九年级数学韦达定理应用复习

韦达定理及其应用

韦达定理及其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。

★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。 说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况

最新初中数学之韦达定理

精品文档 精品文档 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根 12,x x ,那么1212,b c x x x x a a +=-= 说明:定理成立的条件0?≥ 1.不解方程写出下列方程的两根和与两根差 (1)01032=--x x (2)01532=++x x (3)0223422 =--x x 2. 如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 3. 若两数和为3,两数积为-4,则这两数分别为 4. 已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += 5. 若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 6. 已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值: (1)2212x x += ; (2)2 111x x += ; (3)=-221)(x x = ; (4))1)(1(21++x x = 7.已知关于x 的方程02)15(22=-++-k x k x ,是否存在负数k ,使方程的两个实数根的 倒数和等于4?若存在,求出满足条件的k 的值;若不存在,说明理由。 8.关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( ) (A )0 (B )正数 (C )-8 (D )-4 9.已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ( ) (A )-7 (B) 3 (C ) 7 (D) -3 10.已知方程0322=--x x 的两根为1x ,2x ,那么2 111x x +=( ) (A )-31 (B) 3 1 (C )3 (D) -3 11. 若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是( ) (A )5或-2 (B) 5 (C ) -2 (D) -5或2 12.若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是( ) (A )-21 (B) -6 (C ) 21 (D) -2 5 13.分别以方程122--x x =0两根的平方为根的方程是( )

韦达定理及其应用

韦达定理及其应用 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则, 。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。

★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。 说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0 后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况 将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。关于方程的实根符号判定有下述定理: ⑴方程有二正根,ab<0,ac>0; ⑵方程有二负根,ab>0,ac>0; ⑶方程有异号二根,ac<0; ⑷方程两根均为“0”,b=c=0,; ★★★例5设一元二次方程的根分别满足下列条件, 试求实数a的范围。 ⑴二根均大于1; ⑵一根大于1,另一根小于1。 思路设方程二根分别为,,则二根均大于1等价于和 同时为正;一根大于1,另一根小于是等价于和异号。

韦达定理(根与系数的关系)全面练习题及答案

1、韦达定理(根与系数的关系) 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么 1212,b c x x x x a a +=-= 说明:定理成立的条件0?≥ 练习题 一、填空: 1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = . 2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = . 6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 . 7、以13+,13-为根的一元二次方程是 . 8、若两数和为3,两数积为-4,则这两数分别为 . 9、以23+和23-为根的一元二次方程是 . 10、若两数和为4,两数积为3,则这两数分别为 . 11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += . 12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 . 13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = . 14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .

韦达定理在初中数学竞赛应用

韦达定理的应用 例1、 已知实数b a ≠,且满足)1(33)1(2+-=+a a ,2)1(3)1(3+-=+b b 则 b a a a b b +的值为( )(2004年全国初中数学竞赛试题第1题) (A )23 (B )-23 (C )-2 (D )-13 例2、实数t s .分别满足1,01999,01991922≠=++=++st t t s s ,求 t s st 14++的值。 (1999年全国初中数学竞赛试题) 例3、若1≠ab ,且有0520019,092001522=++=++b b a a ,则b a 的值是( ) (2001年全国初中数学联合竞赛试题) (A ) 59 (B )95 (C )52001- (D )92001 例4、已知0325,052322=-+=--n n m m ,其中n m .为实数,求n m 1- 的值。 (2000年江苏省初中数学竞赛试题)

例5、设0122=-+a a ,01224=--b b ,且012 ≠-ab 。 求200322)12(a a b ab +-+的值。(2003年全国初中数学联合竞赛初赛题) 练习: 1、 已知实数b a ,满足027,02722=+-=+-b b a a ,求 b a a b +的值。 2、 已知实数b a ,满足015,01522=--=--b b a a ,求 b a a b +的值。 3、 已知实数b a ,满足025,02522=++=++b b a a ,求 a b b a +。 4、 已知βα,是方程022)2(322=--++m x m x 的两根且 2=βα,求m 的值。 5、 已知21,x x 是方程06)53(422=---m x m x 的两根,且 2321=x x ,求m 的值。 6、 关于x 的方程)(09)(2b a x b a x <=+--的两实根为βα,,求αββα+的值。

韦达定理的运用

一元二次方程跟与系数关系(韦达定理)的应用 一 教材分析 本节教学内容为“韦达定理的应用”,此内容是学生学习“一元二次方的根与系数的关系”中解决一些简单问题的重要方法。韦达定理联系了方程根与系数的关系,是学生在解决应用问题中的重要工具,具有广泛的应用价值,根据教材内容,由学生已知的认知结构及原由的知识水平,制定如下教学目标: 二 教学目标 1、巩固上一节学习的韦达定理,并熟练掌握韦达定理的应用。 2、提高学生综合应用能力 三 教学重难点 重点:运用韦达定理解决方程中的问题 难点:如何运用韦达定理 四 教学过程 (一 ) 回顾旧知,探索新知 上节课我们学习了韦达定理,我们回忆一下什么是韦达定理? 如果)0(02 ≠=++a c bx ax 的两个根是21,x x 那么a c x x a b x x =?- =+2121, {老师:由韦达定理我们可知,韦达定理表示方程的根与系数的关系,如果在方 程中遇到需要求解根的情况,我们是否能用韦达定理来解决呢?今天我们将来探讨这个问题。) (二) 举例分析 例 已知方程0652 =-+kx x 的一根是2,求它的另一根及k 的值。 请同学们分析解题方法: 思路:应用解方程的方法,带入法 解法一:把X=2代入方程求的K=-7 把K=-7代入方程:06752 =--x x 运用求根公式公式解得5 3,221- ==∴x x 提问:同学们还有没有其它方法呢? 启发学生,我们已知方程一根,求另一根,我们否能用韦达定理建立一个关系,求解方程。

解法二:设方程的两根为21,x x ,则21,2x x =是未知数 用韦达定理建立关系式 5 3 ,5622 2-=∴-=x x 7 ,5 3 ,27 ,5 2212-=-==∴-=∴-=+k x x k k x 对比分析,第二种方法更加简单 总结:在解方程的根时,利用韦达定理会使求解过程更为简单,且不用解方程,直接求某 些代数式的值 例2 不解方程,求一元二次方程2x 2+3x -1=0两根的 (1)平方和;(2)倒数和 方法小结: (1)运用韦达定理求某些代数式的值,关键是将所求的代数式恒等变形为用2121,x x x x ?+的代数式表示。 (2)格式、步骤要求规范: ①将方程的两根设为。 ②求出2121,x x x x ?+的值 。 ③将所求代数式用2121,x x x x ?+的代数式表示 。 ④ 将2121,x x x x ?+的值代人并求值。 三 综合运用 巩固新知 1、求一个一元二次方程,使它的两根分别是 解 : 2、设 2 1,x x 是方程03422 =-+x x 的两根,利用根与系数的关系,求下列各式的值。

初中数学竞赛辅导-韦达定理及其应用

学科:奥数年级:初三 不分版本期数:346 本周教学内容:韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则, 。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b 为实数,且,,求的值。 思路注意a,b 为方程的二实根;(隐含)。 解(1)当a=b时, ; (2 )当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得 ,ab=1. 说明此题易漏解a=b 的情况。根的对称多项式,,等都可以用 方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。

★★★例2 若,且,试求代数式的值。 思路 此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 解:因为,由根的定义知m ,n 为方程 的二不等实根,再由韦达定理, 得 , ∴ 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3 设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以 和 为根的一元二次方程仍为 。求所有这样的一元二次方 程。 解 (1)由韦达定理知 , 。 , 。 所以,所求方程为 。 (2)由已知条件可得 解之可得由②得,分别讨论 (p,q )=(0,0),(1,0),(1-,0),(0,1),(2,1),(2-,1)或(0, 1-)。 于是,得以下七个方程 , , , ,, 01x 2x 2=++,01x 2=-,其中01x 2=+无实数根,舍去。其余六个方程均为所求。

一元二次方程之韦达定理

一对一个性化辅导教师授课学案 学生姓名年级初三科目数学授课老师相老师总课时数第几次课 3 授课时间审核人 本次课课题一元二次方程根与系数的关系应用例析及训练 教学目标韦达定理 授课内容 教学内容 对于一元二次方程,当判别式△= 时,其求根公式为:;若两根为,当△≥0时,则两根的关系为:;,根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当,时,那么 则是的两根。一元二次方程的根与系数的关系,综合 性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。学习中,老师除了要求同学们应用韦达定理解答一些变式题目外,还 常常要求同学们熟记一元二次方程根的判别式 存在的三种情况,以及应用求根公式求出方程 的两个根,进而分解因式,即 。下面就对应用韦达定理可能出现的问题举例 做些分析,希望能给同学们带来小小的帮助。 一、根据判别式,讨论一元二次方程的根。 例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解?

分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。 说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而 筛选出,这也正是解答本题的基本技巧。 二、判别一元二次方程两根的符号。 例1:不解方程,判别方程两根的符号。 分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定或的正负情况。因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。 说明:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中<0,所以可判定方程的根为一正一负;倘若>0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。

韦达定理及其应用

韦达定理及其应用 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则 ,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,, 等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。

其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况 将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。关于方程的实根符号判定有下述定理: ⑴方程有二正根,ab<0,ac>0; ⑵方程有二负根,ab>0,ac>0; ⑶方程有异号二根,ac<0; ⑷方程两根均为“0”,b=c=0,; ★★★例5设一元二次方程的根分别满足下列条件,试求实数a的范围。 ⑴二根均大于1; ⑵一根大于1,另一根小于1。 思路设方程二根分别为,,则二根均大于1等价于和同时为正;一根大于1,另一根小于是等价于和异号。

韦达定理及其应用

韦达定理及其应用 【趣题引路】 韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣,常利用业余时间钻研数学。韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。人们为了纪念他在代数学上的功绩,称他为“代数学之父”。 历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个45次的方程向各国数学家挑战。国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)。消息传开,数学界为之震惊。同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。 韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达定理。你能利用韦达定理解决下面的问题吗? 已知:①a2+2a-1=0,②b4-2b2-1=0且1-ab2≠0,求( 221 ab b a ++ )2004的值。 解析由①知1+21 a - 2 1 a =0, 即(1 a )2-2· 1 a -1 =0,③ 由②知(b2)2-2b2-1=0,④ ∴1 a ,b2为一元二次方程x2-2x-1=0的两根. 由韦达定理,得1 a +b2=2, 1 a ·b2=-1. ∴ 221 ab b a ++ =[( 1 a +b2)+ 2 b a ]2004=(2-1)2004=1. 点评 本题的关键是构造一元二次方程x2-2x-1=0,利用韦达定理求解,?难点是将①变形成③,易错点是忽视条件1-ab2≠0,而把a,-b2看作方程x2+2x-1=0的两根来求解. 【知识延伸】 例1已知关于x的二次方程2x2+ax-2a+1=0的两个实根的平方和为71 4 ,求a的值.

初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理 一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。 韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值; 利用韦达定理并结合根的判别式,讨论根的符号特征; 利用韦达定理逆定理,构造一元二次方程辅助解题等。 韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。 韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。 【例题求解】 【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。 思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例 【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么 b a a b +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2 思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。 注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧: (1)恰当组合;(2)根据根的定义降次;(3)构造对称式。 【例3】 已知关于x 的方程:04)2(2 2 =---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。 (2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。 思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。 【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。

韦达定理应用资料资料全

韦达定理的应用 一、典型例题 例1:已知关于x的方程2x-(m+1)x+1-m=0的一个根为4,求另一个根。 解:设另一个根为x1,则相加,得x 例2:已知方程x-5x+8=0的两根为x1,x2,求作一个新的一元二次方程,使它的两根分别为和. 解:∵又 ∴代入得,∴新方程为 例3:判断是不是方程9x-10x-2=0的一个实数根? 解:∵二次实数方程实根共轭,∴若是,则另一根为 ∴,。 ∴以为根的一元二次方程即为.

例4:解方程组 解:设∴. ∴A=5. ∴x-y=5 又xy=-6. ∴解方程组∴可解得 例5:已知Rt ABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值 解:不妨设斜边为C=13,两条直角边为a,b,则2。又a,b为方程两根。∴ab=4m(m-2)∴S但a,b为实数且 ∴∴ ∴m=5或6 当m=6时,∴m=5 ∴S. 例6:M为何值时,方程8x-(m-1)x+m-7=0的两根 ①均为正数②均为负数③一个正数,一个负数④一根为零⑤互为倒数 解:①∵∴m>7

②∵ ∴不存在这样的情况。 ③ ∴m<7 ④ ∴m=7 ⑤ ∴m=15.但使 ∴不存在这种情况 【模拟试题】(答题时间:30分钟) 1. 设n为方程x+mx+n=0(n≠0)的一个根,则m+n等于 2. 已知方程x+px-q=0的一个根为-2+,可求得p= ,q= 3. 若方程x+mx+4=0的两根之差的平方为48,则m的值为() A.±8 B.8 C.-8 D.±4 4. 已知两个数的和比a少5,这两个数的积比a多3,则a为何值时,这两个数相等? 5. 已知方程(a+3)x+1=ax有负数根,求a的取值围。

初中数学代数复习之韦达定理

代数复习三-----------一元二次方程根与系数的关系 现行初中数学教材主要要求学生掌握一元二次方程的概念、解法及应用,而一元二次方程的根的判断式及根与系数的关系,在高中教材中的二次函数、不等式及解析几何等章节有着许多应用.本节将对一元二次方程根的判别式、根与系数的关系进行阐述. 一)、一元二次方程的根的判断式? 一元二次方程2 0 (0)a x b x c a ++=≠, 用配方法将其变形为: (1) 当240b ac ->时,右端是正数.因此,方程有两个不相等的实数根: (2) 当240b ac -=时,右端是零.(3) 当240b ac -<时,右端是负数.因此,方程没有实数根. 由于可以用24b ac -的取值情况来判定一元二次方程的根的情况.因此,把 24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac ?=- 【例1】不解方程,判断下列方程的实数根的个数: (1) 22310x x -+= (2) 24912y y += (3) 25(3)60x x +-= 解:(1) 2(3)42110?=--??=>,∴ 原方程有两个不相等的实数根. (2) 原方程可化为:241290y y -+= 2(12)4490?=- -??=,∴ 原方程有两个相等的实数根. (3) 原方程可化为:256150x x -+= 2(6)45152640?=--??=-<,∴ 原方程没有实数根. 说明:在求判断式时,务必先把方程变形为一元二次方程的一般形式.

【例2】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围: (1) 方程有两个不相等的实数根;(2) 方程有两个相等的实数根 (3)方程有实数根; (4) 方程无实数根. 解:2(2)43412k k ?=--??=- (1) 1 41203k k ->?<; (2) 141203k k -=?= ; (3)31 0124≤?≥-k k ; (4) 31 0124>?<-k k . 【例3】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值. 解:可以把所给方程看作为关于x 的方程,整理得: 22(2)10x y x y y --+-+= 由于x 是实数,所以上述方程有实数根,因此: 222[(2)]4(1)300y y y y y ?=----+=-≥?=, 代入原方程得:22101x x x ++=?=-.综上知:1,0x y =-= 二)、一元二次方程的根与系数的关系 一元二次方程20 (0)ax bx c a ++=≠的两个根为: x x == 所以:12b x x a += +=-, 22122 2()422(2)4b b b ac c x x a a a a a -+----?=?=== 韦达定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么: 说明:以通常把此定理称为”韦达定理”. 【例4】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值: (1) 2212x x +; (2) 12 11x x +; (3) 12(5)(5)x x --;(4) 12||x x -. 分析:本题若直接用求根公式求出方程的两根,再代入求值,将会出现复杂

韦达定理及其应用竞赛题

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则, 。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 解(1)当a=b时, ; (2)当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得 ,ab=1. 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用 方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 解:因为,由根的定义知m,n为方程的二不等实根,再由韦达定

理,得 , ∴ 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 解(1)由韦达定理知 ,。 , 。 所以,所求方程为。 (2)由已知条件可得 解之可得由②得,分别讨论 (p,q)=(0,0),(1,0),(1 -)。 -,1)或(0, 1 -,0),(0,1),(2,1),(2 于是,得以下七个方程,,,,, 1 x2= -,其中0 1 x2= +无实数根,舍去。其余六个方程均为所求。x2= +,0 x 1 + 2 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

韦达定理的应用

韦达定理 x 型韦达定理 24.【2018河北廊坊八中高三模拟】设圆2 2 4280x y x ++-=的圆心为A ,直线l 过点 ()2,0B 且与x 轴不重合, l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E . (1)证明EA EB +为定值,并写出点E 的轨迹方程; (2)设()0,2Q ,过点()1,2P --作直线l ',交点E 的轨迹于,M N 两点 (异于Q ),直线 ,QM QN 的斜率分别为12,k k ,证明 12k k +为定值. 【答案】(1) ()221084 x y y +=≠ (2)见解析. 解析 (1)如图,因为AD AC =, //EB AC ,故EBD ACD ADC ∠=∠=∠,所以 EB ED =,故EA EB EA ED AD +=+=,又圆A 的标准方程为()2 2 232x y ++=, 从而42AD =,所以42EA EB +=,有题设可知()()2,0,2,0A B -,

424EA EB AB +=>=由椭圆的定义可得点E 的轨迹方程为()22 1084 x y y +=≠. (2)设()()1122,,,M x y N x y , 当l '的斜率不存在时,此时:1l x '=-此时容易解出,M N 的坐标14141,,1,22???? --- ? ? ? ???,此121414 22422 k k +=+ +-=时. 综上可知124k k +=. 点睛 (1)动点的轨迹问题,先考虑动点是否有几何性质,然后利用曲线的定义写出曲线方程.(2)解析几何中的定点定值问题,通常把目标转化为1212,x x x x +(或1212,y y y y +)的整体,再用韦达定理转化即可. 25.【2018湖南株洲高三质检一】已知椭圆()22 22:10x y C a b a b +=>>与直线:0 l bx ay -=

(人教版初中数学)韦达定理

判别式与韦达定理 〖知识点〗 一元二次方程根的判别式、判别式与根的个数关系、判别式与根、韦达定理及其逆定理 〖大纲要求〗 1.掌握一元二次方程根的判别式,会判断常数系数一元二次方程根的情况.对含有字母系数的由一元二次方程,会根据字母的取值范围判断根的情况,也会根据根的情况确定字母的取值范围; 2.掌握韦达定理及其简单的应用; 3.会在实数范围内把二次三项式分解因式; 4.会应用一元二次方程的根的判别式和韦达定理分析解决一些简单的综合性问题. 内容分析 1.一元二次方程的根的判别式 一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根, 当△<0时,方程没有实数根. 2.一元二次方程的根与系数的关系 (1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么a b x x -=+21,a c x x =21 (2)如果方程x 2 +px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P, x 1x 2=q (3)以x 1,x 2为根的一元二次方程(二次项系数为1)是 x 2-(x 1+x 2)x+x 1x 2=0. 3.二次三项式的因式分解(公式法) 在分解二次三项式ax 2+bx+c 的因式时,如果可用公式求出方程ax 2+bx+c=0的两个根 是x 1,x 2,那么ax 2+bx+c=a(x-x 1)(x-x 2). 〖考查重点与常见题型〗 1.利用根的判别式判别一元二次方程根的情况,有关试题出现在选择题或填空题中,如: 关于x 的方程ax 2-2x +1=0中,如果a<0,那么梗的情况是( ) (A )有两个相等的实数根 (B )有两个不相等的实数根 (C )没有实数根 (D )不能确定 2.利用一元二次方程的根与系数的关系求有关两根的代数式的值,有关问题在中考试题中出现的频率非常高,多为选择题或填空题,如: 设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( ) (A )15 (B )12 (C )6 (D )3 3.在中考试题中常出现有关根的判别式、根与系数关系的综合解答题.在近三年试题中又出现了有关的开放探索型试题,考查了考生分析问题、解决问题的能力. 考查题型 1.关于x 的方程ax 2-2x +1=0中,如果a<0,那么根的情况是( ) (A )有两个相等的实数根 (B )有两个不相等的实数根 (C )没有实数根 (D )不能确定 2.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( )

判别式与韦达定理的应用

【学习课题】 九上 补充内容 综合应用根的判别式和韦达定理 【学习目标】 1、掌握一元二次方程根与系数的符号关系 2、利用韦达定理并结合判别式,求参数的值 【学习重点】一元二次方程根与系数的符号关系 【学习难点】利用韦达定理并结合判别式,求参数的值 【学习过程】 学习准备:(1)一元二次方程ax 2+bx+c=0 (a ≠0) 的判别式△=__________ △>0?__________△=0 ?_____________△<0 ?__________ (2)一元二次方程ax 2+bx+c=0 (a ≠0)的两根分别为x 1和x 2 x 1+x 2=____________, x 1x 2=_____________ 解读教材:由根的判别式及韦达定理可得如下结论: (1)若a 、c 异号 ? ax 2+bx+c=0 (a ≠0)必有两个不相等的实数根; (2)有一个根为1 ? a+b+c=0 ; (3) 有一个根为—1 ? a —b+c=0; (4)有一个根为0 ? c=0 (5)有两个正根 ??????+≥0210210>>△x x x x (6)有两个负根 ? ?? ???+≥0210210><△x x x x (7) 有一正根一负根 ????0021<△>x x (8)两根同号 ????≥002 1>△x x (9)两根互为相反数????=?=+0 0021b x x △> (10)两根互为倒数????=≥102 1x x △ (11)一根为正,一根为0 ??????=?=+00002 121c x x x x >△> (12)一根为负,一根为0 ??????=?=+00002 121c x x x x <△> (13)两根均为0?b=c=0 (14) 一根比a 大,一根比a 小????--0 ))(021<(△>a x a x 例1 已知方程(k+1)x 2—4kx+3k —1=0 的两个实数根均为正,求k 的值。 思路点拨:因为原方程两个实数根均为正,有上述结论(5)可得不等式组,解这个不 等式组即可求出k 的值。

韦达定理(常见经典题型)

韦达定理(常见经典题型)

一元二次方程知识网络结构图 1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的方程叫做一元二次方程。 通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。 2. 一元二次方程的解法: (1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平 方,而另一边是一个 时,可以根据 的意义,通过开平方法求出这个方程的解。 (2)配方法:用配方法解一元二次方程()02 ≠=++a o c bx ax 的一般步骤是: ①化二次项系数为 ,即方程两边同时除以二次项系数; ②移项,使方程左边为 项和 项,右边为 项; ③配方,即方程两边都加上 的平方; ④化原方程为2 ()x m n +=的形式, 如果n 是非负数,即0n ≥,就可以用 法求出方程的解。 如果n <0,则原方程 。 (3)公式法: 方程20(0)ax bx c a ++=≠,当24b ac -_______ 0时,x = ________ (4)因式分解法:用因式分解法解一元二次方程的一般步骤是: 一元二次 定义:等号两边都是整式,只 含有一个未知数(一 解法直接开平方法 因式分解法 配方法 公式 法 22 240404b ac b ac b ac ?-??-???-?? >方程有两个不相等的实数根=方程有两个相等的实数根<方程无实数根应用一元二次方程解决实际 问题?? ? 步骤 实际问题的答案

①将方程的右边化为 ; ②将方程的左边化成两个 的乘积; ③令每个因式都等于 ,得到两个 方程; ④解这两个方程,它们的解就是原方程的解。 3、韦达定理 一、 一元二次方程的基本概念及解法 1、已知关于x 的方程x 2+bx +a =0有一个根是-a(a≠0),则a -b 的 值为 A .-1 B .0 C .1 D .2 2、 程时。 、当方程为一元二次方程时;、当方程为一元一次方的取值范围。 满足下列条件时,当方程21m 05)3()3(1 =+-++-x m x m m 3、一元二次方程x (x -2)=2-x 的根是( ) A .-1 B .2 C .1和2 D .-1和2 二 一元二次方程根的判别式 4、关于x 的方程2210x kx k ++-=的根的情况描述正确的是( ). A .k 为任何实数.方程都没有实数根 B ,k 为任何实数.方程都有两个不相等的实数根 C .k 为任何实数.方程都有两个相等的实数根 D .根据k 的取值不同.方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种 5、已知关于x 的一元二次方程(a ﹣l )x 2﹣2x+l =0有两个不相等的实

韦达定理的应用与提高自招题集

韦达定理的应用与提高 自招题集 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

应用题 例题.1、某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元 2.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价 3.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几? 根的判别式 1、(2017?和平区校级模拟)一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是() A.有两个正根 B.有两个负根 C.有一正根一负根且正根绝对值大 D.有一正根一负根且负根绝对值大

【分析】根据根的判别式△=b 2﹣4ac 的符号,就可判断出一元二次方程的根的情况;由根与系数的关系可以判定两根的正负情况. 【解答】解:∵a >0,b <0,c <0, ∴△=b 2﹣4ac >0,<0,﹣>0, ∴一元二次方程ax 2+bx +c=0有两个不相等的实数根,且两根异号,正根的绝对值较大. 故选:C . 【点评】此题考查了根的判别式;一元二次方程根的情况与判别式△的关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根. 一元二次方程的根与系数的关系(韦达定理)知识点及应用解析 1、定义:若x 1,x 2 是一元二次方程ax 2+bx+c=0 (a ≠0)的两个根,则有x 1 + x 2 = - a b , x 1·x 2 = a c 。对于二次项系数为1的一元二次方程x2+px+q=0,则有x 1 + x 2 =-p ,x 1·x 2 =q 2、应用的前提条件:根的判别式△≥0 ?方程有实数根。 3、若一个方程的两个为x 1,x 2 ,那么这个一元二次方程为a[x 2+(x 1+x 2)x+ x 1·x 2]=0(a ≠0) 4、根与系数的关系求值常用的转化关系: ①x 12+x 22=(x 1+x 2)2 -2x 1x 2=a c a 2b -2 -??? ??=2 22a ac b - ② c b x x x x x x -=+=+21212111 ③(x 1+a)(x 2+a)= x 1x 2 +a(x 1+x 2) +a 2 = a c -b +a 2

相关文档
最新文档