九年级数学韦达定理应用复习
九年级数学韦达定理应用复习

中考数学复习韦达定理应用复习[人教版](教学课件201909)
](https://img.taocdn.com/s3/m/7f8bd468bb68a98271fefadf.png)
如果方程ax2+bx+c=0(a≠0)
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
b a
,
如果方程x2+px+q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x2=q .
以x1、x2为根的一元二次方程 (二次项系数为1)是
x2-( x1+x2 )x+ x1·x2 =0.
2=0的两根的平方和是11,则
k=
.
7.若方程x2+2x+m=0的两根之差 为√6,则m= .
8.若2x2-ax+a-1可分解成两个相等
的一次因式,则a的取值
是
.
9.当m为何值时,方程 3x2+(m+1)x+m-4=0有两个负 数根.
10.*已知实数a、b满足2a2-a = 2b2-b=2,
求
a b
1.设x1、x2是方程2x
x2
x1
x1 x2
(2)( x1 2)( x2 2)
(3) x1 x2
(4).x1 x2
2.若方程x2-3x-2=0的两根为x1、
x2;则
①以 1 , 1 为两根的方程
为
x。1 x2
②以- x1、-x2 为两根的方程
为
。
③以x12、x2 2为两根的方程
为
。
3.分解因式; ①-3m3+4m2+5m ②3(x+y)2-4x(x+y)-x2
4.如果2-√3是方程2x2-8x+c=0的一 个根,则方程的另一个根为 .
九年级数学韦达定理应用复习

2.若方程x2-3x-2=0的两根为x1、
x2;则
①以 1 , 1 为两根的方程
为
x。1 x2
②以- x1、-x2 为两根的方程
为
。
③以x12、x2 2为两根的方程
为
。
3.分解因式; ①-3m3+4m2+5m ②3(x+y)2-4x(x+y)-x2
4.如果2-√3是方程2x2-8x+c=0的一 个根,则方程的另一;mx-
m-2=0;当m
时,有两
个互为相反数的实根;当m
时,有一个根为零.
6.若关于x的方程x2+(2k+1)x+k2-
2=0的两根的平方和是11,则
k=
.
7.若方程x2+2x+m=0的两根之差 为√6,则m= .
8.若2x2-ax+a-1可分解成两个相等
的一次因式,则a的取值
韦达定理及 其应用(一)
如果方程ax2+bx+c=0(a≠0)
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
b a
,
如果方程x2+px+q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x2=q .
以x1、x2为根的一元二次方程 (二次项系数为1)是
x2-( x1+x2 )x+ x1·x2 =0.
; 红色培训/ ;
整一宿,最后白重炙却再也没有出现,这让她对白重炙の信任度无限飙射.爱丽丝四人望着白重炙目光中の暧昧之色,潘多拉看到了.她确定白重炙是一些幸运取向正常の人,那夜都没有对自己露出狰狞の獠牙,这说明,他真の是
九年级数学韦达定理应用复习

初中数学 一元二次方程的韦达定理有什么应用

初中数学一元二次方程的韦达定理有什么应用一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算一元二次方程根的和与积的方法。
韦达定理在实际生活中有着广泛的应用,下面将详细介绍一些常见的应用场景。
1. 判定方程根的性质:韦达定理可以用来判定方程的根的性质。
通过计算根的和与积,我们可以得到关于根的一些信息。
例如,当根的和与根的积都为正数时,说明方程的两个根都是正数;当根的和为负数而根的积为正数时,说明方程的两个根一个为正数一个为负数。
这种信息对于解决实际问题非常有用,可以帮助我们了解方程的解的情况。
2. 求解方程的根:韦达定理可以用于求解一元二次方程的根。
通过将方程的系数带入韦达定理的公式,我们可以计算出方程的根的和与积。
进一步求解根的具体数值,可以使用一些代数方法,如配方法、因式分解或求根公式。
韦达定理为我们提供了一个快速计算根的和与积的方法,从而更方便地解决一元二次方程。
3. 拟合数据:韦达定理可以用于数据的拟合。
通过找到满足给定数据点的一元二次方程,我们可以使用韦达定理计算方程的根的和与积。
根的和与积可以提供关于数据的整体趋势和特征的信息。
这种方法在统计学和数据分析中非常有用,可以帮助我们找到最佳拟合曲线并预测未知数据的值。
4. 解决实际问题:韦达定理在解决实际问题中起到重要的作用。
例如,在物理学中,我们可以使用韦达定理来计算自由落体运动中物体的最大高度和落地时间;在经济学中,韦达定理可以用来分析成本和收益之间的关系,帮助我们做出合理的决策;在工程学中,韦达定理可以用于计算电路中的电流和电压,从而设计合适的电路。
总结:一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算方程根的和与积的方法。
韦达定理在判定方程根的性质、求解方程的根、拟合数据以及解决实际问题等方面有着广泛的应用。
了解韦达定理及其应用可以帮助我们更好地理解和解决一元二次方程相关的数学问题,同时也可以在实际生活中应用这些知识来解决各种问题。
2024年九年级中考数学压轴题—韦达定理及参考答案

韦达定理1.基础公式:(1)x 1+x 2=-b a(2)x 1∙x 2=c a 2.拓展公式:(1)x 21+x 22=(x 1+x 2)2-2x 1x 2(2)1x 1+1x 2=x 1+x 2x 1x 2(3)x 2x 1+x 1x 2=x 21+x 22x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2(4)x 31+x 32=(x 1+x 2)(x 21-x 1x 2+x 22)=(x 1+x 2)(x 1+x 2)2-3x 1x 2(5)(x 1-x 2)2=(x 1+x 2)2-4x 1x 2(6)x 1-x 2 =(x 1+x 2)2-4x 1x 2(7)(x 1+k )(x 2+k )=x 1x 2+k (x 1+x 2)+k 2(8)1x 21+1x 22=x 21+x 22(x 1x 2)2=(x 1+x 2)2-2x 1x 2(x 1x 2)2题型训练1已知关于x 的一元二次方程kx 2+x -3=0有两个不相等的实数根.(1)求实数k 的取值范围;(2)设方程两个实数根分别为x 1,x 2,且满足x 1+x 2 2+x 1∙x 2=4,求k 的值.【答案】解:(1)根据题意得k ≠0且Δ=12-4k ×-3 >0,解得k >-112且k ≠0;(2)根据题意得x 1+x 2=-1k ,x 1∙x 2=-3k,∵x 1+x 2 2+x 1x 2=4,∴-1k 2-3k=4,整理得4k 2+3k -1=0,解得k 1=14,k 2=-1,∵k >-112且k ≠0,∴k =14.2已知关于x的一元二次方程x2-2m-1x+m2=0有实数根.(1)求m的取值范围;(2)设此方程的两个根分别为x1,x2,若x21+x22=8-3x1x2,求m的值.【答案】解:(1)∵关于x的一元二次方程x2-2m-1x+m2=0有实数根.∴Δ=-2m-12-4m2=4-8m≥0,解得:m≤1 2.(2)∵关于x的一元二次方程x2-2m-1x+m2=0的两个根分别为x1,x2,∴x1+x2=2m-2,x1∙x2=m2∵x21+x22=8-3x1x2∴x1+x22-2x1x2=8-3x1x2,即5m2-8m-4=0,解得:m1=-25,m2=2(舍去),∴实数m的值为-25.3已知a,b是关于x的一元二次方程x2-2m+1x+m2+5=0的两实数根.(1)若a-1b-1=39,求m的值;(2)已知等腰ΔAOB的一边长为7,若a,b恰好是ΔAOB另外两边的边长,求这个三角形的周长.【答案】解:(1)∵a,b是关于x的一元二次方程x2-2m+1x+m2+5=0的两实数根,∴a+b=2m+1,ab=m2+5,∴a-1b-1=ab-a+b+1=m2+5-2m+1+1=39,解得m=-5或m=7,当m=-5时,原方程无解,故舍去,∴m=7.(2)①当7为底边时,此时方程x2-2m+1x+m2+5=0有两个相等的实数根,∴Δ=4m+12-4m2+5=0,解得m=2,∴方程变为x2-6x+9=0,解得a=b=3,∵3+3<7,∴不能构成三角形.②当7为腰时,设a=7,代入方程得:49-14m+1+m2+5=0,解得:m=10或4,当m=10时,方程变为x2-22x+105=0,解得x=7或15,∴b=15,∵7+7<15,∴不能组成三角形;当m=4时,方程变为x2-10x+21=0,解得x=3或7,∴b=3,∴此时三角形的周长为7+7+3=17.综上所述,三角形的周长为17.4阅读材料:如果一元二次方程ax2+bx+c=0a≠0的两根分别是x1,x2,那么x1+x2=-ba,x1∙x2=ca.借助该材料完成下列各题:(1)若x1,x2是方程x2-4x+5=0的两个实数根,则x1+x2=,x1∙x2=.(2)若x1,x2是方程x2+6x-3=0的两个实数根,x21+x22=,1x1+1x2=.(3)若x1,x2是关于x的方程x2-m-3x+m+8=0的两个实数根,且x21+x22=13,求m的值.【答案】解:(1)∵x1,x2是方程x2-4x+5=0的两个实数根,∴x1+x2=--41=4,x1∙x2=51=5.(2)∵x1,x2是方程x2+6x-3=0的两个实数根,∴x1+x2=-6,x1∙x2=-3,∴x21+x22=x1+x22-2x1x2=-62-2×-3=42,1 x1+1x2=x1+x2x1∙x2=-6-3=2.(3)∵关于x的方程x2-m-3x+m+8=0有两个实数根,∴Δ=m-32-4m+8≥0,即m≥5+43,或m≤5-43,∵x1,x2是关于x的方程x2-m-3x+m+8=0的两个实数根,∴x1+x2=m-3,x1∙x2=m+8,∴x21+x22=x1+x22-2x1x2=13,即m-32-2m+8=13,解得,m=-2或m=10.即m的值是-2或10.5如果关于x的一元二次方程ax2+bx+c=0a≠0有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2-6x+8=0的两个根是2和4,则方程x2-6x+8=0就是“倍根方程”.(1)若一元二次方程x2-3x+c=0是“倍根方程”,则c=;(2)若x-2mx-n=0m≠0是“倍根方程”,求代数式2mnm2+n2的值;(3)若方程ax2+bx+c=0a≠0是“倍根方程”,且k+1与3-k是方程ax2+bx+c=5的两根,求一元二次方程ax2+bx+c=0a≠0的根.【答案】解:(1)设一元二次方程x2-3x+c=0的根是a,2a,由根与系数的关系,得a+2a=3,a×2a=c,解得a=1,则2a=2.∴c=2.(2)由方程x-2mx-n=0m≠0,解得x1=2或x2=n m.∵方程x-2mx-n=0m≠0是“倍根方程”,∴n m =1或nm=4,当nm=1时,2mn m2+n2=2mn+nm=21+1=1;当nm=4时,2mn m2+n2=2mn+nm=214+4=817.(3)由方程ax2+bx+c=5,变形,得ax2+bx+c-5=0,由根与系数的关系,得k+1+3-k=-ba,即-ba=4.设x1,x2是方程ax2+bx+c=0的两根,∵方程ax2+bx+c=0a≠0是“倍根方程”,∴x1+x2=4,假设x1=2x2,则3x2=4,解得x2=43,则x1=83,故一元二次方程ax2+bx+c=0a≠0的根是43和83.6已知关于x的方程x2-2k-3x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x1 +x2 =2x1x2-3,求实数k的值.【答案】解:(1)∵原方程有两个不相等的实数根,∴Δ=-2k-32-4k2+1=4k2-12k+9-4k2-4=-12k+5>0,∴k<512.(2)∵k<512,∴x1+x2=2k-3<0.又∵x1x2=k2+1>0,∴x1<0,x2<0,∴x1 +x2 =-x1-x2=-x1+x2=-2k+3.由x1+x2 =2x1x2-3,得-2k+3=2k2+2-3,即k2+k-2=0,∴k1=-2,k2=1.又∵k<5 12,∴k=-2.7已知x1,x2是一元二次方程2x2-2x+m+1=0=0的两个实数根.(1)求实数m的取值范围;(2)如果x1,x2满足不等式4+4x1x2>x21+x22,且m为整数,求m的值.【答案】解:(1)根据题意得:Δ=-22-4×2×m+1≥0解得:m≤-1 2∴实数m的取值范围是m≤-12(2)根据题意得:x1+x2=1,x1∙x2=m+12,∵4+4x1x2>x21+x22∴4+4x1x2>x1+x22-2x1x2即4+6x1x2>x1+x22∴4+6×m+12>1∴m>-2∴-2<m≤-12∴整数m的值为-18已知x1,x2是关于x的方程x2+2x+2k-4=0两个实数根,并且x1≠x2,(1)求实数k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.(3)若x1-x2=6,求x1-x22+3x1x2的值.【答案】解:(1)Δ=b2-4ac=22-4×1×2k-4=20-8k.∵方程有两个不相等的实数根,∴20-8k>0,∴k<52.(2)∵k为正整数,∴0<k<52,即k=1或2,根据配方法可得:x+12=4-2k+1=5-2k,解得x=-1±5-2k;∵方程的根为整数,∴5-2k为完全平方数,当k=1时,5-2k=3,舍去;当k=2时,5-2k=1;∴k=2.(3)已知x1,x2为方程x2+2x+2k-4=0的两个不相等实数根,则x1+x2=-2,x1∙x2=2k-4,则x1-x2=x1-x22=x1+x22-4x1x2=20-8k=6,解得k=-2,即x1x2=2×-2-4=-8,所以x1-x22+3x1x2=62+3×-8=12.9已知关于x的一元二次方程4kx2-4kx+k+1=0.(1)若方程有实数根,求k的取值范围;(2)若x1,x2是原方程的根,是否存在实数k,使2x1-x2x1-2x2=-32成立?若存在,请求出k的值;若不存在,请说明理由.【答案】解:(1)∵方程有实数根,∴Δ=-4k2-4×4k×k+1=-16k≥0,∴k≤0,∵方程是一元二次方程,∴4k≠0,即k≠0,∴k的取值范围为k<0;(2)不存在,理由如下:∵x1,x2是一元二次方程4kx2-4kx+k+1=0的两个实数根,∴Δ=-4k2-4×4k×k+1=-16k≥0,且4k≠0,解得k<0.∵x1,x2是一元二次方程4kx2-4kx+k+1=0的两个实数根,∴x1+x2=1,x1x2=k+14k,∴2x1-x2x1-2x2=2x21-4x1x2-x1x2+2x22=2x21+x22-9x1x2=2×12-9∙k+14k =-k-94k,若-k-94k=-32成立,则k=9 5,∵k<0,则k=95不成立,∴不存在这样k的值.10关于x的方程k-1x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根;(2)设x 1,x 2是方程k -1 x 2+2kx +2=0的两个根.求①x 1+x 2和x 1∙x 2的值;②若S =x 2x 1+x1x 2+x 1+x 2,那么S 的值能为2吗?若能,求出此时k 的值;若不能,请说明理由.【答案】(1)证明:当k =1时,原方程可化为2x +2=0,解得:x =-1,此时该方程有实数根;当k ≠1时,方程是一元二次方程,∵Δ=2k 2-4k -1 ×2=4k 2-8k +8=4k -1 2+4>0,∴方程有两个不相等的实数根.综上所述,无论k 为何值,方程总有实数根.(2)解:①由根与系数关系可知,x 1+x 2=-2k k -1,x 1x 2=2k -1;②若S =2,则x 2x 1+x1x 2+x 1+x 2=2,即x 1+x 22-2x 1x 2x 1x 2+x 1+x 2=2,将x 1+x 2,x 1x 2代入整理得:k 2-3k +2=0,解得:k =1(舍)或k =2,∴S 的值能为2,此时k =2.韦达定理1.基础公式:(1)x 1+x 2=-b a(2)x 1∙x 2=c a 2.拓展公式:(1)x 21+x 22=(x 1+x 2)2-2x 1x 2(2)1x 1+1x 2=x 1+x 2x 1x 2(3)x 2x 1+x 1x 2=x 21+x 22x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2(4)x 31+x 32=(x 1+x 2)(x 21-x 1x 2+x 22)=(x 1+x 2)(x 1+x 2)2-3x 1x 2(5)(x 1-x 2)2=(x 1+x 2)2-4x 1x 2(6)x 1-x 2 =(x 1+x 2)2-4x 1x 2(7)(x 1+k )(x 2+k )=x 1x 2+k (x 1+x 2)+k 2(8)1x 21+1x 22=x 21+x 22(x 1x 2)2=(x 1+x 2)2-2x 1x 2(x 1x 2)2题型训练1已知关于x 的一元二次方程kx 2+x -3=0有两个不相等的实数根.(1)求实数k 的取值范围;(2)设方程两个实数根分别为x 1,x 2,且满足x 1+x 2 2+x 1∙x 2=4,求k 的值.2已知关于x的一元二次方程x2-2m-1x+m2=0有实数根.(1)求m的取值范围;(2)设此方程的两个根分别为x1,x2,若x21+x22=8-3x1x2,求m的值.3已知a,b是关于x的一元二次方程x2-2m+1x+m2+5=0的两实数根.(1)若a-1=39,求m的值;b-1(2)已知等腰ΔAOB的一边长为7,若a,b恰好是ΔAOB另外两边的边长,求这个三角形的周长.4阅读材料:如果一元二次方程ax2+bx+c=0a≠0的两根分别是x1,x2,那么x1+x2=-ba,x1∙x2=ca.借助该材料完成下列各题:(1)若x1,x2是方程x2-4x+5=0的两个实数根,则x1+x2=,x1∙x2=.(2)若x1,x2是方程x2+6x-3=0的两个实数根,x21+x22=,1x1+1x2=.(3)若x1,x2是关于x的方程x2-m-3x+m+8=0的两个实数根,且x21+x22=13,求m的值.5如果关于x的一元二次方程ax2+bx+c=0a≠0有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2-6x+8=0的两个根是2和4,则方程x2-6x+8=0就是“倍根方程”.(1)若一元二次方程x2-3x+c=0是“倍根方程”,则c=;(2)若x-2mx-n=0m≠0是“倍根方程”,求代数式2mnm2+n2的值;(3)若方程ax2+bx+c=0a≠0是“倍根方程”,且k+1与3-k是方程ax2+bx+c=5的两根,求一元二次方程ax2+bx+c=0a≠0的根.6已知关于x的方程x2-2k-3x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x1 +x2 =2x1x2-3,求实数k 的值.7已知x1,x2是一元二次方程2x2-2x+m+1=0=0的两个实数根.(1)求实数m的取值范围;(2)如果x1,x2满足不等式4+4x1x2>x21+x22,且m为整数,求m的值.48已知x1,x2是关于x的方程x2+2x+2k-4=0两个实数根,并且x1≠x2,(1)求实数k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.(3)若x1-x2=6,求x1-x22+3x1x2的值.9已知关于x的一元二次方程4kx2-4kx+k+1=0.(1)若方程有实数根,求k的取值范围;(2)若x1,x2是原方程的根,是否存在实数k,使2x1-x2x1-2x2=-32成立?若存在,请求出k的值;若不存在,请说明理由.510关于x的方程k-1x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根;(2)设x1,x2是方程k-1x2+2kx+2=0的两个根.求①x1+x2和x1∙x2的值;②若S=x2x1+x1x2+x1+x2,那么S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.6。
九年级数学韦达定理应用复习

澳门即时盘囗比分旧版
[单选]参加教师资格证考试有作弊行为的,其考试成绩作废,()年内不得再次参加教师资格考试。A.2B.3C.4D.5 [单选]对于手工切割编织袋的长度确定,要从()点开始测量,在规定的长度处划线标记。A.切割B.调整C.校验D.试验 [单选]具有设计任务书和总体设计,经济上实行独立核算,行政上具有独立组织形式的工程被称为()。A.单位工程B.建设项目C.分部工程D.分项工程 [单选]建筑内部因采用大量可燃材料装修、使用可燃家具,将()。A、延长轰燃出现的时间B、增加火灾荷载C、降低耐火等级D、影响防火间距 [单选]生油气层主要有暗色的()和富含有机质的碳酸盐岩。A.生物灰岩B.沉积岩类C.礁块灰岩D.碎屑岩 [单选]对个人购买自用普通住房发放的按揭贷款最长不得超过()年。A.30B.35C.40D.45 [问答题,简答题]地方政府的类型 [问答题,简答题]在什么情况下需要同时启动两台膨胀机,操作时应该注意什么? [填空题]国内外普遍使用的罐藏容器为()、()、()。 [单选,A2型题,A1/A2型题]理中丸证若见渴欲得水者,当作如下的化裁:()A.加重白术用量至四两半B.去术,加桂四两C.加茯苓二两D.加天花粉三两E.加人参至四两半 [问答题,简答题]口罩的应用指征 [单选]Inmarsat通信系统主要是以()为通信对象。A.航空电台B.海岸电台C.MESD.LES [单选]某医疗设备公司保存有大量设备档案,秘书应根据设备档案的特点,选择()进行档案分类结构的是()。A、壳体B、支座C、开孔接管D、封头 [单选]公民、法人或其他组织对具体行政行为在法定期限内不提起诉讼又不履行的,行政机关可以申请人民法院强制执行其具体行政行为,由下列()法院受理执行。A.申请人所在地的基层人民法院B.被执行人所在地的基层人民法院C.一审人民法院D.终审人民法院 [单选]沿绝缘子串进入法只适用于()kV及以上电压等级的输电线路。A、110B、220C、330D、500 [填空题]客运经营者在旅客运输途中擅自变更运输车辆或者将旅客移交他人运输的,由()责令改正,处1000元以上3000元以下的罚款;情节严重的,由原许可机关吊销《道路运输经营许可证》。 [单选]公路隧道围岩分为()级。A.3B.4C.5D.6 [单选]招标采购合同规划的主要目的是()。A.确定招标合同单元,完成招标方案的编制,从而指导整个招标采购实践活动B.将项目分成若干个最小合同单位进行招标,从而最大程度节约时间C.确定各个招标合同单元,完成招标方案的编制,从而计算出整个项目的资金预算D.约定合同有效期,以 [单选]()是指由业主向物业服务企业支付固定物业服务费用,盈余或者亏损均由物业服务企业享有或者承担的物业服务计费方式。A.包干制和酬金制B.物业管理费用包干制C.物业服务费用包干制D.物业管理费用酬金制 [单选,A2型题,A1/A2型题]患者右面神经周围性瘫,双眼不能向右侧凝视,左侧偏瘫,左侧Babinski征阳性,病变在()。A.左侧内囊B.右侧内囊C.左侧脑桥D.右侧脑桥E.内囊病变延及桥脑 [单选]()是一种由此及彼,由已知到未知或未来的研究方法。通过它可以对事物获得新的认识。A、比较B、分析与综合法C、推理D、数据整合方法 [单选]支气管扩张时,下列哪两个并发症最为多见()A.脓胸及肺脓肿B.肺脓肿及肺纤维化C.肺气肿及肺脓肿D.肺源性心脏病及肺纤维化E.脑膜炎及肾炎 [多选]某项目,建设单位甲公司在银行办理了在建工程抵押,银行同时要求建设单位提供保证人。保证方式没有约定。工程竣工后,甲建设单位无力偿还贷款5000万元,则银行有权()。A.直接与甲建设单位协议折价B.向法院起诉拍卖该工程项目后优先受偿C.直接变卖该工程项目D.直接转移 [单选]下列情形中,适合采取卖出套期保值策略的是()。A.加工制造企业为了防止日后购进原材料时价格上涨的情况B.供货方已签订供货合同,但尚未购进货源,担心日后购进货源时价格上涨C.需求方仓库已满,不能买入现货,担心日后购进现货时价格上涨D.储运商手头有库存现货尚未出 [单选]体的压力、密度<ρ>、温度<T>三者之间的变化关系是().A、ρ=PRTB、T=PRρC、P=Rρ/TD、P=RρT [单选,A1型题]肝颈静脉回流征阳性主要见于()。A.左心衰B.肝硬化C.心包积液D.急性心肌梗死E.肾功能不全 [单选]下列哪项不是CT模拟定位技术的优势()A.有更高的精度和更广的应用范围B.经济、可靠,时间短C.其图像有较高的组织对比度D.可在三维空间上清楚显示靶区与周围器官之间的关系E.可以更精确勾画靶区及正常组织和器官 [多选]通航安全水上水下施工作业涉及的范围包括()。A.设置、拆除水上水下设施B.架设桥梁、索道,构筑水下隧道C.救助遇难船泊,或紧急清除水面污染物、水下污染源D.渔船捕捞作业E.清除水面垃圾 [填空题]PN结的单向导电性就是:加正向电压时,PN结();加反向电压时,PN结()。 [单选,A2型题,A1/A2型题]急性粒细胞白血病的骨髓象不具有下列哪些改变()A.原始粒细胞胞浆中有Auer小体B.有白血病裂孔现象C.过氧化酶染色呈阳性反应D.常有Ph染色体E.非特异性酯酶染色阳性不可被氟化钠所抑制 [单选]当边际产量大于平均产量时()A.平均产量增加;B.平均产量减少;C.平均产量不变;D.平均产量达到最低点。 [单选]()是实现旅游发展目的的环境支撑。A.充分利用旅游地资源B.满足旅游者的利益C.满足旅游地居民的利益D.满足当地政府和开发商的利益 [单选]人体内的循环系统包括().A.血液循环系统和体循环系统B.血液循环系统和淋巴系统C.淋巴系统和体循环系统 [单选]下列关于类风湿关节炎药物治疗正确的是()。A.早期应用快作用抗风湿病药B.大部分患者用一种慢作用药就可以阻止关节破坏C.可以常规应用糖皮质激素D.非甾体抗炎药是改善关节症状的一线药物E.不能使用中枢性镇痛药 [单选]车站装车前,要认真核对待装货物品名、件数,检查标志、标签和()。A、货物质量B、货物体积C、货物形状D、货物状态 [单选]1:500比例尺地形图上0.2mm,在实地为()。A、10米B、10分米C、10厘米 [填空题]表面处理的对象可分为两大类:()和()。 [单选,B1型题]常用来评估个体维生素D营养状况的是()A.麦角骨化醇B.胆骨化醇C.维生素DD.25-(OH)DE.1,25-(OH)D [问答题,简答题]离心机开车准备如何操作?
韦达定理初三常考题型

韦达定理初三常考题型1. 引言韦达定理是初中数学中的一个重要定理,常常出现在初三的考试中。
它是一种用于解决三角形中的边长和角度关系的工具,通过利用正弦定理和余弦定理来推导出未知量之间的关系。
在本文中,我们将介绍韦达定理的基本概念、推导过程以及常见的应用题型。
2. 韦达定理的定义与推导2.1 定义韦达定理,也称作三角形法则,是指在任意三角形ABC中,设边长a、b、c分别对应角A、B、C,则有以下关系成立:a² = b² + c² - 2bc * cosA b² = a² + c² - 2ac * cosB c² = a² + b² - 2ab * cosC2.2 推导过程我们可以通过正弦定理和余弦定理来推导出韦达定理。
#### 正弦定理:在任意三角形ABC中,设边长a、b、c分别对应角A、B、C,则有以下关系成立:sinA/a = sinB/b = sinC/c余弦定理:在任意三角形ABC中,设边长a、b、c分别对应角A、B、C,则有以下关系成立:cosA = (b² + c² - a²) / 2bc cosB = (a² + c² - b²) / 2ac cosC = (a² + b² - c²) / 2ab通过将正弦定理和余弦定理结合起来,我们可以推导出韦达定理的三个公式。
3. 韦达定理的应用题型3.1 已知两边和夹角,求第三边这是韦达定理最常见的应用题型之一。
当我们已知一个三角形的两边长度和它们之间的夹角时,可以利用韦达定理来求解第三边的长度。
例如,已知一个三角形ABC,其中AB = 5cm,AC = 8cm,∠BAC = 60°,求BC的长度。
根据韦达定理公式b² = a² + c² - 2ac * cosB,代入已知条件计算得到:BC² = 5² + 8² - 2 * 5 * 8 * cos60° BC = √(25 + 64 -80cos60°) BC ≈ √(89 -40) BC ≈ √49 BC ≈ 7cm3.2 已知三边,求夹角另一个常见的应用题型是已知一个三角形的三边长度,求解它们之间的夹角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[判断题]吸入麻醉药跨肺泡扩散到肺毛细血管内血液的过程,肺泡通气量增加,摄取量增A.正确B.错误 [填空题]中华人民共和国第一套航空邮票于1951年5月1日发行的()邮票。 [单选,B1型题]急性心包炎、心包积液常表现为()A.吸气性呼吸困难B.呼气性呼吸困难C.混合性呼吸困难D.呼吸节律不规则E.端坐呼吸 [单选]8度抗震设防时,框架—剪力墙结构的最大高宽比限值是()。A.2;B.3;C.4;D.5。 [判断题]为了预防、减少和避免学生伤害事故的发生,除应对学生加强安全意识和提高自我保护能力以及培养健康的心理素质外,还应对其强化纪律观念,尽量减少因自违纪行为而导致的伤害事故的发生。A.正确B.错误 [多选]过滤式自救器的注意事项有()。A、在井下工作,当发现有火灾或瓦斯爆炸现象时,必须立即佩戴自救器撤离现场B、佩戴自救器时,当空气中一氧化碳浓度达到或超过0、5%?吸气时会有些干、热的感觉,这是自救器有效工作的正常现象,必须佩戴到安全地带才能取下,切不可因干、热感 [单选,A1型题]可水解鞣质二聚体、三聚体的划分依据是()A.结构中含糖的数目B.结构中含没食子酸基的数目C.水解后产生糖的种类D.水解后产生酚酸的种类E.结构中含酚酸的种类 [单选,A型题]破伤风痉挛毒素()A.抑制多种细胞的蛋白质合成B.阻断上下神经元之间的正常抑制性神经冲动传递C.抑制胆碱能运动神经释放乙酰胆碱D.激活肠粘膜腺苷环化酶,增高细胞内cAMP水平E.作用于呕吐中枢 [单选,A1型题]既能消食和胃又能发散风寒的药物是()A.紫苏B.藿香C.山楂D.陈皮E.神曲 [问答题,简答题]试述过量空气系数、空燃比和分子变更系数的定义。 [单选]相对数表示的是()A.数值资料平均水平的指标B.数值资料变异程度的指标C.事物相对关系的指标D.事物相关程度的指标E.动态分析指标 [问答题,案例分析题]某建设项目计算期10年,其中建设期2年。项目建设投资(不含建设期贷款利息)1200万元,第1年投入500万元,全部为投资方自有资金;第2年投入700万元,其中500万元为银行贷款,贷款年利率6%。贷款偿还方式:第3年不还本付息,以第3年末的本息和为基准,从第4年开 [单选,A2型题,A1/A2型题]一患者呼吸表现为有规律的呼吸几次后,突然停止一段时间,又开始呼吸,周而复始,这种呼吸节律称为()A.Cheyne-Stokes呼吸B.叹息样呼吸C.Kussmaul呼吸D.Blots呼吸E.抑制性呼吸 [单选]某大型体育馆项目申请领取施工许可证前,建设单位应当事先取得的批准文件不包括()。A.建设用地批准书B.建设工程规划许可证C.安全生产许可证D.消防设计审核批准文件 [填空题]大量的历史数据采集()保存。 [单选]关于肾上腺疾病的叙述,以下不正确的是()A.库欣综合征是由皮质醇分泌过多引起B.原发性醛固酮增多症多为原发性肾上腺皮质增生引起C.儿茶酚胺症是由嗜铬细胞瘤或肾上腺髓质增生引起D.皮质醇症、原发性醛固酮增多症和儿茶酚胺症均有高血压表现E.肾上腺手术后病人均应观察有无 [问答题,案例分析题]B企业拟在A市郊区原A市卷烟厂厂址处(现该厂已经关闭)新建屠宰量为120万头猪/年的项目(仅屠宰,无肉类加工),该厂址紧临长江干流,A市现有正在营运的日处理规模为3万t的城市污水处理厂,距离B企业1.5km。污水处理厂尾水最终排入长江干流(长江干流在A市段 [填空题]信息构成广告的基本内容,一般包括()、()、()、()、()五类。 [单选,A1型题]新生儿是指出生至生后()A.7天B.14天C.28天D.30天E.60天 [单选]血清壁细胞抗体阳性多见于下列哪种疾病()A.慢性浅表性胃炎B.急性糜烂性胃炎C.慢性萎缩性胃体胃炎D.胃溃疡E.慢性萎缩性胃窦胃炎 [单选]朊毒体病的临床特点不包括()A.潜伏期长B.病情进展迅速C.中枢神经系统的异常D.可以治愈E.很快导致死亡 [单选]各型鱼鳞病的共同特点是()A.皮损季节变化B.与毛孔一致的角化性丘疹C.掌跖角化过度D.表皮有角化过度的鳞屑 [单选]参考文献的顺序依:()A、在文中出现的次序排列B、按作者已经收集到的文献序号排序C、以文献的重要程度排列 [判断题]18--8型不锈钢的线膨胀系数比较大,所以焊后的残余变形较大。A.正确B.错误 [判断题]培训课程决定培训项目的开发方向。A.正确B.错误 [单选]下列有关食管心房调搏的描述,不正确的是().A.对常见室上性心动过速发生机制的判断可提供帮助B.诱发和终止房室结折返性心动过速C.有助于鉴别室上性心动过速伴室内差异性传导与室性心动过速D.有助于对自主神经功能的检测E.有助于确定病态窦房结综合征的诊断 [单选]下列哪项不是超短波疗法的绝对禁忌证()A.月经期下腹部B.使用足够剂量抗肿瘤药的癌症患者C.带有人工心脏起搏器D.机体极度衰弱者E.高热患者 [单选]碳四塔回流泵全坏,相关需要调整操作的塔是()。A、脱丙烷塔B、脱乙烷塔C、丙烯塔D、碳四塔 [单选]总装配图不是制造零件的直接依据,不必注出每个零件的(),只标注与部件的装配、安装、运输、使用等有关尺寸。A、局部尺寸B、全部尺寸C、技术要求D、公差要求 [填空题]当埋置深度小于()或小于(),且可用普通开挖基坑排水方法建造的基础,一般称为浅基础。 [单选,A2型题,A1/A2型题]对于一组正态分布的资料,样本含量为n,样本均数为X,标准差为S,该资料的医学参考值范围为()。A.X±1.96SB.X±t0.05,vS/nC.X±1.96S/nD.P2.5~P97.5E.lg-1(X±1.96S) [单选]低温对肌松药的影响,不正确的是()A.体温降至30℃的过程中,去极化肌松药的作用增强,时效延长B.体温降至30℃对非去极化肌松药作用强度很少受影响C.26℃以下低温,各种肌松药的作用均增强D.低温对去极化和非去极化肌松药的影响程度不一E.低温时泮库溴铵的肝肾排泄率减低 [单选,A2型题,A1/A2型题]支气管癌时伴随高血压、低血钾及肌无力等表现,其原因是由于下列物质分泌过多()A.肿瘤细胞所分泌的与ADH类似的环形多肽B.肿瘤代谢刺激腺垂体所分泌的ACTHC.肿瘤代谢刺激脑垂体后所分泌的ADHD.醛固酮E.肿瘤所分泌的ACTH样多肽 [单选]下列哪项不是钩体病的流行特征()A.无明显的季节性B.地区性C.流行性D.职业性E.流行类型可发生变化 [单选]中国特色社会主义法律体系的核心是()。A.宪法B.刑法C.民法 [问答题,简答题]区间线路发生故障时首先应做哪些工作? [单选,A2型题,A1/A2型题]女性,60岁,颈后局限性肿痛6天,伴有畏寒、发热38.5℃,来急诊时已用抗生素治疗3天。体格检查见颈后发际下方肿胀,皮肤红肿,质地坚韧,界限不清,中央多个小脓头伴坏死组织,白细胞数16×10/L,中性粒细胞0.90(90%)。此时最恰当的治疗是选择()A.继 [填空题]就相对密度而论,轻质原油的相对密度<()。 [单选]当井底流压低于地层饱和压力时,随生产压差的升高,油井产量会()。A、升高B、减低C、无变化D、以上均有可能 [单选]信息经济核算法是由()经济学家马克卢普提出的。A.英国B.法国C.美国D.日本