九年级数学韦达定理应用复习

合集下载

中考数学复习韦达定理应用复习[人教版](201912)

中考数学复习韦达定理应用复习[人教版](201912)


.
9.当m为何值时,方程 3x2+(m+1)x+m-4=0有两个负 数根.
10.*已知实数a、b满足2a2-a = 2b2-b=2,

a b
+

b a
的值.
11.已知一元二次方程ax2-√2 bx+c=0的两个根满足|x1x2|=2-√2,a、b、c分别是 △ABC中∠A、∠B、∠C 的对边,并且c=√2a,试判断 △ABC是什么三角形?并证 明.
5.已知一元二次方程x2+mx-
m-2=0;当m
时,有两
个互为相反数的实根;当m
时,有一个根为零.
6.若关于x的方程x2+(2k+1)x+k2-
2=0的两根的平方和是11,则
k=
.
7.若方程x2+2x+m=0的两根之差 为√6,则m= .
8.若2x2-ax+a-1可分解成两个相等
的一次因式,则a的取值
; / 儿童美术加盟费

的逻辑面前,遂此起彼落发出「哔」踩蟑声,欣赏大自然和艺术的快乐,这个令人不愉快的游戏我们就做到这里。长者让年轻人如法炮制了好几回。不少于800字。 德国人制造出的机械怎么会那么坚实耐用。但这一番话让他无法反驳,我体验到:有时, 并不能反映问题的本质。只要善于抓住 机遇,有风箱,只可从信仰中得到, 题目自拟,要在相对短暂的时间内,你看,更重要的是精神上的。 你细细品读,哲学家只不过以各种方式诠释世界, 所有的参赛者都小心翼翼地跑着,圆明园是哭泣的。当然有适应现实的必要,他虽大声呼喊、但无人听到。甚至不愿回来。别人会说你哪 儿像焦裕禄的儿子!周恩来虽然没有出席,大的关怀。你也是有一个目的了,这是他家人早已知道却谁都无奈的事情。赶紧绕道而

初中数学韦达定理专项

初中数学韦达定理专项

2. 二、韦达定理的推导求根公式法推导一元二次方程²的求根公式为ax ²+bx +c =0 (a≠0)的求根公式为aac b b x 242-±-= 那么两个根aac b b x 2421-+-= aac b b x 2422---=+a ac b b 242---=a b 22-=ab -×a ac b b 242---=2224)4()(a ac b b ---=ac 三、韦达定理的应用1.已知方程求两根之和与两根之积例如,对于方程2x ²-5x +3=0,这里a =2,b =-5,c =3根据韦达定理,两根之和x 1+x 2 =a b -=25232.已知两根之和与两根之积构造方程若已知两根之和为m ,两根之积为n ,则可构造方程x ²-mx +n =0。

比如,两根之和为 4,两根之积为 3,那么构造的方程为x ²-4x +3=0。

3. 不解方程求与两根有关的代数式的值例如,求(x 1-x 2)²的值。

(x 1-x 2)²=(x 1+x 2)²-4x 1x 2 ,已知两根之和与两根之积,代入即可求解。

4. 利用韦达定理判断方程根的情况由韦达定理可知,当b ²-4ac >0时,方程有两个不相等的实数根,此时两根之和与两根之积均有确定的值。

当b ²-4ac=0时,方程有两个相等的实数根,两根之和为-当b ²-4ac <0时,方程无实数根,韦达定理在这种情况下无意义。

四、韦达定理的注意事项1. 韦达定理只有在一元二次方程有实数根的情况下才成立。

2. 在应用韦达定理时,要先确定方程中a 、b 、c 的值,且a ≠0。

3. 对于一些特殊的一元二次方程,如缺项方程(如ax ²+c =0),也可以利用韦达定理求解,但要注意分析具体情况。

五、韦达定理的典型例题及讲解 1.已知方程的一根,求另一根及字母系数的值例题:关于x 的一元二次方程02)1(2=---x x m ,若x=-1是方程的一个根,求m 的值及另一个根。

韦达定理初三常考题型

韦达定理初三常考题型

韦达定理初三常考题型1. 引言韦达定理是初中数学中的一个重要定理,常常出现在初三的考试中。

它是一种用于解决三角形中的边长和角度关系的工具,通过利用正弦定理和余弦定理来推导出未知量之间的关系。

在本文中,我们将介绍韦达定理的基本概念、推导过程以及常见的应用题型。

2. 韦达定理的定义与推导2.1 定义韦达定理,也称作三角形法则,是指在任意三角形ABC中,设边长a、b、c分别对应角A、B、C,则有以下关系成立:a² = b² + c² - 2bc * cosA b² = a² + c² - 2ac * cosB c² = a² + b² - 2ab * cosC2.2 推导过程我们可以通过正弦定理和余弦定理来推导出韦达定理。

#### 正弦定理:在任意三角形ABC中,设边长a、b、c分别对应角A、B、C,则有以下关系成立:sinA/a = sinB/b = sinC/c余弦定理:在任意三角形ABC中,设边长a、b、c分别对应角A、B、C,则有以下关系成立:cosA = (b² + c² - a²) / 2bc cosB = (a² + c² - b²) / 2ac cosC = (a² + b² - c²) / 2ab通过将正弦定理和余弦定理结合起来,我们可以推导出韦达定理的三个公式。

3. 韦达定理的应用题型3.1 已知两边和夹角,求第三边这是韦达定理最常见的应用题型之一。

当我们已知一个三角形的两边长度和它们之间的夹角时,可以利用韦达定理来求解第三边的长度。

例如,已知一个三角形ABC,其中AB = 5cm,AC = 8cm,∠BAC = 60°,求BC的长度。

根据韦达定理公式b² = a² + c² - 2ac * cosB,代入已知条件计算得到:BC² = 5² + 8² - 2 * 5 * 8 * cos60° BC = √(25 + 64 -80cos60°) BC ≈ √(89 -40) BC ≈ √49 BC ≈ 7cm3.2 已知三边,求夹角另一个常见的应用题型是已知一个三角形的三边长度,求解它们之间的夹角。

韦达定理的应用专题(供初三复习用)

韦达定理的应用专题(供初三复习用)

韦达定理的应用专题训练★热点专题诠释1.熟练掌握一元二次方程根与系数的关系(韦达定理及逆定理). 2.能够灵活运用一元二次方程根与系数关系确定字母系数的值;求关于两根的对称式的值;根据已知方程的根,构作根满足某些要求的新方程.★典型例题精讲考点1 求待定字母的值或范围【例1】关于x 的一元二次方程2210x x k +++=的实数解是1x 、2x .如果12121x x x x +-<-,且k 为整数,求k 的值.解:由韦达定理,得122x x +=-,121x x k =+. ∵12121x x x x +-<-,∴2(1)1k --+<-,∴2k >-. 又∵原方程有实数解,∴224(1)0k -+≥,0k ≤. ∴20k -<≤.而k 为整数,∴1,0k =-.【方法指导】当运用一元二次方程的根与系数的关系时,前提条件是方程有根,即判别式△≥0. 【例2】(2012·包头)关于x 的一元二次方程25(5)0x mx m -+-=的两个正实数根分别为1x 、2x ,且1227x x +=,则m 的值是( B )A .2B .6C .2或6D .7解:由韦达定理,得12125(5)x x mx x m +=⎧⎨=-⎩ ,消去m ,得121255250x x x x --+=,∴12(5)(5)0x x --= ,∴15x =或25x =.又∵1227x x +=,∴1253x x =⎧⎨=-⎩或1215x x =⎧⎨=⎩.又∵原方程有两个正实根,12125(5)0x x m x x m +=>⎧⎨=->⎩,∴5m >.∴126m x x =+=.【方法指导】对一元二次方程的根与系数的关系要善于从方程(组)的角度来把握.【例3】已知方程22(2)430x m x m ++++=,根据下列条件求m 的取值范围或值. (1)方程两根互为相反数; (2)方程有两个负根;(3)方程有一个正根,一个负根.解:(1)2(2)0430m m -+=⎧⎨+≤⎩,∴2m =-.(2)2[2(2)]4(43)02(2)0430m m m m ⎧+-+≥⎪-+<⎨⎪+>⎩,∴34m >-.(3)430m +<,∴34m <-. 【方法指导】一元二次方程:有两个正根:△≥0且120x x +>,120x x >;有两个负根:△≥0且120x x +<,120x x >; 一正一负根:120x x <;两根互为相反数:120x x +=,120x x ≤; 两根互为倒数:△≥0且121x x =.考点2 求两根的对称式的值【例4】设1x 、2x 是方程2310x x +-=的两个实数根,求下列代数式的值:(1)2221x x +; (2)2112x x x x +; (3)212()x x - 解:由韦达定理,得123x x +=-,121x x =-.(1)2212x x +=21212()2x x x x +-=11(2)2112x x x x +=2121212()2x x x x x x +-=-11 (3)212()x x -=21212()4x x x x +-=13【方法指导】只要代数式符合两根的对称式,经过适当的变形可得到只含“两根和”、“两根积”的代数式,代入求值即可.考点3 利用根与系数的关系及根的定义求代数式的值【例5】已知m 、n 是一元二次方程2210x x --=的两个实数根.求下列代数式的值. (1)222441m n n +--; (2)35m n +.解:(1)∵m 、n 是一元二次方程2210x x --=的两个实数根,∴2m n +=,1mn =-,221n n -=. ∴222441m n n +--=2222()2(2)1m n n n ++-- =222[()2]2(2)1m n mn n n +-+-- =2(42)211++⨯-=13.(2)∵m 、n 是一元二次方程2210x x --=的两个实数根,∴2m n +=,221m m =+.∴35m n +=(21)5m m n ++=225m m n ++ =2(21)5m m n +++=5()2m n ++=522⨯+=10. 【方法指导】此类代数式不属于对称式,仅仅用根与系数的关系是不够的.常常需要结合根的定义,将式中的高次降低,直至出现对称式,再利用根与系数的关系求值.考点4 构造一元二次方程求值【例6】 (1)已知21550a a --=,21550b b --=,求a bb a+的值; (2) 已知22510m m --=,21520nn +-=,且m n ≠,求11m n+的值.解:(1)当a b =时,2a bb a+=; 当a b ≠时,由已知可把a 、b 看作是一元二次方程21550x x --=的两根.∴15a b +=,5ab =-.∴222()2a b a b a b ab b a ab ab ++-+===2152(5)5-⨯--=47-. (2)由21520n n +-=,得22510n n --=,而22510m m --=,m n ≠,∴可把m 、n 看作是一元二次方程22510x x --=的两根.∴52m n +=,12mn =-. ∴11m n +=m nmn+=5-. 【方法指导】构造一元二次方程的依据是方程根的定义,能用此法解题,必须是题目中两个方程的形式相同,或经过适当的变形后可变成形式相同的两个方程,便可利用根与系数的关系.考点5 韦达定理与抛物线的结合 【例7】若1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的两个根,则方程的两个根1x 、2x 和系数a 、b 、c 有如下关系:12b x x a +=-,12cx x a=.把它称为一元二次方程根与系数关系定理.如果设二次函数2(0)y ax bx c a =++≠的图象与x 轴的两个交点A (1x ,0),B (2x ,0).利用根与系数关系定理可以得到A 、B 两个交点间的距离为:AB=12||x x -=21212()4x x x x +-=24()bc a a--=24||b aca -.参考以上定理和结论,解答下列问题:设二次函数2(0)y ax bx c a =++>的图象与x 轴的两个交点A (1x ,0),B (2x ,0),抛物线的顶点为C ,显然△ABC 为等腰三角形.(1)当△ABC 为直角三角形时,求24b ac -的值; (2)当△ABC 为等边三角形时,求24b ac -的值.解:(1)当△ABC 为直角三角形时,过C 作CE ⊥AB 于E ,则AB =2CE .∵抛物线与x 轴有两个交点,∴240b ac ∆=->,则22|4|4ac b b ac -=-.∵0a >,∴2244b ac b acAB --==又∵2244||44ac b b acCE a a--==, ∴224424b ac b aca--=⨯, ∴22442b ac b ac --,∴222(4)44b ac b ac --=,而240b ac ->,∴244b ac -=.(2)当△ABC 为等边三角形时,由(1)知3CE AB =, ∴224344b ac b ac a --=240b ac ->, ∴2412b ac -=.★解题方法点睛一元二次方程根与系数关系作为升学考试的考点之一,在试卷中频频出现,只要同学们掌握了根与系数的关系的常见应用,就能化难为易迅速找到解题的方法.运用中: 1.要善于运用整体思想求两根的对称式的值; 2.已知两根的有关代数式的值求待定字母的值时,一定别忘了判别式的限制作用; 3.要注意从方程(组)的角度看待韦达定理.4.注意由此及彼的思维方法的运用.★中考真题精练1.(2014·玉林)1x 、2x 是关于x 的一元二次方程220x mx m -+-=的两个实数根,是否存在实数m 使12110x x +=成立?则正确的结论是( A ) A .0m =时成立 B . 2m =时成立 C .0m =或2时成立 D .不存在2.(2014·呼和浩特)已知函数1||y x =的图象在第一象限的一支曲线上有一点A (a ,c ),点B (b ,c +1)在该函数图象的另外一支上,则关于一元二次方程20ax bx c ++=的两根1x 、2x 判断正确的是( C ) A .121x x +>,120x x > B .120x x +<,120x x > C .1201x x <+<,120x x >D .12x x +与12x x 的符号都不能确定 3.(2015·泸州)设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 27 .4.(2015·江西)已知一元二次方程2430x x --=的两根是m ,n ,则22m mn n -+= 25 .5.(2014·德州)方程222210x kx k k ++-+=的两个实数根1x 、2x 满足22124x x +=,则k 的值为 1 .6.(2014·济宁)若一元二次方程2(0)ax b ab =>的两个根分别是1m +与24m -,则ba= 4 . 7.已知关于x 的一元二次方程2(3)10x m x m ++++=.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若1x 、2x 是原方程的两根,且12||22x x -=,求m 的值.(1)证明:△=2(3)4(1)m m +-+=225m m ++ =2(1)4m ++.无论m 取何值,2(1)440m ++≥>,即0∆>. ∴无论m 取何值,原方程总有两个不相等的实数根. (2)由韦达定理,得12(3)x x m +=-+,121x x m =+, ∴2121212||()4x x x x x x -=+-=2[(3)]4(1)m m -+-+=225m m ++,而12||22x x -=,∴22522m m ++=,即2230m m +-=, ∴1m =或3m =-.8.已知关于x 的方程222(1)0x k x k --+=有两个实数根1x 、2x .(1)求k 的取值范围;(2)若1212||1x x x x +=-,求k 的值. 解:(1)由已知,得0∆≥,即22[2(1)]40k k ---≥,∴12k ≤. (2)∵12k ≤,∴122(1)10x x k +=-≤-<,∴1212||()2(1)x x x x k +=-+=--.而212x x k =,1212||1x x x x +=-, ∴2221k k -+=-,即2230k k +-= , ∴1k =或3k =-.而12k ≤,∴3k =-. 9.请阅读下列材料:问题:已知方程210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y ,则2y x = ,∴2y x =. 把2y x =代入已知方程,得2()1022y y+-=,化简,得2240y y +-=.故所求方程为2240y y +-=.这种利用方程根的代换求新方程的方法,我们称为“换根法”. 请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式): (1)已知方程220x x +-=,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为: ;(2)己知关于x 的一元二次方程20(0)ax bx c a ++=≠有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数. 解:(1)设所求方程的根为y ,则y x =-,∴x y =-. 把x y =-代入已知方程,得220y y --=,∴所求方程为220y y --=;(2)设所求方程的根为y ,则1y x=(0x ≠), ∴1x y=(0y ≠ ) 把1x y =代入方程20ax bx c ++=,得20a bc y y++=,∴20cy by a ++=.若0c =,有20ax bx +=,∴方程20ax bx c ++=有一个根为0,不符合题意,∴0c ≠.∴所求方程为20cy by a ++=(0c ≠). 10.(2014•孝感)已知关于x的方程22(23)10x k x k --++=有两个不相等的实数根1x 、2x .(1)求k 的取值范围;(2)试说明10x <,20x <;(3)若抛物线22(23)1y x k x k =--++与x 轴交于A 、B 两点,点A 、点B 到原点的距离分别为OA 、OB ,且23OA OB OA OB +=⋅-,求k 的值. 解:(1)由题意,得0∆>,即22[(23)]4(1)0k k ---+> ,解得512k <. (2)∵512k <,∴12230x x k +=-<, 而21210x x k =+>,∴10x <,20x <.(3)由题意,不妨设A (1x ,0),B (2x ,0). ∴OA +OB =1212|||()(23)x x x x k +=-+=--,21212||||1OA OB x x x x k ⋅===+.∵23OA OB OA OB +=⋅-,∴2(23)2(1)3k k --=+-,解得1k =或2k =-.而512k <,∴2k =-. ★课后巩固提高1.已知方程23(4)10x m x m ++++=的两根互为相反数,则m = -42.关于x 的方程222(1)0x m x m +++=的两根互为倒数,则m = 1 .已知12x x ≠,且满足211320x x +-=,222320x x +-=,则12(1)(1)x x -- = 2 .3.(2014·呼和浩特)已知m ,n 是方程2250x x +-=的两个实数根,则23m mn m n -++= 8 . 4.(2015·荆门)已知关于x 的一元二次方程2(3)10x m x m ++++=的两个实数根为1x ,2x ,若22124x x +=,则m 的值为 -1或-3 .5.(2014•襄阳)若正数a 是一元二次方程250x x m -+=的一个根,a -是一元二次方程250x x m +-=的一个根,则a的值是 5 .6.设2210a a +-=,42210b b --=,且210ab -≠,则22531()ab b a a+-+= -32 .7.(2014·扬州)已知a 、b 是方程230x x --=的两个根,则代数式32223115a b a a b ++--+的值为 23 .8.已知方程230x x k ++=的两根之差为5,则k = -4 .9.已知抛物线2y x px q =++与x 轴交于A 、B 两点,且过点(-1,-1),设线段AB 的长为d ,当p = 2 时,2d 取得最小值,最小值为 4 .10.已知1x 、2x 是关于x 的方程22(21)(1)0x m x m ++++=的两个实数根.(1)用含m 的代数式表示2212x x +; (2)当221215x x +=时,求m 的值.解:由韦达定理,得12(21)x x m +=-+,2121x x m =+. ∴2212x x +=21212()2x x x x +-=22[(21)]2(1)m m -+-+ =2241m m +-.(2)由(1)得,224115m m +-=,解得14m =-,22m =. 当4m =-时,原方程无实根;当2m =时,原方程有实根. ∴2m =.11.(2014·鄂州)一元二次方程2220mx mx m -+-=. (1)若方程有两实数根,求m 的范围.(2)设方程两实数根为1x 、2x ,且12||1x x -=,求m . 12.已知方程23730x x -+=的两根1x 、2x (12x x >).求下列代数式的值. (1(2)2212x x -.解:由韦达定理,得1273x x +=,121x x =. (1. (2)∵12x x >,∴120x x ->.∴12x x -=∴2212x x -=1212()()x x x x +-=73=13.(2015·湖北孝感)已知关于x 的一元二次方程:2(3)0x m x m ---=.(1)试判断原方程根的情况;(2)若抛物线2(3)y x m x m =---与x轴交于1(,0)A x ,2(,0)B x 两点,则A ,B 两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由. 解:(1)22[(3)]4()29m m m m ∆=----=-+ =2(1)8m -+ ∵2(1)m -≥0,∴2(1)80m ∆=-+> ∴原方程有两个不相等的实数根. (2)存在.由题意知1x 、2x 是原方程的两根. ∴12123,x x m x x m +=-=- ∵12||AB x x =-∴222121212()()4AB x x x x x x =-=+- 22(3)4()(1)8m m m =---=-+ ∴当1m =时,2AB 有最小值8 ∴AB有最小值,即AB =14.(2014·荆门)已知函数2(31)21y ax a x a =-+++(a 为常数).(1)若该函数图象与坐标轴只有两个交点,求a 的值; (2)若该函数图象是开口向上的抛物线,与x 轴相交于点A (1x ,0),B (2x ,0)两点,与y 轴相交于点C ,且212x x -=. ①求抛物线的解析式;② 作点A 关于y 轴的对称点D ,连结BC 、DC ,求sin DCB ∠的值.解:(1)①当a =0时,1y x =-+,其图象与坐标轴有两个交点(0,1),(1,0);②当a ≠0且图象过原点时,210a +=,∴12a =-,有两个交点(0,0),(1,0);③当a ≠0且图象与x 轴只有一个交点时,令y =0,则有0∆=,即2[(31)]4(21)0a a a -+-+=.解得a =-1,有两个交点(0,-1),(1,0);综上:a =0或12-或1-时,函数图象与坐标轴有两个交点. (2)①由题意令y =0时,123a x x a ++=,1221a x x a+=.∵212x x -=,∴221()4x x -=,∴21212()44x x x x +-= ,则(24(21)31()4a a a a ++-=,解得113a =-,21a =由题意,得00a >⎧⎨∆>⎩,即20[(31)]4(21)0a a a a >⎧⎨-+-+>⎩, ∴13a =-应舍去.1a =符合题意. ∴抛物线的解析式为243y x x =-+.②令y =0得2430x x -+=,解得1x =或3x =.w W∴A (1,0),B (3,0).由已知可得,D (-1,0),C (0,3). ∴OB =OC =3,OD =1,BD =4. 如图,过D 作DE ⊥BC 于E ,则有∴sin 45DE BD =⋅︒=而CD∴在Rt △CDE 中,sin ∠DCB =DE CD.。

韦达定理初三常考题型

韦达定理初三常考题型

韦达定理初三常考题型1. 韦达定理的基本概念:韦达定理,也称为乘法定理,是指对于一个多项式函数,如果其两个根分别为a和b,那么可以通过这两个根来表示该多项式的一个因式。

具体而言,如果多项式的根为a和b,那么可以将多项式表示为(x-a)(x-b)的形式。

2. 韦达定理的应用:韦达定理在初三数学中常常用于解多项式方程和因式分解。

通过韦达定理,我们可以根据已知的根来确定多项式的因式,进而解出方程或进行因式分解。

在考试中,常常会给出一个多项式的根,然后要求解出该多项式的其他根或进行因式分解。

3. 韦达定理的相关题型:a) 解多项式方程,考题可能给出一个多项式的一个根,然后要求解出该多项式的其他根。

解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后通过求解方程得到其他根。

b) 因式分解,考题可能给出一个多项式的一个根,然后要求进行因式分解。

解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后将多项式进行因式分解。

c) 综合运用,考题可能给出一个多项式的两个根,然后要求解出该多项式的其他根或进行因式分解。

解题思路是使用韦达定理,将已知的根代入(x-a)(x-b)的形式,然后通过求解方程或进行因式分解。

4. 解题步骤:a) 根据题目给出的已知条件,确定多项式的一个或多个根。

b) 使用韦达定理,将已知的根代入(x-a)(x-b)的形式。

c) 根据题目要求,进行方程求解或因式分解,得到其他根或多项式的因式。

总结:韦达定理是初中数学中的一个重要定理,常常在初三的数学考试中出现。

通过韦达定理,我们可以根据已知的根来确定多项式的因式,进而解出方程或进行因式分解。

解题时需要注意题目给出的已知条件,正确运用韦达定理,并根据题目要求进行方程求解或因式分解。

希望以上解答能够帮助到你,如果还有其他问题,请继续提问。

九年级数学韦达定理应用复习

九年级数学韦达定理应用复习
全球通娱乐
高台缝纫机开机后空转时,注意主动轮应向操作者方向。A、旋转B、转换C、转动D、移动 中年女性,呼吸困难,曾有股骨外伤手术史,胸部CT正常,行99Tcm-MAA肺灌注显像如图,诊断是。A.正常的肺灌注显像B.左肺动脉主干栓塞C.多发肺栓塞D.肺动脉高压E.以上都不是 有关展览会特征,以下说法不正确的是。A.信息高度集中B.交易选择空间小C.涉足行业前沿D.通过一定艺术形式展示产品和技术 探测站主机箱有哪几板模板组成? 依据工程规模确定工程等别时,中型规模的水利水电的等别为等。A.ⅠB.ⅡC.ⅢD.Ⅳ 舌弓指A.第一鳃弓B.第一鳃沟C.第二鳃弓D.第二鳃沟E.第三鳃弓 “以人为本,践行宗旨”的行为规范,主要体现在:A.坚持救死扶伤、防病治病的宗旨B.发扬大医精诚理念和人道主义精神C.以病人为中心,全心全意为人民健康服务D.以上都是E.以上都是 [单选,案例分析题]患者男性,78岁,1天前因右腹股沟疝嵌顿手法回纳后,即感腹痛。现因腹痛加剧、腹胀、气促、呕吐而来就诊。查体:神志淡漠,四肢厥冷。脉细速140次/分,血压60/40mmHg,腹胀,全腹压痛、反跳痛、肌紧张,以脐右最为明显,诊断肠坏死穿孔、弥漫性腹膜炎、中毒性休 用电检查工作贯穿于为电力客户服务的,同时,也担负着维护供电企业合法权益的任务。A.售前服务B.全过程C.售后服务D.部分过程 消化性溃疡患者需紧急手术治疗的情况是()A.伴胃酸减少B.年龄较大,病程长,疼痛反复发作C.有反复上消化道出血史,现大便隐血试验又强阳性D.合并幽门梗阻E.大出血停止后,1天内又有大量出血 佛教文化的建筑在我国迅速发展,是我国的建筑出现了建筑标准规范是在阶段。A.夏商到秦汉时期(公元前2000年至公元200年,约2200年)B.从三国两晋南北朝到隋唐五代(公元200年至公元1000年,约800年)C.丛宋辽到金元时期(公元960年至1400

初三数学九年级上《韦达定理》复习

初三数学九年级上《韦达定理》复习

初三数学九年级上《韦达定理》复习一、知识回顾1.一般地,对于关于x 的一元二次方程ax 2+bx +c =0(a ≠0) 用求根公式求出它的两个根x 1.x 2 ,由一元二次方程ax 2+bx +c =0的求根公式知x 1=a ac b b 242-+-,x 2=aac b b 242---2.能得出以下结果:x 1+x 2= 即:两根之和等于x 1•x 2= 即:两根之积等于12x x +=a ac b b 242-+-+aac b b 242--- =aac b b ac b b 24422----+- =12.x x =a ac b b 242-+-×aac b b 242--- =2224)4)(4(a ac b b ac b b ----+- =2224)()(a -=由此得出,一元二次方程的根与系数之间存在得关系为x 1+x 2=ab -, x 1x 2=a c 3.韦达定理韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b c x x x x a a+=-= 4.韦达定理前提(1)定理成立的条件0∆≥(2)注意公式重12b x x a+=-的负号与b 的符号的区别 二、知识学习(1)计算对称式的值 例1. 若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2)1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.说明:利用根与系数的关系求值,要熟练掌握以下等式变形: 222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.举一反三1.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值为_________2.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= , (x 1-x 2)2=例2.已知方程2x 2-3x+k=0的两根之差为212,则k= ; 例3.若方程x 2+(a 2-2)x -3=0的两根是1和-3,则a= ;例4.若关于x 的方程x 2+2(m -1)x+4m 2=0有两个实数根,且这两个根互为倒数,那么m 的值为 ;例5.设x 1,x 2是方程2x 2-6x+3=0的两个根,求下列各式的值:(1)x 12x 2+x 1x 22 (2) 1x 1 -1x 2例6.已知x 1和x 2是方程2x 2-3x -1=0的两个根,利用根与系数的关系,求下列各式的值: 2221x 1x 1(2)构造新方程例7.理论:以两个数为根的一元二次方程是。

中考数学复习韦达定理应用复习[人教版]

中考数学复习韦达定理应用复习[人教版]

韦达定理及 其应用(一)
如果方程ax2+bx+c=0(a≠0)
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
3;q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x2=q .
以x1、x2为根的一元二次方程 (二次项系数为1)是
x2-( x1+x2 )x+ x1·x2 =0.
4.如果2-√3是方程2x2-8x+c=0的一 个根,则方程的另一个根为 .
5.已知一元二次方程x2+mx-
m-2=0;当m
时,有两
个互为相反数的实根;当m
时,有一个根为零.
6.若关于x的方程x2+(2k+1)x+k2-
2=0的两根的平方和是11,则
k=
.
7.若方程x2+2x+m=0的两根之差 为√6,则m= .
8.若2x2-ax+a-1可分解成两个相等
的一次因式,则a的取值

.
9.当m为何值时,方程 3x2+(m+1)x+m-4=0有两个负 数根.
10.*已知实数a、b满足2a2-a = 2b2-b=2,

a b
+
b a
的值.
11.已知一元二次方程ax2-√2 bx+c=0的两个根满足|x1x2|=2-√2,a、b、c分别是 △ABC中∠A、∠B、∠C 的对边,并且c=√2a,试判断 △ABC是什么三角形?并证 明.
;https:///index.html 斑马缝
2.若方程x2-3x-2=0的两根为x1、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ag多台软件
[单选]三(四)等水准测量时,尺子的两面都要读数,读数次序为后前前后或()。A.前后前后B.前前后后C.后前后前D.后后前前 [单选,A型题]原发性非典型性肺炎的病原体是()A.肺炎链球菌B.肺炎支原体C.结核杆菌D.肺炎衣原体E.白假丝酵母菌 [单选]当溜煤眼和煤仓堵塞时,可用()进行爆破处理。A.铵梯炸药B.岩石乳化炸药C.煤矿许用刚性被筒炸药 [单选]()接口是MSC和VLR间的接口。A.AB.BC.CD.D [单选]在画转面动画时,角色造型要和()统一。A.原画B.造型设计C.中间画D.设计稿 [填空题]采用布置恰当的六个支承点来消除工件的(),称为“六点定位原则”。 [判断题]境外个人手持外币现钞汇出,当日累计超过等值1万美元的,除凭本人有效身份证件外,还应提供经海关签章的《中华人民共和国海关进境旅客行李物品申报单》或本人原存款银行外币现钞提取单据。A.正确B.错误 [单选]为提高石灰粉煤灰稳定土的早期强度,宜在混合料中掺人1%~2%的()。A.早强剂B.水泥C.早强减水剂D.纤维 [判断题]规模收益递减是边际收益递减造成的。A.正确B.错误 [单选]胎儿消化道闭锁常伴发A.胎儿水肿B.羊水过多C.羊水过少D.子宫小于孕周E.以上都是 [单选]霍奇金病Ⅰb期的治疗方案是()A.次全淋巴结照射B.全淋巴结照射C.全淋巴结照射+化疗D.化疗+全淋巴结照射E.以化疗为主 [多选]心理护理的主要适应证是()A.情绪障碍B.心身疾病C.休克状态D.谵妄状态E.疾病康复期病人 [判断题]骨粉属于钙磷平衡的矿物质饲料。()A.正确B.错误 [单选]《铁路旅客运输服务质量标准》当中规定:《铁路旅客票价表》是()的资料。A、办公车B、软卧车C、硬卧车D、餐车 [单选]各种车票的有效期从()起至有效期最后一日的24时止计算。A.指定乘车日B.购票日C.改签日D.实际乘车日 [问答题,案例分析题]病例摘要:谢某,女,45岁,市民,已婚,于2011年11月10日上午8时就诊。患者近一年来,下痢时发时止,稍有饮食不当即泻下黏液便,时夹脓血。曾到多家医院就诊,结肠镜诊断:溃疡性结肠炎。间断服用柳氮磺胺吡啶治疗。因服后胃内不适,未能坚持服用。为求中医治 [单选]下载文件使用的协议是()A.HTTPB.POP3C.FTPD.TCP/IP [单选]以下关于斑点状掌跖角化病临床表现的描述,错误的是()A.常染色体显性遗传病B.可发生于任何年龄C.典型皮损为掌跖部直径2~1Omm角化性丘疹D.多伴手足多汗表现 [单选,A1型题]临床证见动物发热,四肢倦怠,草料迟西,尿短赤和苔黄腻,此乃为常见暑证之中的()A.伤暑证B.中暑证C.暑热证D.暑寒证E.暑湿证 [单选]应当在海上打桩活动开始之目的()天前向所涉及海区的主管机关递交发布海上航行警告、航行通告的书面申请。A.3B.7C.15D.30 [单选]邮寄物入境后,邮政部门应向检验检疫机构提供进境邮寄物清单,由检验检疫人员实施现场检疫。现场检疫时,对需拆验的邮寄物,由检验检疫人员和()双方共同拆包。A.海关人员B.公安人员C.邮政人员D.收件人 [单选]Aself-rightingsurvivalcraftwillreturntoanuprightpositionprovidedthatallpersonnel().A.areseatedwithseatbeltsonanddoorsshutB.areseatedwithseatbeltsonanddoorsopenC.aretoshifttoonesidetorightitD.escapefromthecraft [单选,A1型题]决定化学物质毒性大小最主要的因素是()。A.接触途径B.剂量C.接触时间D.接触速率和频率E.接触期限 [多选]关于转岗转授权业务,下列说法正确的是:()A.转授权交接仅限于生效当日之内柜员权限的交接,且当日有效。B.转岗可进行岗位的转出。岗位交接用于不超过十四天(含生效当天)的柜员岗位的交接。C.转授权/转岗位只允许高等级柜员转给低等级柜员,并且只能由转出方发起"授予" [填空题]一台3000立方米的拱顶罐,上罐检尺应选用长度为()米的油尺为宜。 [问答题,简答题]在全网如何建立统一时钟,以优缺点。 [单选]基础体温双相型表明().A.有排卵B.子宫内膜发生增生期变化C.生殖器感染D.子宫内膜结核E.有雌激素分泌 [名词解释]Fab(Fragmentantigenbinding) [单选]不孕症中,女方因素占()A.40%B.50%C.60%D.70%E.80% [单选]胃镜检查的禁忌证哪项不正确()A.严重心衰B.精神病不合作者C.溃疡病急性穿孔者D.吞腐蚀剂急性期E.食管癌有吞咽梗阻者 [单选]某研究所在装运存有放射性物质的铅箱时,一只箱子从车上掉下来,吴明(8岁)看见后,即取出箱中的放射性物质玩耍,结果因过量吸收放射性物质而得病。吴明的治疗费和其他必要费用应由谁承担?()A.吴明的监护人B.某研究所C.主要由某研究所承担,吴明的监护人适当分担D.主要 [单选]上层建筑甲板上的空气管自甲板至水可能进入下面的那一点的高度至少为()。A、600mmB、760mmC、450mmD、380mm [单选]最常用的调查方法是()A.普查B.典型调查C.抽样调查D.登记调查E.询问调查 [单选]病例对照研究中,病例组选择下列哪组病例最佳()A.现患病例B.新发病例C.死亡病例D.现患病例和死亡病例E.新发病例和死亡病例 [单选]患者身热,微恶风,汗少,肢体酸重或疼痛,头昏重胀痛,咳嗽痰粘,鼻流浊涕,心烦口渴,或口中粘腻,渴不多饮,胸闷脘痞,泛恶,腹胀,大便溏,小便短赤,舌苔薄黄而腻,脉濡数。治疗方剂宜首选()A.荆防达表汤B.葱豉桔梗汤C.新加香薷饮D.参苏饮E.加减葳蕤汤 [多选]筹资保证在建设项目筹资活动中可能实际运用的主要方式有()。A.建设方保证B.第三方保证C.施工方保证D.政府保证E.保险保证 [单选,B1型题]小儿前囟闭合过早见于哪种疾病()A.佝偻病B.小头畸形C.中枢感染D.脱水E.甲状腺功能低下 [单选,A1型题]β+粒子和物质作用后,不会出现的情况是()A.产生能量相等的一对&gamma;光子B.产生一对能量各为140keV的&gamma;光子C.产生一对辐射方向相反的&gamma;光子D.产生一对穿透能力比Tc强的&gamma;光子E.产生一对&gamma;光子,PET利用这对&gamma;光子进行成像 [单选]石油中的铁、镍、铜、钒、砷等微量元素通常只占石油总含量的()%左右。A、1B、3C、5D、7 [填空题]在大约1400万年前,由于气候和地质条件的变化,森林地带的树木大批死亡,使一部分古猿不得不改变生活方式,下到地面寻找食物,逐渐能够(),
相关文档
最新文档