_《高等数学》(下)复习提纲(本科)
大一高数下册知识点框架

大一高数下册知识点框架在大一的高等数学下册中,学生们将进一步学习和掌握一系列高数的重要知识点。
本文将为您提供大一高数下册的知识点框架,以便于您对该学期的学习内容有一个全面的了解。
一、多元函数及其极限1. 二元函数的概念与表示2. 二元函数的极限与连续性3. 多元函数的极限与连续性4. 二元函数的偏导数与全微分二、多元函数的微分学1. 多元函数的偏导数与全微分的概念2. 多元函数的微分法则与高阶偏导数3. 隐函数与参数方程的求导4. 多元函数的泰勒展开式三、多元函数的积分学1. 重积分的概念与性质2. 二重积分的计算方法3. 三重积分的计算方法4. 曲线与曲面的面积四、向量代数与空间解析几何1. 向量的基本概念与运算2. 空间直线与平面的方程3. 空间曲线的参数方程与切向量4. 空间曲面的方程与切平面五、微分方程1. 常微分方程的基本概念与解法2. 一阶线性微分方程及其应用3. 高阶线性常微分方程及其应用4. 非齐次线性微分方程的常数变易法六、级数1. 数项级数的概念与性质2. 收敛级数的判定方法3. 幂级数的收敛半径与收敛域4. 泰勒级数与函数的展开七、常微分方程初步1. 常微分方程的基本概念与解法2. 可化为常微分方程的高阶微分方程3. 高阶线性微分方程的常数变易法4. 常微分方程的应用问题八、多元函数微分学应用1. 多元函数的条件极值与最值2. 线性规划与凸集3. 多元函数在工程与物理问题中的应用4. 二重积分在平面图形中的应用九、场论初步1. 初等矢量场2. 偏导数与梯度3. 散度与旋度4. 基本定理与应用以上为大一高数下册的知识点框架,希望对您的学习有所帮助。
通过系统地学习这些知识点,并进行大量的练习与应用,相信您将能够顺利掌握高等数学下册的内容,并取得优异的成绩。
祝您学业进步!。
高等数学下册考试提纲

高等数学下册考试提纲第一篇:高等数学下册考试提纲高等数学下册考试提纲一、二元函数求极限二、求向量投影,已知一定条件求平面方程三、求方向导数最大值(梯度的模),隐函数求一阶偏导,多元抽象复合函数求二阶偏导四、二元分段函数在分界点连续,偏导数、可微性判断五、交换二重积分次序;二重积分在直角坐标计算六、三重积分计算(球面坐标)七、第一类曲线积分计算;第二类曲线积分计算(利用曲线积分与路径无关或格林公式)八、第一类曲面积分计算;第二类曲面积分计算(利用高斯公式)九、求数项级数的和;求幂级数的收敛域与和函数十、数项级数敛散性判断;利用比较法证明数项级数收敛十一、利用条件极值求最大、最小值在几何上的应用题第二篇:《高等数学》考试大纲《高等数学》考试大纲――各专业(工科及管理类专业)适用1.极限与连续数列极限和函数极限的概念和性质,函数的左、右极限概念,无穷小的概念及性质,无穷小与无穷大的关系,无穷小的比较,极限的四则运算,极限存在准则与两个重要极限,利用存在准则1及两个重要极限求极限。
函数连续的概念及运算,函数间断点及其分类,初等函数的连续性,利用初等函数的连续性求极限,闭区间上连续函数的性质。
2.导数与微分导数的概念,几何意义,可导与连续的关系,基本初等函数的导数公式,导数的四则运算,反函数的导数,复合函数的求导法则,隐函数的求导方法,对数求导法,高阶导数及其计算。
微分的概念,微分基本公式,微分运算法则,微分形式不变性,微分的计算。
3.中值定理及其导数应用罗尔定理、拉格朗日中值定理、柯西中值定理,利用洛必塔(罗彼塔)法则求极限。
函数单调性的判别法,函数单调区间的求法及利用单调性证明不等式,函数取极值的判别法及极值求法,函数最大值与最小值的求法,最值应用。
曲线的凹(上凹)、凸(下凹)的判别法,曲线凹(上凹)、凸(下凹)区间及拐点的求法。
4.不定积分原函数和不定积分的概念,不定积分的基本性质,基本积分公式,不定积分的第一、第二换元积分法,分部积分法,简单有理函数及无理函数的不定积分求法。
高等数学下册复习资料

高等数学下册复习资料高等数学下册是一门重要的大学数学课程,也是有挑战性的一门课程。
学生们需要透彻地掌握这门课程的基本概念、理论和实际应用,才能够为以后的学习和工作做好充分的准备。
因此,复习高等数学下册是非常必要的。
一、复习重点1.微分方程微分方程是高等数学下册中比较难理解和掌握的知识点之一。
在这个部分中,学生们需要掌握常微分方程及其解法、初始值问题、高阶微分方程、齐次方程和非齐次方程等。
2.多元函数微积分学多元函数微积分学是高等数学下册的另一个难点,包括多重积分、曲线积分、曲面积分、矢量场的线积分和面积分等。
3.线性代数线性代数是高等数学下册另一个重要的知识点。
这个部分需要学生们掌握线性空间、矩阵、行列式和特征值及其应用、线性方程组及其应用等。
二、复习方法1.理解基本概念和理论高等数学下册有很多基本的概念和理论,这些知识点是这门课程的基础。
学生们需要花费足够的时间来学习和理解这些概念和理论,从而能够透彻地掌握整个课程。
2.做题巩固知识点在学习中,做题是非常重要的一部分。
学生们需要选择一些代表性和难度适当的例题和习题来练习,从而加深对知识点的理解和掌握。
同时,做题也可以帮助学生们检查自己的学习效果。
3.查阅资料和参考书籍在复习过程中,学生们可以查阅相关资料和参考书籍,例如高等数学下册的教材、辅读书和网上资料等。
通过阅读和学习这些资料,学生们可以更深入地了解和掌握相关知识点。
4.参加辅导课和讨论小组参加辅导课和讨论小组,可以让学生们更好地交流和学习。
在这个过程中,学生们可以和老师和同学们一起讨论和解决问题,不断提高自己的学习能力。
三、总结复习高等数学下册需要花费足够的时间和精力,但是这个过程是非常重要的。
通过理解基本概念和理论、做题巩固知识点、查阅资料和参考书籍、参加辅导课和讨论小组等方法,学生们可以逐渐掌握高等数学下册的知识点,为以后的学习和工作打下坚实的基础。
高等数学下册知识点归纳

高等数学下册知识点归纳
高等数学下册的知识点主要包括以下内容:
1. 向量的模、方向角、投影:向量的模是表示向量大小的度量,方向角和方向余弦是描述向量方向的量,投影则是描述向量在另一个向量上的投影。
2. 两向量的数量积、向量积:数量积是两个向量的点乘,结果是一个标量;向量积是两个向量的叉乘,结果是一个向量。
3. 平面及其方程:平面的一般方程、点法式方程等都是描述平面的重要方式。
4. 空间直线及其方程:空间直线的方程包括对称式方程、参数方程等。
5. 空间曲线的切线与法平面:空间曲线的切线方程和法平面方程是描述空间曲线的重要方式。
6. 曲面的切平面与法线:曲面的切平面和法线是描述曲面在某一点的切线和方向的重要方式。
7. 全微分:全微分是函数在某一点的变化率的度量,包括一阶偏导数和高阶偏导数。
8. 偏导计算:偏导数是函数在某个变量上的变化率,对于多元函数来说,偏导数是重要的概念。
9. 二元函数的极限:二元函数的极限是描述函数在某个点附近的性质的重要方式,包括极限的求解和证明。
10. 二重积分:二重积分是计算二维区域上的积分的重要方式,包括定积分和反常积分。
以上是高等数学下册的一些主要知识点,掌握这些知识点有助于理解和应用高等数学的基本概念和方法。
高等数学-下期末复习提纲 PPT课件

易得最大值、最小值分别为 f (3, 0) 9, f (0, 0) 0 .
第四章 多元函数积分学
重 点 二重积分计算(直角系与极坐标)、三重积分计算 (直角系、柱坐标系、球坐标系)、利用三重积分 求物体体积与质量.
再见!
x0
ln(
y
x)
y 1
y 1
x
ln(1
0)
1
1 02
1.
例8、设
z
4x3
3x2
y
3xy 2
x
y
,
求
2z x2
,
2z .
yx
解 z 12x2 6xy 3y 2 1,
x
z 3x2 6xy 1;
例7、求下列函数的极限
(1)
lim (x2
x0
y2
)sin
x2
1
y2
;
y0
解
lim( x 2
x0
y2 ) sin
x2
1
y2
lim u sin 1
u0
u
0,
其中u
=
x2
y2;
y0
(2) limln( y x)
y
.
xy01
1 x2
解
lim
与球面
所围立体.
高数下册复习提纲

第7章:微分方程一、微分方程的相关概念1. 微分方程的阶数:方程中所含未知函数导数的最高阶数叫做微分方程的阶.2. 微分方程的解:使微分方程成为恒等式的函数称为微分方程的解.通解:所含独立的任意常数的个数与方程的阶数相同的解称为微分方程的通解. 特解:确定了任意常数的通解称为微分方程的特解.3. 特解与通解的关系:可通过初始条件确定通解中的常数而得到满足条件的特解; 也可通过方程的表达式直接观察得到特解,因此特解不总包含在通解中. 二、微分方程的常见类型及其解法 1. 可分离变量的微分方程及其解法 (1).方程的形式:dx x f dy y g )()(=.(2). 方程的解法:分离变量法(3). 求解步骤①. 分离变量,将方程写成dx x f dy y g )()(=的形式;②. 两端积分:⎰⎰=dx x f dy y g )()(,得隐式通解C x F y G +=)()(;③. 将隐函数显化. 2. 齐次方程及其解法 (1).方程的形式:⎪⎭⎫ ⎝⎛=x y dx dy ϕ. (2).方程的解法:变量替换法 (3). 求解步骤①.引进新变量x y u=,有ux y =及dxdux u dx dy +=; ②.代入原方程得:)(u dxdux u ϕ=+;③.分离变量后求解,即解方程xdxu u du =-)(ϕ;④.变量还原,即再用xy代替u . 3. 一阶线性微分方程及其解法 (1).方程的形式:)()(x Q y x P dxdy=+. 一阶齐次线性微分方程:0)(=+y x P dxdy.一阶非齐次线性微分方程:0)()(≠=+x Q y x P dxdy. (2).一阶齐次线性微分方程0)(=+y x P dxdy的解法: 分离变量法. 通解为⎰-=x d x P Ce y )(,(R C ∈).(公式)(3).一阶非齐次线性微分方程0)()(≠=+x Q y x P dxdy的解法: 常数变易法. 对方程)()(x Q y x P dxdy=+,设⎰-=x d x P e x u y )()(为其通解,其中)(x u 为未知函数, 从而有 ⎰---'=⎰x d x P x d x P e x P x u x u dxdy)()()()(e )(,代入原方程有 )()()()()(e)()()()(x Q e x u x P e x P x u x u x d x P x d x P xd x P =+-'⎰-⎰--⎰,整理得 ⎰='x d x P x Q x u )(e )()(,两端积分得 C dx e x Q x u x d x P +=⎰⎰)()()(,再代入通解表达式,便得到一阶非齐次线性微分方程的通解))(()()(C dx e x Q e y x d x P x d x P +=⎰⎰⎰-dx e x Q e Ce x d x P x d x P x d x P ⎰⎰⎰-⎰-+=)()()()(,(公式)即非齐次线性方程通解=齐次线性方程通解+非齐次线性方程特解.三、可降阶的高阶微分方程1. )()(x f y n =型接连n 次积分,可得此方程的含有n 个相互独立的任意常数的通解. 2. ),(y x f y '=''型令p y =',则dxdpy ='',代入原方程,并依次解两个一阶微分方程便可得此方程的通解. 3. ),(y y f y '=''型令p y =',则dy dp p dx dy dy dp dx dp y =⋅=='',代入原方程,得到一阶微分方程),(p y f dydp p =.解此一阶微分方程,得到),(1C y p y ϕ==',然后分离变量并积分便可得此方程的通解.第8章 向量与解析几何222cos A C A θ=+⋅第9章 多元函数微分法及其应用一、基本概念 1.多元函数(1)知道多元函数的定义n 元函数:),,,(21n x x x f y = (2)会求二元函数的定义域1°:分母不为0; 2°:真数大于0;3°:开偶次方数不小于0; 4°:u z arcsin =或u arccos 中||u ≤1 (3)会对二元函数作几何解释 2.二重极限A y x f y y x x =→→),(lim 0这里动点),(y x 是沿任意路线趋于定点),(00y x 的.(1) 理解二重极限的定义(2) 一元函数中极限的运算法则对二重极限也适用,会求二重极限; (3) 会证二元函数的极限不存在(主要用沿不同路径得不同结果的方法). 3.多元函数的连续性(1)理解定义:)()(lim 00P f P f P P =→.(2)知道一切多元初等函数在其定义域内连续的结论;(3)知道多元函数在闭区域上的最大最小值定理、介值定理。
高等数学(下)知识点总结归纳

欢迎共阅高等数学(下)知识点主要公式总结第八章空间解析几何与向量代数 1、二次曲面1)椭圆锥面:22222z b y a x =+ 2)3)4)5)6)(二) 1、法向量:n2、3、两平面的夹角:),,(1111C B A n =,),,(2222C B A n =,⇔∏⊥∏210212121=++C C B B A A ;⇔∏∏21//212121C C B B A A ==4、点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:(三) 空间直线及其方程 1、一般式方程:⎪⎩⎪⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A2、对称式(点向式)方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s =,过点),,(000z y x3、两直线的夹角:),,(1111p n m s = ,),,(2222p n m s =,⇔⊥21L L 0212121=++p p n n m m ;⇔21//L L 212121p p n n m m ==4、直线与平面的夹角:直线与它在平面上的投影的夹角,2、 微分法1)复合函数求导:链式法则若(,),(,),(,)z f u v u u x y v v x y ===,则z z u z v x u x v x ∂∂∂∂∂=⋅+⋅∂∂∂∂∂,z z u z v y u y v y∂∂∂∂∂=⋅+⋅∂∂∂∂∂ (二) 应用1)求函数),(y x f z =的极值解方程组⎪⎩⎪⎨⎧==0y x f f 求出所有驻点,对于每一个驻点),(00y x ,令),(00y x f A xx =,),(00y x f B xy =,),(00y x f C yy =,① 若AC ② 若AC ③ 若AC 2、 1)曲线⎪⎪⎩⎪⎪⎨⎧Γ:z y x 2) 曲面:∑(一) 二重积分:几何意义:曲顶柱体的体积1、 定义:∑⎰⎰=→∆=nk k k kDf y x f 1),(lim d ),(σηξσλ2、 计算: 1)直角坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=b x a x y x y x D )()(),(21ϕϕ,21()()(,)d d d (,)d bx ax Df x y x y x f x y y φφ=⎰⎰⎰⎰⎭⎬⎫⎩⎨⎧≤≤≤≤=d y c y x y y x D )()(),(21φφ,21()()(,)d d d (,)d d y c y Df x y x y y f x y x ϕϕ=⎰⎰⎰⎰2) 极坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=βθαθρρθρθρ)()(),(21D ,21()()(,)d d (cos ,sin )d Df x y x y d f βρθαρθθρθρθρρ=⎰⎰⎰⎰(二) 三重积分1、 定义:∑⎰⎰⎰=→Ω∆=nk kk k kv f v z y x f 1),,(limd ),,(ζηξλ2、 计算: 1)⎰⎰⎰Ωx f ,(⎰⎰⎰Ωx f (2)⎪⎪⎩⎪⎪⎨⎧===zz y x ρρ3)(三) 应用曲面z S :(一) 1、 2、设,(y x f 在曲线弧上有定义且连续,的参数方程为),(ψ⎪⎩⎨=t y ,其中在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ,则(二) 对坐标的曲线积分 1、定义:设L 为xoy 面内从A 到B 的一条有向光滑弧,函数),(y x P ,),(y x Q 在L 上有界,定义∑⎰=→∆=nk kk k Lx P x y x P 1),(lim d ),(ηξλ,∑⎰=→∆=nk kk kLy Q y y x Q 1),(lim d ),(ηξλ.欢迎共阅向量形式:⎰⎰+=⋅LLy y x Q x y x P r F d ),(d ),(d2、计算:设),(,),(y x Q y x P 在有向光滑弧L 上有定义且连续,L 的参数方程为):(),(),(βαψϕ→⎪⎩⎪⎨⎧==t t y t x ,其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ,则 3、两类曲线积分之间的关系:设平面有向曲线弧为⎪⎩⎪⎨⎧==)()( t y t x L ψϕ:,L 上点),(y x 处的切向量的方向角为:βα,,cos α=则LP ⎰(三) 1、则有⎰⎰D 2、G 则x Q ∂∂(四) 1、 设∑定义⎰⎰∑2、:z =∑,xy ,则(五) 对坐标的曲面积分 1、 定义:设∑为有向光滑曲面,函数),,(),,,(),,,(z y x R z y x Q z y x P 是定义在∑上的有界函数,定义1(,,)d d lim (,,)()ni i i i xy i R x y z x y R S λξηζ∑→==∆∑⎰⎰同理,1(,,)d d lim (,,)()ni i i i yz i P x y z y z P S λξηζ∑→==∆∑⎰⎰;01(,,)d d lim (,,)()ni i i i zx i Q x y z z x R S λξηζ∑→==∆∑⎰⎰2、性质:1)21∑+∑=∑,则计算:——“一投二代三定号”),(:y x z z =∑,xy D y x ∈),(,),(y x z z =在xy D 上具有一阶连续偏导数,),,(z y x R 在∑上连续,则(,,)d d [,,(,)]d d x yD R x y z x y R x y z x y x y ∑=±⎰⎰⎰⎰,∑为上侧取“+”,∑为下侧取“-”.3、 两类曲面积分之间的关系:其中γβα,,为有向曲面∑在点),,(z y x 处的法向量的方向角。
高等数学复习提纲(第二学期)

dz z du z dv z dw 。 dt u dt v dt w dt
注意:一元函数的导数用 d ,多元函数的偏导数用 。 4.3 设 z f (u , v), u ( x, y ), v ( x, y ), 则复合函数 z f (( x, y ), ( x, y )) 关于 x 和 y 的偏导数
6. 平面的“一般”方程:一般的, x, y, z 的一次方程 Ax By Cz D 0 表示平面,且 x, y, z 的系数所构成的向
量 n ( A, B, C ) 为所表示平面的法向量。
7. 直线的一般方程 设平面 1 的方程为 A1 x B1 y C1 z D1 0 ,平面 2 的方程为 A2 x B2 y C2 z D2 0 ,如果两平面不平行, 则交线方程为
2 2 ay az2 ,与 a 同方向的单位向量 设向量 a (ax , a y , az ) R 3 ,则 a 的模 | a | ax
1 1 ea a (ax , a y , az ) 。 |a| |a|
2. 数量积 p14, 两向量之间的夹角 p16, 方向角,方向余弦
n ( Fx ( x0 , y0 , z0 ), Fy ( x0 , y0 , z0 ), Fz ( x0 , y0 , z0 )) 。
根据“点法式”, M 点处的切平面方程为
Fx ( x0 , y0 , z0 )( x x0 ) Fy ( x0 , y0 , z0 )( y y0 ) Fz ( x0 , y0 , z0 )( z z0 ) 0 。
a y az a a b a b x . bx by bz
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等数学》(下册)复习提纲
复 习 题
1.求与平面230x +y +z +=1π:及2310x +y z +=-2π:都平行且过点(1,0,1)P -的直线方程。
2.求与直线240,:2320.
x +y z +=l x +y +z =-⎧⎨
-⎩垂直,且过点P(-1,0,1)的平面方程。
3.函数)
1ln(4)2arcsin(2
2
2
y x y
x x z ---+
=的定义域为 。
4.求极限:xy
xy y x 42lim
+-
→→。
5.证明极限
2
(,)(0,)
lim x y x y x
→- 0不存在。
6.计算偏导数:(1)x
y z arcsin
=,求
2
2
z x
∂∂;
(2)设 ),(2
x
y x f y z =,求
z z x y
∂∂∂∂,。
7.求x
y e z =在点(1,2)的全微分。
8.设y
z z x ln
=,求 ,
z z x y ∂∂∂∂。
9.求曲面3=+-xy z e z 在点)0,1,2(处的切平面及法线方程。
10.求曲线22230,
23540.x y z x x y z ⎧++-=⎨-+-=⎩
在点)1,1,1(处的切线和法平面方程。
11.求函数222u x y z =++在曲线32 , ,t z t y t x ===点)1,1,1(处沿曲线在该点的切线正向的
方向导数。
12.求(,,)sin()f x y z xyz xyz =的梯度。
13.求椭圆2225160x xy y y ++-=到直线80x y +-=的最短距离。
14.交换积分次序:⎰
⎰-2
2
1
0 ),(y y
dx y x f dy 。
15.计算积分:(1)sin D
x dxdy x
⎰⎰
,其中D 是由直线y x =及抛物线2
y x =所围成的区域;
(2)dxdy y x D
⎰⎰
+2
2,D :}2|),{(2
2
y y
x y x ≤+;
(3)⎰⎰⎰Ω
+dv z x )(, Ω:球面2224x y z ++=与抛物面22
3x y z +=所围成的区域。
16.设)(x f 连续,2)(10
=⎰dx x f ,求⎰⎰10
1
)()(x
dy y f x f dx 。
17
.求曲面2z =-2
2
y x
z +=所围的立体体积。
18.计算积分:(1)⎰+L
ds y x )(2
2
,L 为下半圆周21x y --=;
(2)dy y x dx y xy L
)()(2
2++-⎰,L 为抛物线2
x y =从(0,0)到(1,1)的一段有向弧;
(3)dy x y e dx y x y e x
L
x )cos ()sin (-+--⎰,其中L 是在圆周2
2x
x y -=
上由点
(2,0)到(0,0)的一段弧。
19.验证()dy y xy y x dx y xy x )33(35222324+-+-+某一函数的全微分,并求这样的一个
函数(),u x y 。
20
.求锥面z =
被柱面x y x 22
2=+所截得的有限部分的曲面面积。
21.计算曲面积分:(1)⎰⎰∑
++ds z y x )(,∑为球面1222=++z y x 上2
1≥
z 的部分;
(2) dxdy y x xdydz z y )()(-+-⎰⎰∑
,其中∑是)30(122≤≤=+z y x 与3,1==z z 所
围成的封闭曲面的外侧;
(3) zdxdy dydz z x ++⎰⎰∑
)2(,其中∑是曲面)10(22≤≤+=z y x z 的下侧。
22.用高斯公式计算曲面积分:zdxdy dydz z x ++⎰⎰∑
)2(,其中∑是旋转抛物面锥面
)10(2
2≤≤+=z y x z 的下侧。
23.在过点(0,0)O 和(,0)A π的曲线族x a y sin = (0)a >中,求一条曲线L ,使得沿该曲线
从点O 到点A 的积分3(1)(2)L
y dx x y dy +++⎰的值为最小。
24. 判定敛散性:(1))1cos
1(1
∑∞
=-n n
; (2)∑∞
=--11
1sin )
1(n n n
; (3))11ln(1)1(1n n n n
+-∑∞
=。
25. 判定级数条件收敛、绝对收敛:(1)∑∞
=--1
11sin
)1(n n n
; (2))11ln(1)1(1
n
n
n n
+
-∑∞
=。
26. 求幂级数的收敛域及和函数:(1)∑∞
=+0
1
n n
n x
; (2)11
)1(-∞
=∑+n n x n n 。
27. 将
2
312
++x x 和x e x )4(+分别展成4+x 的幂级数。
28.将x x f =)()0(π≤≤x 分别展开成正弦级数和余弦级数。
29.求微分方程的通解:(1)x
e
x y y y --=-'-'')1(32; (2)x e y y y x
2cos 52=+'-''。
30.求微分方程的特解:20, (0)0, (0)1y y y y y ''''++===。
31.设曲线积分⎰+c
dy x f dx x yf )]()(在右半平面(0)x >内与路径无关,其中()f x 可导,且
(1)1f =,求()f x 。