上海市浦东新区2020学年高一数学上学期期中试题

合集下载

上海市浦东新区2022届高三上学期期中考试数学试卷 Word版含答案

上海市浦东新区2022届高三上学期期中考试数学试卷 Word版含答案

上海市浦东新区2021-2022学年第一学期高三数学期中质量检测试卷 (满分: 150分答题时间:120分钟)一、填空题(本大题共有12道小题,请把正确答案直接填写在答题纸规定的地方,其中1--6每小题4分,7—12每小题5分,共54分).1.幂函数经过点22,2⎛⎫⎪ ⎪⎝,则此幂函数的解析式为.2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A .3. 设()1f x -为函数()21x f x x =+的反函数,则()12f -=_____.4.不等式102xx ->+的解集是.5.在一个圆周上有10个点,任取3个点作为顶点作三角形,一共可以作__________个三角形(用数字作答).6.已知球半径为2,球面上A 、B 两点的球面距离为32π,则线段AB 的长度为________.7.若x y ∈+R ,,且14=+y x ,则x y ⋅的最大值是.8.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).3.09.若函数()()(2)f x x a bx a =++(常数a b ∈R ,)是偶函数,且它的值域为(]4-∞,,则该函数的解析式()f x =.10.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别 .11.已知命题2430m m α-+≤:,命题2680m m β-+<:.若αβ、中有且只有一个是真命题,则实数m 的取值范围是________.12.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱AB 、CC 1的中点,△MB 1P 的顶点P 在棱CC 1与棱C 1D 1上运动.有以下四个命题: ①平面MB 1P ⊥ND 1;②平面MB 1P ⊥平面ND 1A 1;③△MB 1P 在底面ABCD 上的射影图形的面积为定值; ④△MB 1P 在侧面D 1C 1CD 上的射影图形是三角形.其中正确命题的序号是二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案。

上海高一上学期数学期中试卷含答案

上海高一上学期数学期中试卷含答案

上海市金山中学第一学期 高一年级数学学科期中考试卷(考试时间:90分钟 满分:100分)一、填空题(本大题共12小题,满分36分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分.1.若全集{1,2,3,4,5}U =且{2,3}U C A =,则集合=A ___________. 2.已知集合{}1,0,1A =-,{}011|<-+=x x x B ,则A B =________. 3.函数,33)(+-=x x x f ,3)(+=x x g 则=⋅)()(x g x f ___________. 4.函数21)(--=x x x f 的定义域是__________________. 5.设函数⎩⎨⎧>≤-=0,0,)(2x x x x x f ,若2)(=a f ,则实数a 为________.6.若01a <<,则关于x 的不等式1()0a x x a ⎛⎫--> ⎪⎝⎭的解集是_________________.7.已知2:20,:P x x Q x a +->>,若Q 是P 的充分非必要条件,则实数a 的取值范围是 ______________.8.若关于x 的不等式3|2|<-ax 的解集为}3135|{<<-x x ,则a =_________. 9.若关于x 的不等式04)1(2)1(2≥--+-a x a 的解集为φ,则实数a 的取值范围是____________.10.已知集合}2,1{-=A ,}01|{>+=mx x B ,且B B A = ,则实数m 的取值范围是_________. 11.设函数2)(-=x x f ,若不等式m x f x f +>+|)(||)3(|对任意实数x 恒成立,则m 的取值范围是_________ .12.满足不等式||(0,)x A B B A -<>∈R 的实数x 的集合叫做A 的B 邻域,若2-+b a 的b a +邻域是一个关于原点对称的区间,则ba 41+的取值范围是_________.二、选择题(本大题共有4小题,满分12分)每题有且只有一个正确答案,考生应在答题纸的相应编号上将代表答案的小方格涂黑,选对得3分,否则一律得零分.13.若集合中三个元素为边可构成一个三角形,则该三角形一定不可能是 ( ) (A )锐角三角形 (B )直角三角形 (C )钝角三角形 (D )等腰三角形 14.设x 取实数,则)(x f 与)(x g 表示同一个函数的是 ( )(A )x x f =)( ,2)(x x g =(B ) ()xx x f 2)(=,()2)(x xx g =(C )1)(=x f ,0)1()(-=x x g (D )39)(2+-=x x x f ,3)(-=x x g15.若a 和b 均为非零实数,则下列不等式中恒成立的是 ( )(A )222)2(2b a b a +≥+ (B )2≥+baa b (C )4)11)((≥++b a b a (D )||2||ab b a ≥+16.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那 么函数解析式为122+=x y ,值域为}19,5{的“孪生函数”共有 ( ) (A )4个 (B )6个 (C )8个 (D )9个三、(本大题共5题,满分52分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本小题满分8分)解不等式组⎪⎩⎪⎨⎧<++-<--021122x x x x18.(本小题满分8分)已知集合}02|{2=--=px x x A ,}0|{2=++=r qx x x B ,若}5,1,2{-=B A ,}2{-=B A ,求r q p ++的值19.(本小题满分10分)已知集合}0161|{2有解不等式≤++=ax x a P ,集合}044|{2恒成立对任意实数不等式x ax ax a Q <-+=,求Q P20.(本小题满分12分) 本题共有3个小题,第1小题4分,第2小题4分,第3小题4分。

【必考题】高一数学上期中试题(及答案)

【必考题】高一数学上期中试题(及答案)

【必考题】高一数学上期中试题(及答案)一、选择题1.已知函数()1ln 1xf x x -=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭2.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-⋃+∞,, B .(1)(01)-∞-⋃,, C .(1)(1)-∞-⋃+∞,, D .(10)(01)-⋃,, 3.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③4.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)25.设集合{1,2,3},{2,3,4}A B ==,则A B =A .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 6.设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x )=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5B .4.5C .3.5D .2.57.已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是() A .(,1]-∞-B .[1)-+∞,C .[1,1)-D .(3,1]--8.定义在R 上的奇函数()f x 满足()1(2)f x f x +=-,且在()0,1上()3xf x =,则()3log 54f =( )A .32B .23-C .23D .32-9.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .610.已知()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .7B .72C .74D .7811.函数2y 34x x =--+的定义域为( )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 12.已知函数()()()ln 1ln 1f x x x =+--,若实数a 满足()()120f a f a +->,则a 的取值范围是( ) A .()1,1-B .()0,1C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭二、填空题13.已知函数2()121()f x ax x ax a R =+++-∈的最小值为0,则实数a =_________.14.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________.15.已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______. 16.已知()f x 是定义在[)(]2,00,2-⋃上的奇函数,当0x >,()f x 的图象如图所示,那么()f x 的值域是______.17.非空有限数集S 满足:若,a b S ∈,则必有ab S ∈.请写出一个..满足条件的二元数集S =________.18.已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点共有________个.19.函数2()log 1f x x =-________.20.已知函数()266,34,x x f x x ⎧-+=⎨+⎩0x x ≥<,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________. 三、解答题21.已知函数f (x )是定义域为R 的奇函数,当x <0时,()111f x x =+-. (1)求f (2)的值;(2)用定义法判断y =f (x )在区间(-∞,0)上的单调性. (3)求0()x f x >时,的解析式 22.已知2256x ≤且21log 2x ≥,求函数22()log log 22x xf x =⋅的最大值和最小值. 23.已知函数()f x 对任意的实数m ,n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.(1)求()0f ;(2)求证:()f x 在R 上为增函数;(3)若()12f =,且关于x 的不等式()()223f ax f x x -+-<对任意的[)1,x ∈+∞恒成立,求实数a 的取值范围. 24.计算下列各式的值:(Ⅰ)322log 3lg25lg4log (log 16)++- (Ⅱ)2102329273()( 6.9)()()482-----+25.函数是奇函数.求的解析式;当时,恒成立,求m 的取值范围.26.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100xv x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=, 1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ? (2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.2.D解析:D 【解析】由f (x )为奇函数可知,()()f x f x x--=()2f x x<0.而f (1)=0,则f (-1)=-f (1)=0. 当x >0时,f (x )<0=f (1); 当x <0时,f (x )>0=f (-1). 又∵f (x )在(0,+∞)上为增函数, ∴奇函数f (x )在(-∞,0)上为增函数. 所以0<x <1,或-1<x <0. 选D点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内3.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .4.B解析:B 【解析】函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.5.A解析:A 【解析】 由题意{1,2,3,4}AB ,故选A.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.6.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论 【详解】 设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1, 令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.7.D解析:D 【解析】 【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解. 【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--, 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.8.D解析:D 【解析】 【分析】由题意结合函数的性质整理计算即可求得最终结果. 【详解】由题意可得:()354f log =()3log 23f +, 则()354f log =()31log 21f -+,且()()331log 21log 21f f +=--, 由于()3log 211,0-∈-,故()()31log 2333log 211log 232f f --=--=-=-,据此可得:()()3312log 21log 213f f +=-=-,()354f log =32-.本题选择D 选项. 【点睛】本题主要考查函数的奇偶性,函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数.【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.10.C解析:C 【解析】 【分析】根据函数的周期性以及分段函数的表达式,结合对数的运算法则,代入即可得到结论. 【详解】2222log 4log 7log 83=<<=,20log 721∴<-<,()()2log 72227log 7log 7224f f -∴=-==. 故选:C . 【点睛】本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性进行转化是解决本题的关键.11.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C12.B解析:B 【解析】 【分析】求出函数()y f x =的定义域,分析函数()y f x =的单调性与奇偶性,将所求不等式变形为()()21f a f a >-,然后利用函数()y f x =的单调性与定义域可得出关于实数a 的不等式组,即可解得实数a 的取值范围. 【详解】对于函数()()()ln 1ln 1f x x x =+--,有1010x x +>⎧⎨->⎩,解得11x -<<, 则函数()y f x =的定义域为()1,1-,定义域关于原点对称,()()()()ln 1ln 1f x x x f x -=--+=-,所以,函数()y f x =为奇函数,由于函数()1ln 1y x =+在区间()1,1-上为增函数,函数()2ln 1y x =-在区间()1,1-上为减函数,所以,函数()()()ln 1ln 1f x x x =+--在()1,1-上为增函数, 由()()120f a f a +->得()()()1221f a f a f a >--=-,所以,11112121a a a a -<<⎧⎪-<-<⎨⎪>-⎩,解得01a <<.因此,实数a 的取值范围是()0,1. 故选:B. 【点睛】本题考查函数不等式的求解,解答的关键就是分析函数的单调性和奇偶性,考查计算能力,属于中等题.二、填空题13.【解析】【分析】设计算可得再结合图象即可求出答案【详解】解:设则则由于函数的最小值为0作出函数的大致图象结合图象得所以故答案为:【点睛】本题主要考查分段函数的图象与性质考查转化思想考查数形结合思想属解析:±1. 【解析】【分析】 设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,计算可得2(),()()()2(),()()g x g x h x f x h x g x h x ≥⎧=⎨<⎩,再结合图象即可求出答案. 【详解】解:设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,则22()()1g x x ax h x x ⎧=+⎨=-⎩, 则()()()()()f x g x h x g x h x =++-2(),()()2(),()()g x g x h x h x g x h x ≥⎧=⎨<⎩, 由于函数()f x 的最小值为0,作出函数()g x ,()h x 的大致图象,结合图象,210x -=,得1x =±, 所以1a =±, 故答案为:±1. 【点睛】本题主要考查分段函数的图象与性质,考查转化思想,考查数形结合思想,属于中档题.14.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.15.【解析】【分析】根据题意分离出参数a 后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立解析:3,4∞⎛⎫-+ ⎪⎝⎭【解析】 【分析】根据题意分离出参数a 后转化为求函数的最值即可,通过换元后利用二次函数的性质可求得最大值. 【详解】1240xxa ++⋅>可化为212224xx x x a --+>-=--,令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭.【点睛】本题考查二次函数的性质、函数恒成立问题,考查转化思想,考查学生解决问题的能力.属中档题.16.【解析】【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象欲求的值域分两类讨论:;结合图象即可解决问题【详解】是定义在上的奇函数作出图象关于原点对称作出其在y 轴左侧的图象如图由图可知:的值域是故答案 解析:][()2,33,2⋃--【解析】 【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象,欲求()f x 的值域,分两类讨论:0x >①;0.x <②结合图象即可解决问题.【详解】()f x 是定义在(][2,00,2-⋃上的奇函数,∴作出图象关于原点对称作出其在y 轴左侧的图象,如图.由图可知:()f x 的值域是][()2,33,2⋃--. 故答案为][()2,33,2⋃--. 【点睛】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.17.{01}或{-11}【解析】【分析】因中有两个元素故可利用中的元素对乘法封闭求出这两个元素【详解】设根据题意有所以必有两个相等元素若则故又或所以(舎)或或此时若则此时故此时若则此时故此时综上或填或【解析:{0,1}或{-1,1}, 【解析】 【分析】因S 中有两个元素,故可利用S 中的元素对乘法封闭求出这两个元素. 【详解】设{}(),S a b a b =<,根据题意有22,,a ab b S ∈,所以22,,a b ab 必有两个相等元素.若22a b =,则=-a b ,故2ab a =-,又2a a =或2a b a ==-,所以0a =(舎)或1a =或1a =-,此时{}1,1S =-.若 2a ab =,则0a =,此时2b b =,故1b = ,此时{}0,1S =. 若2b ab =,则0b =,此时2a a =,故1a =,此时{}0,1S =. 综上,{}0,1S =或{}1,1S =-,填{}0,1或{}1,1-. 【点睛】集合中元素除了确定性、互异性、无序性外,还有若干运算的封闭性,比如整数集,对加法、减法和乘法运算封闭,但对除法运算不封闭(两个整数的商不一定是整数),又如有理数集,对加法、减法、乘法和除法运算封闭,但对开方运算不封闭.一般地,若知道集合对某种运算封闭,我们可利用该运算探究集合中的若干元素.18.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题解析:2 【解析】因为()42(0)f x x ax bx c c =+++<是偶函数,则()()f x f x -=,解得0b =,又()()4240()f f f c c ac c c c ==++=+,所以0a =,故4()f x x c =+,令4()0f x x c =+=,40x c =->,所以x =2个零点.点睛:本题涉及函数零点,方程,图像等概念和知识,综合性较强,属于中档题.一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑方程来解决,转化为方程根的个数,同时注意偶函数性质在本题中的应用.19.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞) 【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.20.【解析】【分析】画出分段函数的图像由图像结合对称性即可得出【详解】函数的图像如下图所示不妨设则关于直线对称所以且满足则故的取值范围是【点睛】解决本题的关键是要会画分段函数的图像由图像结合对称性经过计解析:11(,6)3【解析】 【分析】画出分段函数的图像,由图像结合对称性即可得出。

上海高一上学期期中考试数学试卷含答案(共3套)

上海高一上学期期中考试数学试卷含答案(共3套)

上海市高一第一学期数学期中考试试卷满分:100分 考试时间:90分钟一、 填空题(每小题3分,满分36分)1.已知集合{}1,A x =,则x 的取值范围是___________________.2.命题“若0>a 且0>b ,则0ab >”的否命题为__ _ ____ . 3.已知集合M ⊂≠{4,7,8},则这样的集合M 共有 个.4.用描述法表示“平面直角坐标系内第四象限的点组成的集合”:______________ ___. 5.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,() .U A C B ⋂= 6.11 .x<不等式的解集是 7.不等式|2x -1|< 2的解集是 . 8. 已知0x >,当2x x+取到最小值时,x 的值为_____ _. 9.已知集合}1|{≤=x x M ,}|{t x x P >=,若M P ⋂=∅,则实数t 的取值范围是 .10. 关于x 的不等式22210x kx k k -++->的解集为{},x x a x R ≠∈,则实数a =___________.11. 已知24120x x +->是8x a -≤≤的必要非充分条件,则实数a 的取值范围是______________________。

12.若不等式210 kx kx k A A -+-<≠∅的解集为,且,则实数k 的范围为 .二、选择题(本大题共4小题,每小题3分,满分12分)13. 设U 为全集,()U BB C A =,则AB 为 ( )A. AB. BC. U C BD. ∅14. 若不等式b x a >的解集是()0,∞-,则必有 ( ) A 00=>b a , B 00=<b a , C 00<=b a , D 00>=b a ,15、下列结论正确的是 ( ) A. xx y 1+=有最小值2; B. 21222+++=x x y 有最小值2;C. 0<ab 时,b aa b y +=有最大值-2; D. 2>x 时,21-+=x x y 有最小值2; 16.“1a >”是“对任意的正数x ,21ax x+>”的 ( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件三、解答题(本大题共5小题,满分52分)17.(10分)设集合{}2560A x x x =-+=,{}10B x ax =-=,若B A B =,求实数a 的值。

2020-2021学年上海交大附中高一(上)期中数学试卷

2020-2021学年上海交大附中高一(上)期中数学试卷

2020-2021学年上海交大附中高一(上)期中数学试卷一、填空题(1-6每小题4分,7-12每小题4分,共54分)1.(4分)已知全集U={0,1,2,3,4},集合A={1,2},B={2,3},则A∩=.2.(4分)函数y=a x+2020+2022(a>0,a≠1)的图象恒过定点.3.(4分)已知幂函数f(x)=(n2+2n﹣2)(n∈Z)的图象关于y轴对称,且在(0,+∞)上时减函数,则n的值为.4.(4分)函数y=的图象的对称中心是.5.(4分)函数y=的定义域是.6.(4分)已知实数a满足(2a﹣1)>(a+1),则实数a的取值范围是.7.(5分)已知x<6,求,的最大值.8.(5分)设log c a、log c b是方程x2+5x﹣3=0的两个实根,则log c=.9.(5分)著名的哥德巴赫猜想指出:“任何大于2的偶数可以表示为两个素数的和”,用反证法研究该猜想,应假设的内容是.10.(5分)若关于x的方程22x+a•2x+2a+1=0(a∈R)有实根,则实数a的取值范围是.11.(5分)已知函数f(x)=lg(+ax)的定义域为R,则实数a的取值范围是.12.(5分)若实数x、y满足4x+4y=2x+1+2y+1,则S=2x+2y的取值范围是.二、选择题(每小题5分,共20分)13.(5分)已知a,b∈R,则“3a>3b”是“a3>b3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件14.(5分)已知函数f(x)=log a(x+b)的大致图象如图,其中a,b为常数,则函数g(x)=a x+b的大致图象是()A.B.C.D.15.(5分)由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割试判断,对于任一戴德金分割(M,N),下列选项中,不可能成立的是()A.M没有最大元素,N有一个最小元素B.M没有最大元素,N也没有最小元素C.M有一个最大元素,N有一个最小元素D.M有一个最大元素,N没有最小元素16.(5分)设函数y=f(x)的定义域D,若对任意的x1∈D,总存在x2∈D,使得f(x1)•f (x2)=1,则称函数y=f(x)具有性质M下列结论:①函数y=3x具有性质M;②函数y=x3﹣x具有性质M;③若函数y=log8(x+2),x∈[0,t]具有性质M,则t=510.其中正确的个数是()A.0个B.1个C.2个D.3个三、解答题(共5题,满分76分)17.(14分)已知函数y=f(x)满足f(x)=|x﹣a2|+|x﹣2a+1|(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4恒成立,求实数a的取值范围.18.(14分)有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速度可以表示为函数v=log3﹣lgx0,单位是km/min,其中x表示候鸟每分钟耗氧量的单位数,常数x0表示测量过程中候鸟每分钟的耗氧偏差.(1)若x0=5,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(2)若雄鸟的飞行速度为1.5km/min,雌鸟的飞行速度为1km/min,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的多少倍?(lg2≈0.3)19.(14分)柯西不等式具体表述如下:对任意实数a1,a2,……a n和b1,b2,……b n,(n∈Z,n≥2)都有(a12+a22+……+a n2)(b12+b22+……+b n2)≥(a1b1+a2b2+……+a n b n)2.当且仅当==……=时取等号.(1)请用柯西不等式证明:对任意正实数a,b,x,y,不等式+≥成立,(并指出等号成立条件);(2)请用柯西不等式证明:对任意正实数x1,x2,……x n,且x1+x2+……+x n=1.求证:++……+≥(并写出等号成立条件).20.(16分)已知函数y=f(x)的表达式为f(x)=a x(a>0,a≠1),且f(﹣2)=.(1)求函数y=f(x)的解析式;(2)若log2((m﹣f(x))2+4f(x))=0在区间[0,2]上有解,求实数m的取值范围;(3)已知≤k<1,若方程|f(x)﹣1|﹣k=0的解分别为x1、x2(x1<x2)方程|f(x)﹣1|﹣=0的解分别为x3、x4(x3<x4)求x1﹣x2+x3﹣x4的最大值.21.(18分)对于正整数集合A={a1,a2,……,a n}(n∈N*,n≥3),如果任意去掉其中一个元素a i(i=1,2,……,n)之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A为“可分集合”;(Ⅰ)判断集合{1,2,3,4,5}和{1,3,5,7,9,11,13}是否是“可分集合”(不必写过程);(Ⅱ)求证:五个元素的集合A={a1,a2,a3,a4,a5}一定不是“可分集合”;(Ⅲ)若集合A={a1,a2,……,a n}(n∈N*,n≥3)是“可分集合”.①证明:n为奇数;②求集合A中元素个数的最小值.2020-2021学年上海交大附中高一(上)期中数学试卷参考答案与试题解析一、填空题(1-6每小题4分,7-12每小题4分,共54分)1.【解答】解:∵全集U={0,1,2,3,4},集合A={1,2},B={2,3},∴,.故答案为:{1}.2.【解答】解:∵函数y=a x+2020+2022,∴令x+2020=0得:x=﹣2020,此时y=2023,∴函数的图象恒过定点(﹣2020,2023).故答案为:(﹣2020,2023).3.【解答】解:函数f(x)=(n2+2n﹣2)(n∈Z)为幂函数,∴n2+2n﹣2=1,解得n=1或n=﹣3;当n=1时,f(x)=x﹣2,其图象关于y轴对称,且在(0,+∞)上是减函数;当n=﹣3时,f(x)=x18,其图象关于y轴对称,但在(0,+∞)上是增函数;∴n的值应为1.故答案为:1.4.【解答】解:因为==﹣3+即y+3=,可设y′=y+3,x′=x+2得到y′=所以y′与x′成反比例函数关系且为奇函数,则对称中心为(0,0)即y′=0,x′=0得到y=﹣3,x=﹣2所以函数y的对称中心为(﹣2,﹣3)故答案为(﹣2,﹣3)5.【解答】解:函数y=中,令>0,所以0<<1,即,所以,解得,即x>7,所以函数的定义域是(7,+∞).故答案为:(7,+∞).6.【解答】解:∵实数a满足,∴,解得0.5<a<2,∴实数a的取值范围是(0.5,2).故答案为:(0.5,2).7.【解答】解:由==(x﹣6)+,∵x<6,∴=﹣[(6﹣x)+]=﹣16,当且仅当x=﹣2时,取等号;∴由==(x﹣6)+≤0.即的最大值为0.故答案为:0.8.【解答】解:根据题意,log c a、log c b是方程x2+5x﹣3=0的两个实根,则,变形可得:(log c a﹣log c b)2=(log c a+log c b)2﹣4×(log c a log c b)=37,则log c a﹣log c b=±,即log c=±,则log c==±,故答案为:±.9.【解答】解:由反证法的定义得假设的内容为存在一个大于2的偶数不可以表示为两个素数的和,故答案为:存在一个大于2的偶数不可以表示为两个素数的和10.【解答】解:令2x=t(t>0),则方程22x+a•2x+2a+1=0化为t2+at+2a+1=0,要使原方程有实根,则方程t2+at+2a+1=0有大于0的实数根,转化为a===,∵t>0,∴t+2>2,则=,当且仅当t+2=,即t=时上式等号成立.∴实数a的取值范围是(﹣∞,4﹣2].故答案为:(﹣∞,4﹣2].11.【解答】解:函数f(x)=lg(+ax)的定义域为R,∴+ax>0恒成立,∴>﹣ax恒成立,设y=,x∈R,y2﹣x2=1,y≥1;它表示焦点在y轴上的双曲线的一只,且渐近线方程为y=±x;令y=﹣ax,x∈R;它表示过原点的直线;由题意知,直线y=﹣ax的图象应在y=的下方,画出图形如图所示∴0≤﹣a≤1或﹣1≤﹣a≤0,解得﹣1≤a≤1;∴实数a的取值范围是[﹣1,1].故答案为:[﹣1,1].12.【解答】解:∵4x+4y=(2x+2y)2﹣2••2x2y=s2﹣2•2x2y,2x+1+2y+1=2(2x+2y)=2s,故原式变形为s2﹣2•2x2y=2s,即2•2x2y=s2﹣2s,∵0<2•2x2y≤2•()2,即0<s2﹣2s≤,当且仅当2x=2y,即x=y时取等号;解得2<s≤4,故答案为(2,4].二、选择题(每小题5分,共20分)13.【解答】解:由3a>3b是得a>b,由“a3>b3”得a>b,即“3a>3b”是“a3>b3”的充要条件,故选:C.14.【解答】解:由函数f(x)=log a(x+b)的图象为减函数可知0<a<1,f(x)=log a(x+b)的图象由f(x)=log a x向左平移可知0<b<1,故函数g(x)=a x+b的大致图象是B故选:B.15.【解答】解:若M={x∈Q|x<0},N={x∈Q|x≥0};则M没有最大元素,N有一个最小元素0;故A正确;若M={x∈Q|x<},N={x∈Q|x≥};则M没有最大元素,N也没有最小元素;故B 正确;M有一个最大元素,N有一个最小元素不可能,故C不正确;若M={x∈Q|x≤0},N={x∈Q|x>0};M有一个最大元素,N没有最小元素,故D正确;故选:C.16.【解答】解:函数y=f(x)的定义域D,若对任意的x1∈D,总存在x2∈D,使得f(x1)•f(x2)=1,则称函数y=f(x)具有性质M.对于①:f(x)=3x的定义域为R,所以,则x1+x2=0.对任意的x1∈D,总存在x2∈D,使得f(x1)•f(x2)=1,所以函数y=3x具有该性质.对于②:函数f(x)=x3﹣x,在R上的定义域为R,所以若取x1=0,则f(x1)=0,此时不存在x2∈R,使得f(x1)•f(x2)=1.对于③:函数f(x)=log8(x+2),在x∈[0,t]的值域为[,则:,解得t=510.故③正确.故选:C.三、解答题(共5题,满分76分)17.【解答】解:(1)当a=2时,f(x)=|x﹣4|+|x﹣3|,f(x)≥4等价为或或,解得x≤或x∈∅或x≥,则不等式f(x)≥4的解集为{x|x≤或x≥};(2)f(x)≥4恒成立等价为f(x)min≥4.由f(x)=|x﹣a2|+|x﹣2a+1|≥|x﹣a2﹣x+2a﹣1|=a2﹣2a+1,当(x﹣a2)(x﹣2a+1)≤0时,上式取得等号,则a2﹣2a+1≥4,解得a≥3或a≤﹣1.18.【解答】解:(1)将x0=5,v=0代入函数v=log3﹣lgx0,得:,即=2(1﹣lg2)≈1.40,所以,所以x=466.故候鸟停下休息时,它每分钟的耗氧量为466个单位.(2)设雄鸟每分钟的耗氧量为x1,雌鸟每分钟耗氧量为x2,由题意可得:,两式相减可得:,所以,即,故此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的3倍.19.【解答】证明:(1)对任意正实数a,b,x,y,由柯西不等式得,当且仅当时取等号,∴.(2)∵x1+x2+…+x n=1,∴n+1=(1+x1)+(1+x2)+…+(1+x n),∵=,当且仅当时取等号,∴.20.【解答】解:(1)由f(﹣2)=,可得a﹣2=,又a>0,∴a=2,∴f(x)=2x;(2)由log2((m﹣f(x))2+4f(x))=0可得:(m﹣f(x))2+4f(x)=1,令t=f(x),x∈[0,2],则有t2+(4﹣2m)t+m2﹣1=0,t∈[1,4],∵log2((m﹣f(x))2+4f(x))=0在区间[0,2]上有解,∴t2+(4﹣2m)t+m2﹣1=0在t∈[1,4]上有解,令g(t)=t2+(4﹣2m)t+m2﹣1=0,t∈[1,4],可得:△=(4﹣2m)2﹣4(m2﹣1)=20﹣16m,对称轴方程为:t=m﹣2,∵g(1)=m2﹣2m+4>0,g(4)=m2﹣8m+31>0,∴,解得:m∈∅;(3)由|f(x)﹣1|﹣k=0,得f(x)=1﹣k,或f(x)=1+k,所以,,∴,由|f(x)﹣1|﹣=0,得,=,∴,∴=﹣3+;又因为≤k<1,所以﹣3+≥3;∴x2﹣x1+x4﹣x3≥log23,∴x1﹣x2+x3﹣x4≤﹣log23.即x1﹣x2+x3﹣x4的最大值为﹣log23.21.【解答】解:(Ⅰ)集合{1,2,3,4,5}不是“可分集合”,集合{1,3,5,7,9,11,13}是“可分集合”;(Ⅱ)不妨设a1<a2<a3<a4<a5,若去掉的元素为a2,将集合{a1,a3,a4,a5}分成两个交集为空集的子集,且两个子集元素之和相等,则有a1+a5=a3+a4①,或者a5=a1+a3+a4②;若去掉的元素为a1,将集合{a1,a3,a4,a5}分成两个交集为空集的子集,且两个子集元素之和相等,则有a2+a5=a3+a4③,或者a5=a2+a3+a4④.由①、③,得a1=a2,矛盾;由①、④,得a1=﹣a2,矛盾;由②、③,得a1=﹣a2,矛盾;由②、④,得,a1=a2矛盾.因此当n=5时,集合一定不是“可分集合”;(Ⅲ)①设集合A={a1,a2,…,a n}的所有元素之和为M.由题可知,M﹣a i(i=1,2,…,n)均为偶数,因此a i(i=1,2,…,n)均为奇数或偶数.如果M为奇数,则M﹣a i(i=1,2,…,n)也均为奇数,由于M=a1+a2+…+a n,所以n为奇数.如果M为偶数,则M﹣a i(i=1,2,…,n)均为偶数,此时设a i=2b i,则{b1,b2,…,b n}也是“可分集合”.重复上述操作有限次,便可得各项均为奇数的“可分集合”.此时各项之和也为奇数,则集合A中元素个数n为奇数.综上所述,集合A中元素个数为奇数.②当n=3时,显然任意集合{a1,a2,a3}不是“可分集合”.当n=5时,第(Ⅱ)问已经证明集合A={a1,a3,a4,a5}不是“可分集合”.当n=7时,集合A={1,3,5,7,9,11,13},因为:3+5+7+9=11+13,1+9+13=5+7+11,9+13=1+3+7+11,1+3+5+11=7+13,1+9+11=3+5+13,3+7+9=1+5+13,1+3+5+9=7+11,则集合A是“可分集合”.所以集合A中元素个数n的最小值是7.。

2020-2021学年高一数学新教材(必修一)上学期期中测试卷01(沪教版)(全解全析).pdf

2020-2021学年高一数学新教材(必修一)上学期期中测试卷01(沪教版)(全解全析).pdf
6
当 (x2 1) (x 4)…1时,解得 x… 3 或 x„ 2 ,
g(x) x 4 , (x… 3 或 x„ 2) ,
函数
y
g
x
x2 1, x 4,
2 x 3 x… 3或x„ 2 的图象如图所示:
由图象得: 2„ k 1 ,
函数 y g(x) 与 y k 的图象有 3 个交点,
价形式:函数 y f (x) g(x) 的零点 函数 y f (x) g(x) 在 x 轴的交点 方程 f (x) g(x) 0 的 根 函数 y f (x) 与 y g(x) 的交点.
14.A
【分析】根据分段函数的概念,求得 f 1 的值.
【详解】
f 1 11 0
依题意
.
故参考答案为 2x6
【点睛】本题主要考查函数的奇偶性和对称性的应用,考查函数的解析式的求法,意在考查学生对这些知识 的理解掌握水平和分析推理能力.
3
5. (0, )
【解析】
【分析】
1 t 1 0

3 时,
f
t
1 3
sin
2
t
1 3
1 2
,解三角不等式即可,当
0
t
1 3
时,
f
t
1 3
f (x)
即函数
x2 1 (4 x) k 的图象与 x 轴恰有三个大众点;
故参考答案为: 2 k 1 .
【点睛】本题主要考查根据函数的解析式作出函数的图象,体现了化归与转化、数形结合的数学思想,根据
7
定义求出 g(x) 的表达式是解决本题的关键,属于中档题.
9. (2,3) (3, 4) (4, )
g x x2 f (x) 2x2

上海市杨浦高级中学2023-2024学年高一上学期期中数学试题

上海市杨浦高级中学2023-2024学年高一上学期期中数学试题

(1) x2 比 0 接近1,求 x 的取值范围;
(2)判断:“
x

y
接近
0
”是“
x + 2y y-x
>
2
”的什么条件(充分不必要条件,必要不充
分条件,充要条件,既不充分又不必要条件),并加以证明.
五、作图题
18.设函数 y =
1 x -1
试卷第31 页,共33 页
(1)在上图平面直角坐标系中画出函数的图像; (2)试说明函数关于 y 轴对称;
集的并集, 而集合{3, 4,5} 的非空子集的个数为 23 -1 = 7 ,
所以集合 M 有 7 个. 故答案为:7
3.
1 3
【分析】根据题意,可得方程 ax2 + bx + 2 = 0 的两个根为﹣2 和 3,由根与系数的关系可得
答案第11 页,共22 页
关于 a、b 的方程,再求出 a,b 的值. 【详解】根据不等式 ax2 + bx + 2>0 的解集为{x | -2<x< 3} , 可得方程 ax2 + bx + 2 = 0 的两个根为﹣2 和 3,且 a<0 ,
x ( x ³ 5) 的关系变为 y = 4´1.7x ;
方案二:在 4 月底集中打捞一次,使其覆盖面积减少到 4 平方米,生物增长速度不变. 问如何评价这两种方案,并说明理由.
试卷第41 页,共33 页
1.
f
(x)
=
(1)x 2
参考答案:
【分析】设指数函数的解析式为 (f x)= ax (a>0 且 a≠1),代入 (2, 1) 计算即可得解. 4
【详解】解:设指数函数的解析式为 (f x)= ax (a>0 且 a≠1),

2021-2022学年上海中学高一(上)期中数学试卷

2021-2022学年上海中学高一(上)期中数学试卷

2021-2022学年上海中学高一(上)期中数学试卷试题数:21,总分:1001.(填空题,3分)不等式(a 2+1)x <3的解为 ___ .2.(填空题,3分)用描述法表示所有十进制下个位为9的正整数 ___ .3.(填空题,3分)设正实数x ,y 满足xy=20,则x+4y 的最小值为 ___ .4.(填空题,3分)给定正实数a ,b ,化简代数式 √1a 3• (ab )56 ( √b 3)-1=___ . 5.(填空题,3分)已知实数a ,b 满足log 2a=log 5b= √2 ,则lg ( (ab )√2 )=___ . 6.(填空题,3分)设集合A={x|-2≤x≤5},B={x|2-m≤x≤2m -1}.若A∩B=A .则m 的取值范围是 ___ .7.(填空题,3分)已知集合A={(x ,y )x 2+y 2=50,x ,y 是自然数},则A 的真子集共有 ___ 个.8.(填空题,3分)设集合A=N ,B={x| x+2x−3 >0,x∈R},则A∩∁R B=___ .9.(填空题,3分)若不等式ax 2+bx-7<0的解集为(-∞,2)∪(7,+∞),则不等式-7x 2+bx+a >0的解集为 ___ .10.(填空题,3分)设x >1,若log 2(log 4x )+log 4(log 16x )+log 16(log 2x )=0,则log 2(log 16x )+log 16(log 4x )+log 4(log 2x )=___ .11.(填空题,3分)已知a 、b 、c 均为正实数,则 ab+bca 2+b 2+c 2 的最大值为___ .12.(填空题,3分)集合A={1,2,4,…,26194}共有 ___ 个数在十进制下的最高位为1. 13.(单选题,4分)设a ,b ,c ,d 为实数,下列说法正确的是( ) A.若a >b ,则a 2>b 2B.若a >b >0,c >d >0,则 ac > bd C.若 √a >b ,则a >b 2 D.若a >b >0,则a 2>ab >b 214.(单选题,4分)已知实数a ,b ,则“ a+ba−b >0”是“|a|>|b|”的( )条件 A.充分不必要 B.必要不充分 C.充要D.既不充分也不必要15.(单选题,4分)设a=log35,b=log57,则log1549=()45A. 2b−1−2a1+aB. 2b−2−a1+aC. 2ab−1−2a1+aD. 2ab−2−a1+a16.(单选题,4分)已知实数a,b,c满足|a|+|b|+|c|+|a+b+c|=6,则a2+b2+c2的最大值为()A.3B.9C.18D.2717.(问答题,6分)若实数x,y满足集合{x,xy,lg(xy)}与集合{0,|x|,y}相等,求x,y 的值.18.(问答题,8分)解下列不等式:(1)x2-5x+7<|2x-5|;(2)√x−1 +2x<5.19.(问答题,10分)已知正实数x,y满足xy+2x+y=4,(1)求xy的最大值,并求取得最大值时x,y的值;(2)求x+y的最小值,并求取得最小值时x,y的值.20.(问答题,10分)某厂家在“双11”中拟举办促销活动,经调查测算,该产品的年销售量(k为常(即该厂家的年产量)x万件与年促销费用m万元(m≥0)满足关系式x=3- km+1数),如果不搞促销活动;则该产品的年销售量是1万件.已知生产该产品的固定年投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的售价定为每件产品年平均成本的1.5倍(产品成本只包括固定投入和再投入两部分资金).(1)求k的值,并将该产品的年利润y(万元)表示为年促销费用m(万元)的函数;(2)该厂家年利润的最大值为多少万元?为此需要投入多少万元的年促销费用?21.(问答题,14分)已知实数a,b,c,d不全为0,给定函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.记方程f(x)=0的解集为A,方程g(f(x))=0的解集为B,若满足A=B≠∅,则称f(x),g(x)为一对“太极函数”.问:(1)当a=c=d=1,b=0时,验证f(x),g(x)是否为一对“太极函数”;(2)若f(x),g(x)为一对,“太极函数”,求d的值;(3)已知f(x),g(x)为一对“太极函数”,若a=1,c>0,方程f(x)=0存在正根m,求c的取值范围(用含有m的代数式表示).2021-2022学年上海中学高一(上)期中数学试卷参考答案与试题解析试题数:21,总分:1001.(填空题,3分)不等式(a2+1)x<3的解为 ___ .)【正确答案】:[1](-∞,3a2+1【解析】:根据a²+1>0,结合不等式性质即可求解.【解答】:解:因为a²+1>0,,所以该不等式解为x<3a2+1).故答案为:(-∞,3a2+1【点评】:本题考查不等式的求解,属于基础题.2.(填空题,3分)用描述法表示所有十进制下个位为9的正整数 ___ .【正确答案】:[1]{x|x=10n-1,(n∈N*)}【解析】:十进制下个位为9的正整数为10n-1,(n∈N*),用描述法写入集合即可.【解答】:解:十进制下个位为9的正整数为10n-1,(n∈N*),用描述法表示为{x|x=10n-1,(n∈N*)},故答案为:{x|x=10n-1,(n∈N*)}.【点评】:本题考查了进位制以及集合的表示方法,属于基础题.3.(填空题,3分)设正实数x,y满足xy=20,则x+4y的最小值为 ___ .【正确答案】:[1]8 √5【解析】:由基本不等式,即可得解.【解答】:解:因为x>0,y>0,所以x+4y≥2 √x•4y =2 √4×20 =8 √5,当且仅当x=4y,即x=4 √5,y= √5时,等号成立,所以x+4y的最小值为8 √5.故答案为:8 √5 .【点评】:本题考查基本不等式的应用,考查逻辑推理能力和运算能力,属于基础题. 4.(填空题,3分)给定正实数a ,b ,化简代数式 √1a 3• (ab )56 ( √b 3)-1=___ .【正确答案】:[1] √ab【解析】:由 √1a 3= a −13 , (ab )56 = a 56 • b 56 , √b 3 )-1= b −13 代入化简即可.【解答】:解: √1a 3• (ab )56 ( √b 3)-1= a −13 • a 56 • b 56b −13= √a • √b = √ab , 故答案为: √ab .【点评】:本题考查了有理数指数幂的化简,属于基础题.5.(填空题,3分)已知实数a ,b 满足log 2a=log 5b= √2 ,则lg ( (ab )√2 )=___ . 【正确答案】:[1]2【解析】:先把已知的对数式化为指数式,求出a ,b 的值,再利用对数的运算性质求解.【解答】:解:∵log 2a=log 5b= √2 , ∴a=2 √2 ,b= 5√2 ,∴(ab ) √2 =(2 √2 •5√2 ) √2 =102, ∴lg ( (ab )√2 )=lg102=2, 故答案为:2.【点评】:本题主要考查了对数式与指数式的互化,考查了对数的运算性质,是基础题. 6.(填空题,3分)设集合A={x|-2≤x≤5},B={x|2-m≤x≤2m -1}.若A∩B=A .则m 的取值范围是 ___ .【正确答案】:[1][4,+∞)【解析】:推导出A⊆B ,列出方程组,能求出m 的取值范围.【解答】:解:集合A={x|-2≤x≤5},B={x|2-m≤x≤2m -1},A∩B=A , ∴A⊆B ,∴ {2−m ≤2m −12−m ≤−22m −1≥5 , 解得m≥4.∴m 的取值范围是[4,+∞). 故答案为:[4,+∞).【点评】:本题考查实数的取值范围的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.7.(填空题,3分)已知集合A={(x ,y )x 2+y 2=50,x ,y 是自然数},则A 的真子集共有 ___ 个.【正确答案】:[1]7【解析】:采用列举法,列举出A 中的元素,再计算真子集个数.【解答】:解:∵A={(x ,y )|x 2+y 2=50,x ,y 是自然数}. ∴A={(1,7),(5,5),(7,1)}共3个元素. ∴A 的真子集有23-1=7个. 故答案为:7.【点评】:用列举法写出A 的所有元素是解答本题的关键.属于易做题. 8.(填空题,3分)设集合A=N ,B={x| x+2x−3 >0,x∈R},则A∩∁R B=___ . 【正确答案】:[1]{0,1,2,3}【解析】:先解一元二次不等式求出集合B ,再根据集合的基本运算即可求解.【解答】:解:∵B={x| x+2x−3>0,x∈R}={x|(x+2)(x-3)>0}={x|x >3或x <-2},∴∁R B={x|-2≤x≤3}, ∵A=N ,∴A∩(∁R B )={0,1,2,3}, 故答案为:{0,1,2,3}.【点评】:本题考查集合的基本运算,一元二次不等式的解法,属于基础题.9.(填空题,3分)若不等式ax 2+bx-7<0的解集为(-∞,2)∪(7,+∞),则不等式-7x 2+bx+a >0的解集为 ___ . 【正确答案】:[1]( 17, 12)【解析】:设y=ax 2+bx-7,ax 2+bx-7<0的解集为(-∞,2)∪(7,+∞),得到开口向下,2和7为函数与x 轴交点的横坐标,利用根与系数的关系表示出a 与b 的关系,化简不等式-7x 2+bx+a >0即可求得答案.【解答】:解:因为不等式ax 2+bx-7<0的解集为(-∞,2)∪(7,+∞), 所以 { a <0−ba =2+7−7a=2×7 ,解得 {a =−12b =92 ,则不等式-7x 2+bx+a >0即为14x²-9x+1<0, 解得 17<x <12 ,故-7x 2+bx+a >0的解集为( 17 , 12 ). 故答案为:( 17 , 12 ).【点评】:此题考查了一元二次不等式的解法,涉及的知识有:二次函数的性质,根与系数的关系,熟练掌握二次函数的性质是解本题的关键,属于基础题.10.(填空题,3分)设x >1,若log 2(log 4x )+log 4(log 16x )+log 16(log 2x )=0,则log 2(log 16x )+log 16(log 4x )+log 4(log 2x )=___ . 【正确答案】:[1]- 14【解析】:利用对数的运算性质求解.【解答】:解:∵log 2(log 4x )+log 4(log 16x )+log 16(log 2x )=0, ∴ log 2(12log 2x) + 12log 2(14log 2x) + 14 log 2(log 2x )=0,∴ log 2[12log 2x•(14log 2x)12•(log 2x )14] =0,∴ 12log 2x • 12(log 2x )12 • (log 2x )14 =1,∴ log 2x •(log 2x )12•(log 2x )14 =4,∵log 2(log 16x )+log 16(log 4x )+log 4(log 2x )= log 2[14log 2x•(12log 2x)14•(log 2x )12] =log2(12)14 = log22−14 =- 14,故答案为:- 14.【点评】:本题主要考查了对数的运算性质,是基础题.11.(填空题,3分)已知a、b、c均为正实数,则ab+bca2+b2+c2的最大值为___ .【正确答案】:[1] √22【解析】:根据基本不等式的性质,利用a2+ 12 b2≥ √2 ab,12b2+c2≥ √2 bc,即可求出ab+bca2+b2+c2的最大值.【解答】:解:a、b、c均为正实数,则a2+ 12 b2≥ √2 ab,12b2+c2≥ √2 bc,∴ ab+bc a2+b2+c2 = ab+bc(a2+12b2)+(12b2+c2)≤√2(ab+bc)= √22,当且仅当a=c= √22b 时,等号成立,∴ ab+bc a2+b2+c2的最大值为√22.故答案为:√22【点评】:本题考查了利用基本不等式求最值的应用问题,是中档题.12.(填空题,3分)集合A={1,2,4,…,26194}共有 ___ 个数在十进制下的最高位为1.【正确答案】:[1]1859【解析】:由2m的最高位为1,得到2m x(210)n的最高位也为1,构成以指数幂为10的周期性,得到前三个数最高位数字为l的数为20,24,27,结合周期性,即可求解.【解答】:解:若2m的最高位为1,由210=1024,其中210的最高位为1,可得2m×(210)n 的最高位也为1,所以构成以指数幂为10的周期性,其中前三个数最高位数字为1的数为20,24,27,即每个周期内有3个最高位为1的数字,又由26190=20×210×619,26194=24×210×619的最高位为1,所以在集合A={1,2,4…,26194}中最高位为1的共有619×3+2=1859个.故答案为:1859.【点评】:本题考查了进位制,周期性,属于中档题.13.(单选题,4分)设a,b,c,d为实数,下列说法正确的是()A.若a>b,则a2>b2B.若a>b>0,c>d>0,则ac >bdC.若√a>b,则a>b2D.若a>b>0,则a2>ab>b2【正确答案】:D【解析】:根据已知条件,结合特殊值法和作差法,即可求解.【解答】:解:对于A,令a=1,b=-1,满足a>b,但a2=b2,故A错误,对于B,令a=2,b=1,c=2,d=1,满足a>b>0,c>d>0,但ac =bd,故B错误,对于C,令a=1,b=-1,满足√a>b,但a=b2,故C错误,对于D,∵a>b>0,∴a-b>0,a2>b2,∴a2-ab=a(a-b)>0,ab-b2=b(a-b)>0,∴a2>ab>b2,故D正确.故选:D.【点评】:本题主要考查了作差法,以及特殊值法,属于基础题.14.(单选题,4分)已知实数a,b,则“ a+ba−b>0”是“|a|>|b|”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要【正确答案】:C【解析】:由分式不等式转化为整式不等式,结合平方差公式和绝对值不等式,由充分必要条件的定义可得结论.【解答】:解:已知实数a,b,不等式a+ba−b>0等价为(a+b)(a-b)>0,即为a2-b2>0,即a2>b2,即为|a|>|b|,所以“ a+ba−b>0”是“|a|>|b|”的充要条件.故选:C.【点评】:本题考查不等式的性质和充分必要条件的判断,考查转化思想和运算能力、推理能力,属于基础题.15.(单选题,4分)设a=log35,b=log57,则log154945=()A. 2b−1−2a1+aB. 2b−2−a1+aC. 2ab−1−2a1+aD. 2ab−2−a1+a【正确答案】:D【解析】:利用对数的运算性质和换底公式求解.【解答】:解:∵a=log35,b=log57,∴ab=log37,∴ log154945=log1549-log1545=2log157-log155-2log153= 2log715 - 1log515- 2log315= 2log73+log75 - 11+log53- 21+log35= 21ab +1b- 11+1a- 21+a= 2ab1+a - a1+a- 21+a= 2ab−a−21+a,故选:D.【点评】:本题主要考查了对数的运算性质和换底公式的应用,是基础题.16.(单选题,4分)已知实数a,b,c满足|a|+|b|+|c|+|a+b+c|=6,则a2+b2+c2的最大值为()A.3B.9C.18D.27【正确答案】:C【解析】:利用绝对值的性质可知|a|≤3,|b|≤3,|c|≤3,然后取a ,b ,c=±3,不合题意,再取a=3,b=-3,c=0,符合题意,即可得解.【解答】:解:∵6=|a|+|b|+|c|+|a+b+c|≥|(a+b+c )-a-b+c|=2|c|,∴|c|≤3,同理可得|a|≤3,|b|≤3,若a ,b ,c=±3,显然不可能;若a=3,b=-3,c=0,此时符合题意,则a 2+b 2+c 2=18.故选:C .【点评】:本题考查代数式最值的求解,考查绝对值的性质及意义,考查运算求解能力,属于中档题.17.(问答题,6分)若实数x ,y 满足集合{x ,xy ,lg (xy )}与集合{0,|x|,y}相等,求x ,y 的值.【正确答案】:【解析】:由集合{x ,xy ,lg (xy )}与集合{0,|x|,y}相等知,xy=1,此时,{0,1,x}={0,|x|,y},由此能够求出x ,y 的值.【解答】:解:由集合{x ,xy ,lg (xy )}与集合{0,|x|,y}相等知,lg (xy )=0,即xy=1,此时,{0,1,x}={0,|x|,y}.所以 {x =|x |xy =1y =1或 {x =y xy =1|x |=1 , 解得x=y=1或x=y=-1.当x=y=1时,A=B={0,1,1},与集合元素互异性矛盾,应舍去;当x=y=-1时,A=B={-1,0,1},故x=y=-1.【点评】:本题考查集合相等的概念,是基础题.解题时要认真审题,仔细解答,注意集合中元素互异性的合理运用.18.(问答题,8分)解下列不等式:(1)x2-5x+7<|2x-5|;(2)√x−1 +2x<5.【正确答案】:【解析】:(1)结合不等式的特征,利用函数的对称性去掉绝对值符号求解不等式即可;(2)将不等式进行变形,然后结合函数的单调性和函数在特殊点的函数值可得不等式的解集.时,不等式即:x2-5x+7<2x-5,【解答】:解:(1)当x≥52整理可得x2-7x+12<0,解得3<x<4,令f(x)=x2-5x+7,g(x)=2x-5对称,注意到函数f(x),g(x)均关于直线x=52时不等式的解集为1<x<2,由函数的对称性可得当x<52综上可得,不等式的解集为(1,2)⋃(3,4).(2)不等式即√x−1<−2x+5,不等式有解时,x≥1,注意到函数f(x)=√x−1单调递增,函数g(x)=-2x+5单调递减,且f(2)=g(2)=1,结合函数的定义域可得不等式√x−1<−2x+5的解集为{x|1≤x<2}.【点评】:本题主要考查含有绝对值不等式的解法,对称性的应用,函数单调性的应用等知识,属于中等题.19.(问答题,10分)已知正实数x,y满足xy+2x+y=4,(1)求xy的最大值,并求取得最大值时x,y的值;(2)求x+y的最小值,并求取得最小值时x,y的值.【正确答案】:【解析】:(1)由已知得4-xy=2x+y ,然后结合基本不等式即可求解;(2)由已知先用y 表示x ,然后代入后结合基本不等式可求.【解答】:解:(1)因为xy+2x+y=4,所以4-xy=2x+y ≥2√2xy ,当且仅当2x=y 时取等号,解得 √xy ≤√6−√2 ,故xy 的最大值8-4 √3 ,此时x= √3−1 ,y=2 √3 -2;(2)因为xy+2x+y=4,所以x= 4−y y+2 =-1+ 6y+2 ,所以x+y=-1+ 6y+2 +y=-3+ 6y+2+y+2 ≥−3+2√(y +2)•6y+2 =-3+2 √6 , 当且仅当y+2= 6y+2 ,即y= √6 -2,x= √6 -1时取等号,x+y 的最小值-3+2 √6 .【点评】:本题主要考查了利用基本不等式求解最值,解题的关键是进行合理的配凑基本不等式的应用条件.20.(问答题,10分)某厂家在“双11”中拟举办促销活动,经调查测算,该产品的年销售量(即该厂家的年产量)x 万件与年促销费用m 万元(m≥0)满足关系式x=3- k m+1 (k 为常数),如果不搞促销活动;则该产品的年销售量是1万件.已知生产该产品的固定年投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的售价定为每件产品年平均成本的1.5倍(产品成本只包括固定投入和再投入两部分资金).(1)求k 的值,并将该产品的年利润y (万元)表示为年促销费用m (万元)的函数;(2)该厂家年利润的最大值为多少万元?为此需要投入多少万元的年促销费用?【正确答案】:【解析】:(1)当m=0时,x=1,求出k的值,从而得到x,然后利用每件产品的销售价格元,列出y的函数关系式即可;为1.5× 8+16xx(2)利用基本不等式求解最值,即可得到答案.【解答】:解:(1)由题意可知,当m=0时,x=1,则1=3-k,解得k=2,,所以x=3- 2m+1元,因为每件产品的销售价格为1.5× 8+16xx]-(8+16x+m)∴利润函数y=x[1.5× 8+16xx)-m=4+8x-m=4+8(3- 2m+1+(m+1)]+29(m≥0).=-[ 16m+1+(m+1)]+29(m≥0),(2)因为利润函数y=-[ 16m+1+(m+1)≥2 √16 =8,所以,当m≥0时,16m+1=m+1,即m=3(万元)时,y max=21(万元).∴y≤-8+29=21,当且仅当16m+1所以,该厂家促销费用投入3万元时,厂家的利润最大,最大为21万元.【点评】:本题考查了函数模型的选择与应用,解题的关键是建立符合条件的函数模型,分析清楚问题的逻辑关系是解题的关键,此类问题求解的一般步骤是:建立函数模型,进行函数计算,得出结果,再将结果反馈到实际问题中指导解决问题,考查了逻辑推理能力与化简运算能力,属于中档题.21.(问答题,14分)已知实数a,b,c,d不全为0,给定函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.记方程f(x)=0的解集为A,方程g(f(x))=0的解集为B,若满足A=B≠∅,则称f(x),g(x)为一对“太极函数”.问:(1)当a=c=d=1,b=0时,验证f(x),g(x)是否为一对“太极函数”;(2)若f(x),g(x)为一对,“太极函数”,求d的值;(3)已知f(x),g(x)为一对“太极函数”,若a=1,c>0,方程f(x)=0存在正根m,求c的取值范围(用含有m的代数式表示).【正确答案】:【解析】:(1)根据新定义检验即可;(2)利用新定义计算求解可得d的值;(3)设t=−cm x2+cx,由新定义得关于t的方程t2−cmt+c=0无实根,记ℎ(t)=t2−cmt+c,由二次函数性质求得t的范围,由h(t)min>0可得c的范围.【解答】:解:(1)若f(x),g(x)是否为一对“太极函救”,由f(x)=x+1=0,得x=-1,所以g(f(-1))=g(0)=1,x=-1不是g(f(x))的零点,所以f(x),g(x)不是一对太极函救;(2)设r为方程的一个根,即f(r)=0,由题设g(f(r))=0,所以g(0)=g(f(r))=d=0;(3)因为d=0,由a=1,f(m)=0得b=−cm,所以f(x)=bx2+cx=−cm x2+cx,g(f(x))=f(x)[f2(x)−cmf(x)+c],由f(x)=0得x=0或m,易得g(f(x))=0,据题意,g(f(x))的零点均为f(x)的零点,故f2(x)−cmf(x)+c=0无实数根,设t=−cm x2+cx,则t2−cmt+c=0无实根,记ℎ(t)=t2−cmt+c,c>0时,t=−cm (x−m2)2+mc4≤mc4,ℎ(t)=t2−cmt+c=(t−c2m)2+c−c24m2,mc 4≤c2m,即0<m≤√2时,ℎ(t)min=ℎ(mc4)=m2c216−c24+c>0,解得0<c<164−m2,mc 4>c2m,即m>√2时,ℎ(t)min=ℎ(c2m)=c−c24m2>0,0<c<4m2,综上,m∈(0,√2]时,c∈(0,164−m2),m∈(√2,+∞)时,c∈(0,4m2).【点评】:本题主要考查新定义的理解与应用,函数的最值的求解,分类讨论的数学思想,二次函数的最值等知识,属于中等题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市浦东新区2020学年第一学期普通高中期中联考高一数学试卷
总分: 100分 时间:90分钟
一、填空题(共12个小题,每题3分,满分36分)
1. 已知全集U {}2,x x x R =≤∈,{}1A x x =<-,那么U C A =
2. 若1∈{}2,a a , 则a 的值是
3. 集合{}0,1,2,4M =,则集合M 的非空真子集的个数是_______________
4. 已知集合A={()2,x y y x =},集合B={(),2x y y x =-},求A B =I ________________
5. 不等式21x
≤的解集是________________ 6. 已知M={21y y x =--},N={245y y x x =-+},则M N =U _____________________
7. 若7x y +≠,则3x ≠或4y ≠,它是____________(“真命题”或“假命题”)
8. 已知A {}32,x x x R =-≤≤∈,B {}x x a =>满足A B ⊆,则实数a 的取值范围是___________
9. 已知2x >,则52
x x +-的最小值是___________ 10. 已知{}2560A x x x =+-=,{}
10B x ax =-=,若A B A =U ,则a 的值是___________ 11. 已知21,,a b R a b +∈+=、则11a b
+的最小值为___________ 12. 定义:关于x 的不等式||x A B -<的解集叫A 的B 邻域。

若2a b +-的a b +邻域 为区间(2,2)-,则22a b +的最小值是
二、选择题(共4个小题,每小题3分,满分12分)
13. 已知..a b c R ∈,命题“ac bc =”是“a b =”的( )
A .充要条件 B.充分非必要条件 C.必要非充分条件 D. 非充分非必要条件
14. 下列表述中错误的是( )
A .若A
B A B A =⊆I 则, B .若B A B B A ⊆=,则Y
C .)
(B A I A )(B A Y D .()()()B C A C B A C U U U Y I =
15. 若
011<<b
a ,则下列结论不正确的是 ( ) A .22
b a < B .2b ab < C .2>+b
a a
b D .||||||b a b a +>+ 16. 某个命题与自然数n 有关。

如果当n=k (k N ∈)时命题成立,那么可推得当n=k+1时该命题也成立。

现已知当n=5时该命题不成立,那么可推得( )
A .当n=6时该命题不成立 B. 当n=6时该命题成立
C. 当n=4时该命题不成立
D. 当n=4时该命题成立
三.解答题(满分52分)
17.(本题满分9分)解不等式组231621x x x
⎧-≤⎪⎨-≥⎪⎩ 18.(本题满分9分)已知命题:37,x α-≤<:121,k x k β+≤≤-命题且α是β的必要条件,求实数k 的取值范围。

19. (本小题满分10分)如图设计一幅矩形宣传画,要求画面..
面积为4840 cm 2,画面上下边要留8cm 空白,左右要留5cm 空白,怎样确定画面的高与宽的尺寸,才能使宣传画面所用纸张..
面积最小?
20. (本题满分12分)若关于x 的不等式20ax bx c ++>的解集为1,12⎛⎫ ⎪⎝⎭,求20bx ax c -+<的解集。

21. (本题满分12分)若不等式220x x -->的解集为A ,不等式2
25250()x a x a +++<的解集为B ,
(1)求集合A 、B
(2)若{}2A B Z =-I I ,求实数a 的取值范围.
2020学年第一学期期中联考
高一年级数学参考答案
一.填空题:
1.[]2,1-
2. -1
3. 14
4. ()(){}1,14,2-
5. ()[)+∞∞-,20,Y
6. (][)
+∞-∞-,11,Y 7.真 8. 3-<a 9. 252+ 10. 6
1-,1,0 11.322+ 12.2
二.选择题:
13.C 14. C 15. D 16.C
三.解答题:
17.解:3
735613≤≤-⇒≤-x x ……………………….3分 1122=⇒≥-x x x …………………………………6分
故原不等式组的解集为:{}1=x x ……………………………9分
18.解:设A={}73-<≤x x , B={}
121k -≤≤+k x x A B ⊆⇒∴的必要条件是βαΘ
∅≠∅=∴B B 或
当=∅B 时, 2121k <⇒->+k k --------------3分
时当∅≠B ,⎪⎩⎪⎨⎧<--≥+-≤+7123
1121k k k k ⇒⎪⎩
⎪⎨⎧<-≥≥442k k k ⇒42<≤k --------------7分 综上4<k --------------------------------9分
19. 解:设画面高为x cm ,宽为y cm ,依意有4840=xy ,0,0>>y x --------2

则所需纸张面积1601016)10)(16(+++=++=x y xy y x S ,
即x y S 10165000++=, --------4

4840,0,0=>>xy y x Θ
67604840160216021016=⨯=≥+∴xy x y -----------6分
当且仅当x y 1016=,即55,88==y x 时等号成立。

-----------8
分 即当画面高为88cm ,宽为55cm 时,所需纸张面积最小为6760cm 2 - -------10分
20. 解:由题意得: ⎪⎪⎪⎩⎪⎪⎪⎨⎧==-<21
230a c a b a ……………………………………………3分 012302123212322<-+⇒<+--⇒⎪⎪⎪⎩
⎪⎪⎪⎨⎧=-==⇒x x a ax ax a c a b a a …………………9分
()()⎭⎬⎫⎩
⎨⎧<<-⇒<+-⇒3110113x x x x ………………………………12分
21.解: (1)
()()()()+∞-∞-=⇒>+-⇒>--,21,012022Y A x x x x ………3分
()()⇒<++⇒<+++05205)25(22a x x a x a x
5255,2
255,22a B a a a a ⎧∅=⎪⎪⎪⎛⎫=--<⎨ ⎪⎝⎭⎪⎪⎛⎫-->⎪ ⎪⎝⎭⎩
当当当……………………………………………………………6分
(2) {}2A B Z =-Q I I 当52a =
时,B =∅显然不成立 当52a >时,52,B a ⎛⎫=-- ⎪⎝
⎭显然不成立 当52a <时,52,B a ⎛⎫=-- ⎪⎝⎭,{}2A B Z =-Q I I 2332a a ∴-<-≤⇒-≤< 综上,a 的取值范围是32a -≤<………………………………………………………6分。

相关文档
最新文档