
2.截面法求内力( 设正法)
Mn IPFra bibliotek变形
Mnl GI p
强度条件 max
Mn Wp
刚度条件 d Mn 180
dx G I p
第三章的基本要求
1.掌握根据轴的传递功率和转速计算外力偶矩;
2.掌握扭转时内力(即扭矩)的计算以及扭矩图的画 法;
3.掌握扭转切应力的计算方法;
45
第三章 扭转
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杆的扭转定理和公式|| 圆杆扭转切应力与强度条件 || 圆杆扭转变形与刚度条件|| 圆杆的非弹性扭转1、外力与内力杆件扭转的受力特点是在垂直于其轴线的平面内作用有力偶(图22-1a),其变形特点是在任意两个截面绕轴线发生相对转动。
轴类构件常有扭转变形发生。
作用在传动轴上的外力偶矩m通常是根据轴所传递的功率N和转速n(r/min)来计算。
当N的单位为千瓦(kW)时当N的单位为马力(HP)时扭转时的内力为扭矩T,用截面法求得。
画出的内力图称为扭矩图(或T图),如图22-1b所示图22-1 圆杆的扭转2、圆杆扭转切应力与强度条件当应力不超过材料的剪切比例极限rp 时,某横截面上任意C点(图22-2)的切应力公式为式中TC 点所在横截面上的扭矩pC点至圆心的距离Lp横截面对圆心的极惯性矩,见表2-2-1 等直杆扭转时的截面几何性质。
图22-2 切应力分布圆杆横截面上的切应力r沿半径呈线性分布,其方向垂直于半径(图23-2)。
模截面上的最大切应力在圆周各点上,其计算公式为等截面杆的最大切应力发生在Tmax截面(危险截面)的圆周各点(危险点)上。
其强度条件为式中,[τ]为许用扭转切应力,与许用拉应力[σ]的关系为:[τ]=(0、5~0、6)[σ] (塑性材料)或[τ]=(0、5~0、6)[σ](脆性材料)3、圆杆扭转变形与刚度条件在比弹性范围内,圆杆在扭矩T作用下,相中为L的两截面间相对扭转角为或式中G材料的切变模量单位扭转角公式为或式中GLp抗扭刚度圆杆上与杆轴距离为p外(图22-2)的切应变r为圆杆表面处的最大切应变为式中,r圆杆的半径等截面圆杆的最大单位扭转角,发生在Tmax一段内,其刚度条件为式中,[θ]为圆杆的许用单位扭转角()/m4、圆杆的非弹性扭转讨论圆杆扭转时切应力超过材料的比例极限并进入塑性状态的情况。
对于加工硬化材料,如果材料的应力-应变图为已知(图23-3a),则杆中任一点处的切应力r就可以确定。
位于横截面边缘处应变为rmax,其相应的切应力rmax可以从应力-应变图求得。
整个横截面上切应力的(图23-3b)与应力-应变图的形状相同。
使圆杆产生单位扭转角所必需的扭矩T,可根据静力学方程求得(见图22-3b)为图22-3 圆杆的非弹性扭转将式(2-2-10)代入式(2-2-13)得式中Rmax=rθ根据式(22-14),可以得到T与θ的关系曲线,根据该曲线,可以确定对给定T值的θ和Tmax。
如果圆杆的材料具有明显的屈服极限rs,则可使应力-应变图理想化,如图22-4a所示,此材料弹塑性材料。
此时,只要杆中最大应变小于rs 时,杆就属于弹性的。
当横截面边缘处的应变超过rs 时,横截面上的应力分布如图22-4b所示,此图表明屈服开始于边缘,当应变增大时,屈服区例向里边发展。
如果材料的屈服极限为rs ,弹塑性边界为PS =C 时,则扭矩为图22-4 理想弹塑性材料杆的扭转式中d圆杆的直径当整个横截面都面到屈服时,其应力将接近均匀分布,如图23-4c所示,相应的扭矩为杆的塑性极限扭矩,其值为当扭矩达到此值时,扭矩不再增加而杆将继续变形杆中最初开始屈服时的弹性极限扭矩T s ,由式(22-3)得比较式(2-2-16)和式(2-2-17),可得塑性极限扭矩与弹性极限扭矩之比为由此可知,杆中开始屈服后,只要扭矩增大三分之一,就将使杆达到极限承载能力。
非圆截面杆的抟转与薄膜比拟等直杆扭转时的应力与变形 || 薄膜比拟 || 非弹性扭转杆非圆截面杆扭转时,其横截面将产生曲。
横截面可以自由翘曲的扭转,称为自由扭转。
此时,由于各截面的翘曲程度相同,故横截面收只在切而没有正奕力。
例如,图22-5所示的工钢薄壁杆件,在两端作用一对扭转偶矩,杆的两个翼缘将相对转动,但翼缘的轴线仍为直线,不发生弯曲变形,也不产生正。
图22-5 自由扭转若由于约束或受力条件的限制,造成杆件各截面的翘曲程度不同时,则横截面上除有切应力外还有正应力。
这种情况称为约束扭转。
例如,图22-6a,所示的工字钢杆,一端固定,另一端作用扭转力偶矩。
在固定端截面为平面,不能翘曲,但它限制了相邻截面的翘曲,离固定越远,翘曲受到的限制也越小,到自由端变成了可以自由翘曲。
由于相邻两截面的翘曲不同,则引起这两个截面间纵向纤维长度的改变,于是横截面上产生正应力。
又如图22-6b抽示两端简支工字钢杆,在跨度中点截面上作用一个扭转力偶矩。
两端铰支座不允许端截面绕杆轴旋转,但可自由翘曲。
由于对称,跨度中点截面应保持为平面,离中点截面越远,翘曲越大。
对于象工字钢、槽钢等薄壁杆件,在约束扭转时,横截面上的正应力往往很大刚愎自用厍以考虑。
但对于一些袂体杆件,如截面为矩形、椭圆形等杆件,因约束扭转而引起的正应力数值很小,可忽略不计。
图22-6 约束扭转1、等直杆扭转时的应力与变形具有任意形状的无限长等截面直杆,在绕扭转时,在与Z轴正交的截面上,要产生切应力rxz 和 rxz(图22-7)。
为了确定应力和变形,设应力函数φ (X,Y),使其满足下列各式,即φs=C1(对单联域截面,可取C1=0)式中C、C1常数φs沿截面周边上的φ值AI多联域时各孔的面积,单联域时,AI=0切应力和应力函数的关系为等直杆扭转时最大切应力为单位长度扭转角为式中,Jk 、 Wk为截面抗几何特性,见表2-2-1 等直杆扭转时的截面几何性质。
图22-7 等值杆的扭转对于任意实体截面(参见表2-2-2 任意实心截面的Jk公式),最大切应力位于或非常接近于最大内切圆与边界的切点之一(除非在边界的其他点上有引起很高局部应力的尖锐凹角),以及位于边界曲率代数值为最小的点上。
对于凸面,边界曲率为正:对于凹面,边界曲率为负(图22-8)。
最大切应力可近似地用下式计算,即图22-8 任意实体截面式中的C分下列两种情形求得:(1)在曲率为正(截面边界是直或凸的)的点上式中D最大内切圆直径r该点上的边界曲率半径(此时为正)A截面面积 (2)在曲率为负(截面边界是凹的)的点上式中,ψ为边界切线绕过凹部时所转过的角度,(见图2-2-8),其单位为弧度(这里的r为负)而D、r和A的含义同前。
一些任意实体截面的Jh值,见表2-2-2 任意实心截面的Jk公式2、薄膜比拟应用薄膜理论与弹性扭转理论的数学相似性,通过实验确定扭转切应力是比较方便的。
用一块均匀薄膜,张在与截面相似的边界上,然后从薄膜的一侧施加微小的气体压力,使薄膜鼓成曲面,如图2-2-9所示。
该曲面与扭转切应力等有着下述关系,即图2-2-9 薄膜比拟 (1)薄膜曲面上任一点的斜率,与截面相应点的扭转切应力的大小成正比。
(2)曲面的等高线即这切应力线 (3)薄腊鼓起的体积的两倍相当于扭矩。
由薄膜比拟可知,一般情况下切应力分布有的规律为(1)实心轴最大扭转切应力,必发生在外周边上,且在最大内切圆切点或其附近,或有凹角处。
(2)内外周边上的切应力都是沿周边切线方向作用。
(3)在凸角的顶点上切应力为零。
3、非弹性扭转杆当杆的一部分材料的应力超过弹性极限而产生塑性变形时,即在弹塑性变形情况下,如仍引用与前一节情况相同应力函数,则对于非硬化材料,在塑性区域要满足。
由上式可知,在塑性区域内,φ曲面斜率为一常数。
在弹塑性区的交界处,φ 是连续的。
当达到极限状态即发生全面塑性变形时,则可由截面边界上筑起具有等倾角为rs 的“屋顶”(自然倾斜表面即砂堆比拟法)。
由该“屋顶”与底面所围成的体积即等于塑性极限扭矩的一半。
例如,图2-2-10所示边长这2a的方形截面,其应力函数是高为ars 的角锥体。
当发生全面塑性变形时,其极限扭矩的一半等于角锥体的体积,其大小等于底面积乘以高度的1/3。
因此可得图2-2-10 方形截面的全塑性应力函数曲面表2-2-3 常用截面的θs、Ts、Tp和Tp/Ts列出了几种常用的塑性极限扭矩,并与弹性极限扭矩进行比较。
由表看出,若使屈服扩展至整个截面,则杆件的承载能力将大大提高。
表2-2-4 常用组合截面的Tp列出了某些常用组合截面的塑性极限扭矩近似公式。
表中末列出弹性极限据矩,是因为凹角处很高的应力集中系数对初始屈服有影响。
计算空心截面扭杆的塑性极限扭矩时,对于等壁厚的空心扭杆,其极限据矩Tp等于具有外截面边界的实心扭杆的极限扭矩Tps 减去与空心内截面的实心扭杆的极限扭矩 MpH 即薄壁截面杆的自由扭转开口截面 || 闭口截面 || 多闭室闭口截面1、开口截面薄壁截面可分为开口截面和闭口截面。
轧制的型钢或挤压成形的型材,如工字钢、槽钢、角钢或T形、Z形等为“开口”截。
这种截面可看成是由一些等宽度的狭矩形组成。
狭矩形可能是直的或是弯的,如图2-2-11所示。
在对一个弯的开口狭矩形截面杆的自由扭转进行应力和变形计算时,可用同宽同长的直的狭矩形截面杆来代替。
图2-2-11 开口截面单位长度扭有角的变化为式中T扭矩G切变模量Jk自由扭转的截面抗几何特性其中a截面形状修正系数,见表2-2-5ti每个狭矩形的厚度或平均厚度di每个狭矩形的长度表2-2-5 截面形状系数α的平均值截面形状系数工字钢槽钢角钢T型钢Z型钢α1、201、121、101、151、14每个狭矩形长边中点附近的切应力最大切应力式中,tmax为最大厚度。
2、闭口截面闭口截面可分为单闭室和多闭室截面。
薄壁管和空心矩形截面杆等属于单闭室截面。
它们在自由扭转时,单位长度扭转角的变化为应力或剪流公式为由式(2-2-27)和式(2-2-28)的3、多闭室闭口截面如由N个闭室构成的一个闭口截面扭杆,设各闭室的剪流分别为qⅠ 、qⅡ……、qN。
这时,隔板上的剪流应分别为qⅠqⅢ(向上)、…… 。
可建立(N+1)个方程组,解出(N+1)个末知数:qⅠ、qⅡ……qN 和dθ/dz 。
其中N个方程是由各闭室的单位长度扭转角公式(2-2-30)得出,另一个方程由平衡条件图2-2-12 闭口截面得出。