偏心受压3

合集下载

第三章第三节拱桥计算2

第三章第三节拱桥计算2
平力大小相等,方向相反,即可抵消弹性压缩及混凝土收缩在拱顶拱脚产 生的弯矩值。
悬链线拱轴线与三铰拱压力线存在近似波形的自然偏离, 据此道理,三铰拱压力线基础上根据实际情况再叠加一个正弦 波形调整拱轴线,用逐次逼近法使弹压砼收缩产生的不利弯矩 为最小。
九、考虑几何非线性的拱桥计算简介
➢ 在线弹性条件下,一般拱桥内力与变形计算结果 和实际不会产生太大误差,随着拱桥跨度增大, 这种由于非线性引起的误差会增大;
(1)假载法调整内力 (2)用临时铰调整内力 (3)改变拱轴线调整内力
(1)假载法调整内力
所谓假载法调整内力,就是在计算跨径、 计算矢高和拱圈厚度保持不变的情况下,通 过改变拱轴系数的数值来改变拱轴线形状, m调整幅度一般为半级或一级。
( y1/4 相差0.01为一级) f
(1)假载法调整内力
实腹拱的内力调整
八、主拱内力调整
• 悬链线无铰拱在最不利荷载组合时,常常 出现拱脚负弯矩或拱顶正弯矩过大的情况, 为了减小它们,可从设计、施工方面采取 措施调整拱圈内力。
(1)假载法调整内力 (2)用临时铰调整内力 (3)改变拱轴线调整内力
八、主拱内力调整
• 悬链线无铰拱在最不利荷载组合时,常常 出现拱脚负弯矩或拱顶正弯矩过大的情况, 为了减小它们,可从设计、施工方面采取 措施调整拱圈内力。
三、拱桥内力计算
(一)手算法计算拱桥内力 1、等截面悬链线拱恒载内力计算 2、等截面悬链线拱活载内力计算 3、等截面悬链线拱其它内力计算
(二)有限元法计算简介 (三)拱在横向力及偏心荷载作用下的计算 (四)拱上建筑计算 (五)内力调整 (六)考虑几何非线性的拱桥计算简介
四、拱在横向水平力及偏心荷载作用下的计算
• 调整前:

同济大学混凝土结构基本原理第6章答案

同济大学混凝土结构基本原理第6章答案

其中 当 当
为混凝土极限压应变。 时,截面属于大偏心受压; 时,截面属于小偏心受压。
6-6.长细比对偏心受压构件的承载力有直接影响, 请说明基本计算公式中是如何来考虑这一 问题的。 答:当 ,即短柱情况下,取弯矩增大系数 ;否则,取
28
其中,

6-7 请根据 N cu − M u 相关曲线说明大偏心受压及小偏心受压时轴向力与弯矩的关系,偏压 构件在什么情况下的抗弯承载力最大? 答:在小偏心受压破坏时候,随着轴向力 N c 的增大,构件的抗弯能力 M 逐渐减少;在大偏 心受压构件破坏的时候,随着轴向力 N c 的增大,会提高构件的抗弯承载力。在偏心构件的破 坏处于破坏时,构件的抗弯承载力达到最大值。 6-8 N cu − M u 相关曲线有哪些用途? 答:Ncu-Mu 相关曲线是由具有相同的截面尺寸,相同高度,相同配筋,相同材料强度但偏心距 e0 不同的构件进行系列偏心受压实验得到破坏时每个构件所承受的不同轴力 Ncu 和弯矩 Mu 所 绘制而成的,在此曲线中,我们可以轻松查阅到此构件在小偏心受压或者大偏心受压时候构 件的破坏荷载,了解构件性能.
思考题
6-1.偏心受力构件截面上同时作用有轴向力和弯矩, 除教材上列出的外, 再举出实际工程中 的偏心受压构件和偏心受拉构件各五种。 答:偏心受压构件有屋架的上弦杆、框架结构柱,砖墙及砖垛等。偏心受拉构件有矩形水池 的池壁、矩形剖面料仓或煤斗的壁板、受地震作用的框架边柱,以及双肢柱的受拉肢等。 6-2.对比偏心受压构件与受弯构件正截面的应力及应变分布,说明其相同之处与不同之处。 答: 受弯构件在混凝土出现裂缝前, 混凝土分为受压区和受拉区, 分别承受压应力和拉应力, 受拉区混凝土开裂后, 退出工作, 钢筋单独承担拉应力, 受压区混凝土受压区高度逐渐变小, 压应力不断增大,最终压碎破坏。应变一开始钢筋与混凝土应变相同,慢慢达到混凝土开裂 应变,钢筋屈服应变。而偏心受压构件则因偏心距不同其应力分布亦有不同。当 较大 中时,出现大偏心受压破坏,形式接近受弯。而当 较大 较大或 较小 适

钢筋混凝土原理和分析-第三版课后答案

钢筋混凝土原理和分析-第三版课后答案

钢筋混凝土原理和分析-第三版课后答案思考与练习1.基本力学性能1-1混凝土凝固后承受外力作用时,由于粗骨料和水泥砂浆的体积比、形状、排列的随机性,弹性模量值不同,界面接触条件各异等原因,即使作用的应力完全均匀,混凝土内也将产生不均匀的空间微观应力场。

在应力的长期作用下,水泥砂浆和粗骨料的徐变差使混凝土内部发生应力重分布,粗骨料将承受更大的压应力。

在水泥的水化作用进行时,水泥浆失水收缩变形远大于粗骨料,此收缩变形差使粗骨料受压,砂浆受拉,和其它应力分布。

这些应力场在截面上的合力为零,但局部应力可能很大,以至在骨料界面产生微裂缝。

粗骨料和水泥砂浆的热工性能(如线膨胀系数)的差别,使得当混凝土中水泥产生水化热或环境温度变化时,两者的温度变形差受到相互约束而形成温度应力场。

由于混凝土是热惰性材料,温度梯度大而加重了温度应力。

环境温度和湿度的变化,在混凝土内部形成变化的不均匀的温度场和湿度场,影响水泥水化作用的速度和水分的散发速度,产生相应的应力场和变形场,促使内部微裂缝的发展,甚至形成表面宏观裂缝。

混凝土在应力的持续作用下,因水泥凝胶体的粘性流动和内部微裂缝的开展而产生的徐变与时俱增,使混凝土的变形加大,长期强度降低。

另外,混凝土内部有不可避免的初始气孔和缝隙,其尖端附近因收缩、温湿度变化、徐变或应力作用都会形成局部应力集中区,其应力分布更复杂,应力值更高。

1-2解:若要获得受压应力-应变全曲线的下降段,试验装置的总线刚度应超过试件下降段的最大线刚度。

采用式(1-6)的分段曲线方程,则下降段的方程为:20.8(1)x y x x =-+ ,其中c y f σ= px εε= ,1x ≥ 混凝土的切线模量d d d d cct pf y E x σεε==⋅ 考虑切线模量的最大值,即d d yx的最大值: 222222d 0.8(1)(1.60.6)0.8(1) , 1d [0.8(1)][0.8(1)]y x x x x x x x x x x x -+----==≥-+-+令22d 0d y x =,即:223221.6(1)(1.60.6) 1.60[0.8(1)][0.8(1)]x x x x x x x ---=-+-+ 221.6(1)(1.60.6) 1.6[0.8(1)]x x x x x ∴--=-+整理得:30.8 2.40.60 , 1x x x -+=≥ ;解得: 1.59x ≈222max 1.59d d 0.8(1.591)0.35d d [0.8(1.591) 1.59]x y y x x =-⨯-⎛⎫===- ⎪⨯-+⎝⎭ 2,max 3max max d d 260.355687.5N/mm d d 1.610c ct p f y E x σεε-⎛⎫⎛⎫∴==⋅=⨯= ⎪ ⎪⨯⎝⎭⎝⎭ 试件下降段的最大线刚度为:222,max 100mm 5687.5N/mm 189.58kN/mm >150kN/mm 300mmct A E L ⋅=⨯= 所以试件下降段最大线刚度超过装置的总线刚度,因而不能获得受压应力-应变全曲线(下降段)。

基础工程卷子

基础工程卷子

08A单项选择1、地基上层土较硬,下层土较软时,基础宜采用 D 。

A、深基础B、人工地基C、深埋D、浅埋2、对于四层框架结构,地基表层土存在4m厚的“硬壳层”,其下卧层上的承载力明显低于“硬壳层”承载力。

下列基础形式中较为合适的是 B 。

A 混凝土柱下独立基础B 钢筋混凝土柱下独立基础C 灰士基础D 砖基础3、C 应验算其稳定性。

A.设计等级为甲级的建筑物B.设计等级为乙级的建筑物C. 经常承受水平荷载作用的高层建筑4、墙下钢筋混凝土条形基础的高度由C 确定。

A. 刚性角B. 扩散角C. 抗剪强度验算D. 抗冲切破坏强度验算5、对负摩擦桩,轴力最大的截面位于C 。

A. 桩的顶端B. 底端C. 中性点处D. 桩的竖向位移为0处6、根据地基承载力确定桩数时,荷载应采用D 。

A 基本组合B 基本组合和地震作用效应组合C准永久组合 D 标准组合7、某箱形基础,上部结构和基础自重传至基底的压力P=130kPa,若地基土的天然重度为γ=18.5kN/m3,地下水位在在地表下10m处,当基础埋置在多大深度时,基底附加压力正好为零 B 。

A d=5.68mB d=7.03mC d=8.03mD d=6.03m8、下列哪种情况下不能考虑桩基承台下地基的承载力作用 A 。

A 大面积堆载使桩周土压密B 软土层中的摩擦桩C 桩距较大的短桩9、柱下条形基础两端伸出的长度宜取多少A 。

A(1/4~1/3)边柱距B(1/2~1/3)边柱距C(1/4~1/3)中柱距 D 1/6 梁高10、当桩的l/d较小,桩身穿越软弱土层,桩端设置在密实砂层、碎石类土层中,微风化岩层中,这类桩应按什么类型桩设计 A 。

A 端承桩B 摩擦桩C 摩擦型桩D 端承摩擦桩三、填空(每空1分,共10分)1、新建建筑基础埋深应小于相邻建筑基础埋深,否则应保持一定距离。

2、需验算基础台阶宽高比的是无筋扩展基础。

3、膨胀土产生膨胀的原因是其组成成分中含有较多亲水性矿物和外界含水量的变化。

《混凝土结构设计原理》作业1、2、3、4参考答案

《混凝土结构设计原理》作业1、2、3、4参考答案

《混凝土结构设计原理》作业1、2、3、4参考答案作业1一、选择题A D A DC DBA二、判断题1.× 2.√3.×4.×5.×6.√7.×8.×9.√10.√三、简答题1.钢筋和混凝土这两种物理和力学性能不同的材料,之所以能够有效地结合在一起而共同工作,其主要原因是什么?答:1)钢筋和混凝土之间良好的黏结力;2)接近的温度线膨胀系数;3)混凝土对钢筋的保护作用。

2.试分析素混凝土梁与钢筋混凝土梁在承载力和受力性能方面的差异。

答:素混凝土梁承载力很低,受拉区混凝土一开裂,裂缝迅速发展,梁在瞬间骤然脆裂断开,变形发展不充分,属脆性破坏,梁中混凝土的抗压能力未能充分利用。

钢筋混凝土梁承载力比素混凝土梁有很大提高,受拉区混凝土开裂后,钢筋可以代替受拉区混凝土承受拉力,裂缝不会迅速发展,直到钢筋应力达到屈服强度,随后荷载略有增加,致使受压区混凝土被压碎。

梁破坏前,其裂缝充分发展,变形明显增大,有明显的破坏预兆,结构的受力特性得到明显改善。

同时,混凝土的抗压能力和钢筋的抗拉能力得到充分利用。

3.钢筋混凝土结构设计中选用钢筋的原则是什么?答:1)较高的强度和合适的屈强比;2)足够的塑性;3)可焊性;4)耐久性和耐火性5)与混凝土具有良好的黏结力。

4.什么是结构的极限状态?结构的极限状态分为几类,其含义是什么?答:整个结构或结构的一部分超过某一特定状态就不能满足设计指定的某一功能要求,这个特定状态称为该功能的极限状态。

结构的极限状态可分为承载能力极限状态和正常使用极限状态两类。

结构或构件达到最大承载能力、疲劳破坏或者达到不适于继续承载的变形时的状态,称为承载能力极限状态。

结构或构件达到正常使用或耐久性能的某项规定限值的状态,称为正常使用极限状态。

5.什么是结构上的作用?结构上的作用分为哪两种?荷载属于哪种作用?答:结构上的作用是指施加在结构或构件上的力,以及引起结构变形和产生内力的原因。

设计原理复习题三

设计原理复习题三

复习题四(简答题、计算题)简答题:1、简述受弯构件正截面承载力计算时的基本假定,如何限制设计时出现超筋梁和少筋梁?2、在进行轴心受压构件设计时,什么情况下不应考虑螺旋箍筋的作用?3、钢筋混凝土梁抗剪承载力复核时,如何选择复核截面。

4、钢筋混凝土截面(非对称配筋)偏心受压构件的截面设计和复核中,如何判断大小偏心。

5、什么是先张法?先张法构件是什么样的施工工序?先张法构件如何实现预应力筋的锚固?先张法构件有何优缺点。

6、什么叫极限状态?我国《公路桥规》规定了哪两类结构的极限状态?7、简述钢筋混凝土受弯构件斜截面的三种破坏形态?8、简述小偏心受压构件的破坏特征?9、简述预应力混凝土结构的优缺点?10、配置在混凝土截面受拉区钢筋的作用是什么?11、桥梁结构的功能包括哪几方面的内容?何谓结构的可靠性?12、什么叫受弯构件纵向受拉钢筋的配筋率?配筋率的表达式中,0h含义是什么?13、影响钢筋混凝土受弯构件斜截面抗剪能力的主要因素有哪些?14、什么叫作柱的稳定系数ϕ?影响稳定系数ϕ的主要因素有哪些?15、梁内钢筋主要有哪些,作用分别是什么?16、板内钢筋主要有哪些,作用分别是什么?17、先张法的定义及施工工序?18、后张法的定义及施工工序?19、预应力混凝土对钢筋的要求?20、预应力混凝土的基本原理?计算题1.计算跨径L=12.6m的钢筋混凝土简支梁,中梁间距为2.1m,截面尺寸及配筋截面布置如图所示;C25混凝土,HRB335级钢筋;Ⅰ类环境条件,安全等级为二级。

跨中截面弯矩组合值M d=1187KN·m。

试进行截面复核。

(f cd=11.5MPa,f td=1.23MPa,f sd=280MPa,ξb=0.56)(15分)2、钢筋混凝土梁的支点截面处,结构重力产生的剪力标准值 V Gk=187.01KN;汽车荷载产生的剪力标准值V Q1k=261.76KN,;冲击系数1+μ=1.19;人群荷载产生的剪力标准值V Q2k=57.2KN;温度梯度作用产生的剪力标准值V Q3k=41.5KN,试进行正常使用极限状态设计时的作用效应组合计算。

地基第3章柱下条形基础


pk

Fk Gk bL

fa
偏心受压
pk max pk min

Fk Gk bL
1
6e L
pk fa pk max 1.2 f a
F1
F2
F3
F4
M1 M2
M3
M4
a1
xc
a
a2
L
计算步骤:
基础计算简图
(1) 求荷载合力重心位置
(2)
合力作用点距Fl的距离为 确定基础梁的长度和悬臂尺寸
b
h250
2. 肋梁: 高度H:由计算确定,一般宜为柱距的1/4~1/8 宽度b1:应比度宜为第一跨距的1/4。
4. 柱下条形基础的混凝土强度等级不应低于C20。 5. 基础梁顶面和底面的纵向受力钢筋、箍筋
由计算确定。顶部钢筋按计算配筋全部贯通;底 部通长钢筋不应少于底部受力钢筋总面积的1/3。
第三章 柱下条形基础
第一节 概述
第一节 概述
1. 适用:上部结构荷载较大,地基承载力较低。 2. 目的:减小地基压应力,调整不均匀沉降。 3. 单向条形基础:把一个方向的单列柱基连在一起。 4. 双向条形基础:又称十字交叉条形基础 。
柱下条形基础
柱下十字交叉条形基础
5. 柱下条基设计 横向:翼板 抗剪、抗弯 纵向:基础梁 抗剪、抗弯
对于轴心受压情况分段内 力方程为
ai xi ai1
M(xi )
1 2
p
j
x
2 i
Fi ( xi
ai )
静力平衡法计算简图
V ( xi ) p j xi Fi
2.倒梁法 基本思路:以柱脚为固定铰支座,以基底净反力

《公预规》提供的附录C表C.0.2“圆形截面钢筋混凝土偏压构件正截面抗压承载力计算系数”表

C.O.2沿用边均匀配筋的圆形截面钢筋混凝土偏心受压构件,其正截面抗压承载力可用查表法(表C.0.2)并按下列规定计算求得:1当对构件承载力进行复核验算时1)由本规范公式(5.3.9-1)和(5.3.9-2)解得轴向力的偏心距:'0'g cd sd cd sd Bf D f e r Af C f ρρ+=+(C.0.2-1)2)已知cd f 、'sd f 、ρ、r ,设定ξ值,查表C.0.2,将查得的系数A、B、C、D值代入公式(C.0.2-1)计算0e 值。

若此0e 值与实际计算偏心距/d d M N η相符(允许偏差在2%以内),则设定的ξ值为所求者;若不相符,重新设定ξ值,重复上述计算,直到相符为止;3)将最后确定的ξ相应的A、B、C、D值代入规范公式(5.3.9-1)或(5.3.9-2)进行构件正截面承载力的复核验算。

2当对构件进行配筋设计时1)由公式(C.0.2-1)变换得截面配筋率:0'cd sd o f Br Ae f Ce Dgr ρ−=•−(C.0.2-2)2)已知cd f 、'sd f 、0e 、r ,设定ξ值,查表C.0.2,将查得的系数A、B、C、D值代入公式( C.0.2-2)计算ρ值,计算时式中的0e 应乘以偏心距增大系数η;再再把ρ和A、C值直代入规范公式(5.3.9-1)算得轴向力值。

若此轴向力值与实际作用的轴向力设计值相符(允许偏差在2%以内),则该ξ值及依此计算的ρ值为所求者;若不相符,重新设定ξ值,重复上述计算,直至相符为止。

3)以最后确定的ρ值代入下列公式计算纵向钢筋截面面积:2s A r ρπ=(C.0.2-3)所得钢筋配筋率应符合最小配筋率的要求。

表C.O.2圆形截面钢筋混凝土偏压构件正截面抗压承载力计算系数ξA B C D ξA B C DξA B C D0.200.32440.2628-1.52961.4216 0.210.34810.2787-1.46761.4623 0.220.37230.2945-1.40741.5004 0.230.39690.3103-1.34861.5361 0.240.42190.3259-1.29111.5697 0.250.44730.3413-1.23481.6012 0.260.47310.3566-1.17961.6307 0.270.49920.3717-1.12541.6584 0.280.52580.3865-1.07201.6843 0.290.55260.4011-1.01941.7086 0.300.57980.4155-0.96751.7313 0.310.60730.4295-0.91631.7524 0.320.63510.4433-0.86561.7721 0.330.66310.4568-0.81541.7903 0.340.69150.4699-0.76571.8071 0.350.72010.4828-0.71651.8225 0.360.74890.4952-0.66761.8366 0.370.77800.5073-0.61901.8494 0.380.80740.5191-0.57071.8609 0.390.83690.5304-0.52271.8711 0.400.86670.5414-0.47491.8801 0.410.89660.5519-0.42731.8878 0.420.92680.5620-0.379818943 0.430.95710.5717-0.33231.8996 0.440.98760.5810-0.28501.9036 0.451.01820.5898-0.23771.9065 0.461.04900.5982-0.19031.9081 0.471.07990.6061-0.14291.9084 0.481.11100.6136-0.09541.9075 0.491.14220.6206-0.04781.9053 0.501.17350.6271-0.00001.9018 0.51 1.20490.63310.0480 1.8971 0.52 1.23640.63860.0963 1.8909 0.53 1.26800.64370.1450 1.8834 0.54 1.29960.64830.1941 1.8744 0.55 1.33140.65230.2436 1.8639 0.56 1.36320.65590.2937 1.8519 0.57 1.39500.65890.3444 1.8381 0.58 1.42690.66150.3960 1.8226 0.59 1.45890.66350.44851,8052 0.60 1.49080.66510.5021 1.78560.64 1.61880.66610.7373 1.67630.65 1.65080.66510.8080 1.63430.66 1.68270.66350.8766 1.59330.67 1.71470.66150.9430 1.55340.68 1.74660.6589 1.0071 1.51460.691.77840.6559 1.06921.47690.70 1.81020.6523 1.1294 1.44020.71 1.84200.6483 1.1876 1.40450.72 1.87360.6437 1.2440 1.36970.73 1.90520.6386 1.2987 1.33580.74 1.93670.6331 1.3517 1.30280.75 1.96810.6271 1.4030 1.27060.76 1.99940.6206 1.4529 1.23920.77 2.03060.6136 1.5013 1.20860.78 2.06170.6061 1.5482 1.17870.79 2.09260.5982 1.5938 1.14960.80 2.12340.5898 1.6381 1.12120.81 2.15400.5810 1.6811 1.09340.82 2.18450.5717 1.7228 1.06630.83 2.21480.5620 1.7635 1.03980.84 2.24500.5519 1.8029 1.01390.85 2.27490.5414 1.84130.98860.86 2.30470.5304 1.87860.96390.87 2.33420.5191 1.91490.93970.88 2.36360.5073 1.95030.91610.89 2.39270.4952 1.98460.89300.90 2.42150.4828 2.01810.87040.91 2.45010.4699 2.05070.84830.92 2.47850.4568 2.08240.82660.93 2.50650.4433 2.11320.80550.94 2.53430.4295 2.14330.78470.95 2.56180.4155 2.17260.76450.96 2.58900.4011 2.20120.74460.97 2.61580.3865 2.22900.72510.98 2.64240.3717 2.25610.70610.99 2.66850.3566 2.28250.68741.002.69430.3413 2.30820.66921.012.71120.3311 2.33330.65131.022.72770.3209 2.35780.63371.032.74400.3108 2.38170.61651.042.75980.3006 2.40490.59971.082.82000.26092.49240.53561.092.83410.25112.51290.52041.102.84800.24152.53300.50551.112.86150.23192.55250.49081.122.87470.22252.57160.47651.132.88760.21322.59020.46241.142.90010.20402.60840.44861.152.91230.19492.62610.43511.162.92420.18602.64340.42191.172.93570.17722.66030.40891.182.94690.16852.67670.39611.192.95780.16002.69280.38361.202.96840.15172.70850.37141.212.97870.14352.72380.35941.222.9886O.13552.73870.34761.232.99820.12772.75320.33611.243.00750.12012.76750.32481.253.01650.11262.78130.31371.263.02520.10532.79480.30281.273.03360.09822.80800.29221.283.04170.09142.82090.28181.293.04950.08472.83350.27151.303.05690.07822.84570.26151.313.06410.07192.85760.25171.323.07090.06592.86930.24211.333.07750.06002.88060.23271.343.08370.05442.89170.22351.353.08970.04902.90240.21451.363.09540.04392.91290.20571.373.10070.03892.92320.19701.383.10580.03432.93310.18861.393.11060.02982.94280.18031.403.11500.02562.95230.17221.413.11920.02172.96150.16431.423.12310.01802.97040.15661.433.12660.01462.97910.14911.443.12990.01152.98760.14171.453.13280.00862.99580.13451.463.13540.00613.00380.12751.473.13760.00393.01150.12061.483.13950.00213.01910.11400.61 1.52280.66610.5571 1.76360.62 1.55480.66660.6139 1.73870.63 1.58680.66660.6734 1.7103 1.05 2.77540.2906 2.42760.58321.06 2.79060.2806 2.44970.56701.07 2.80540.2707 2.47130.5512 1.49 3.14080.007 3.02640.10751.503.14160.00003.03340.10111.513.14160.00003.04030.09505.3.9沿周边均匀配置纵向钢筋的圆形截面钢筋混凝土偏心受压构件(图5.3.9),其正截面抗压承载力计算应符合下列规定:图5.3.9沿周边均匀配筋的圆形截面偏心受压构件计算22'0d cd sdN Ar f C r f γρ≤+(5.3.9-1)33'00d cd sd N e Br f D gr f γρ≤+(5.3.9-2)式中0e ——轴向力的偏心距,0/d d e M N =,应乘以偏心距增大系数η,η可按第5.3.10条的规定计算;A、B——有关混凝土承载力的计算系数,按附录C 的迭代法由表C.O.2查得;C、D——有关纵向钢筋承载力的计算系数,按附录C 的迭代法由表C.O.2查得;r ——圆形截面的半径;g ——纵向钢筋所在圆周的半径s r 与圆截面半径之比,/s g r r =;ρ——纵向钢筋配筋率,2/s A r ρπ=。

砌体结构及答案

一、填空题:1。

《砌体结构设计规范》(GB50003-2001)为了适当提高砌体结构的安全可靠指标,将B 级施工质量等级的砌体材料的分项系数由 提高到 。

1。

5,1。

65.我国《砌体结构设计规范》(GB50003-2001)将烧结普通砖、烧结多孔砖分为五个强度等级,其中最低和最高强度等级分别为 和 .MU30,MU109.我国《砌体结构设计规范》(GB50003-2001)采用了定值分项系数的极限状态设计表达式,砌体结构在多数情况下是以承受自重为主的结构,除考虑一般的荷载组合以外 , 还应考虑以 为主的荷载组合,这种组合的恒载分项系数G γ为 ,可变荷载分项系数Q γ为 乘以组合系数。

承受自重,1。

35,1.412.砌体构件受压承载力计算公式中的系数ϕ是考虑高厚比β和偏心距e 综合影响的系数,在《砌体结构设计规范》(GB50003-2001)偏心距按内力的 (填“设计值”或“标准值”)计算确定,并注意使偏心距e 与截面重心到轴向力所在偏心方向截面边缘的距离y 的比值不超过 .设计值,0.6y11。

《砌体结构设计规范》(GB50003-2001)中所列砌体强度设计值是按照施工质量等级为B 级确定的,当施工质量等级不为B 级时,应对砌体强度设计值进行调整。

具体调整的方法就是,按《砌体结构设计规范》所查砌体强度设计值乘以调整系数a γ,对于施工质量控制等级为C 级的,其取值为 ;当施工质量控制等级为A 级时,其取值为 。

0。

89,1。

0515。

《砌体结构设计规范》(GB50003-2001)仅考虑 和 两个主要因素的影响,按房屋空间作用大小,将房屋静力计算方案分为三种。

屋(楼)盖刚度,横墙间距2.如果砌体结构的弹性模量为E ,剪变模量为G ,则G 和E 的关系近似为 。

0.4G E =3。

砌体结构最基本的力学性能指标是 。

轴心抗压强度4。

砌体的轴心抗拉强度、弯曲抗拉强度以及剪切强度主要与砂浆或块体的强度等级有关。

盖板涵通用计算书(计算表格)_xls

一.盖板计算1.设计资料适用涵洞桩号:BK1+746;公路-Ⅰ级; 安全结构重要性系数γ0:0.93m;Ⅱ类环境;3.2m;0.2m;26cm; 1.992m;0.99m;3cm;C30;13.8Mpa; 1.39Mpa;12根直径为228cm;0.0045616m²;280Mpa; 26kN/m³;20kN/m³根据《公路圬工桥涵设计规范》(JTG D61-2005)中7.0.6关于涵洞结构的计算假定: 盖板按两端简支的板计算,可不考虑涵台传来的水平力.钢筋间距:1-3.0m×1.6m盖板涵洞身断面路面结构层和填土平均容重γ2=1-3.0m×1.6m盖板涵计算书盖板宽b=净保护层厚度c=砼强度等级:砼轴心抗压强度fcd=环境类别: 汽车荷载等级: 盖板厚d= 净跨径:L 0= 计算跨径:L= 填土高:H=单侧搁置长度:钢筋总面积As= 盖板容重γ1=砼轴心抗拉强度ftd=mm的HRB335钢筋,受力主筋:钢筋轴心抗压强度fsd=2.外力计算1) 永久作用 (1) 竖向土压力46.43kN/m(2) 盖板自重6.69kN/m 2) 由车辆荷载引起的垂直压力(可变作用)根据《公路桥涵设计通用规范》(JTG D60-2004)中4.3.4的规定:计算涵洞顶上车辆荷载引起的竖向土压力时,车轮按其着地面积的边缘向下做30°角分布。

当几个车轮的压力扩散线相重叠时,扩散面积以最外面的扩散线为准。

根据《公路桥涵设计通用规范》(JTG D60-2004)中4.3.1关于车辆荷载的规定: 车辆荷载顺板跨长3.90m车辆荷载垂直板跨长7.30m 车轮重 PP=560kN车轮重压强L19.68kN/m²3.内力计算及荷载组合1) 由永久作用引起的内力 跨中弯矩67.99kN.m边墙内侧边缘处剪力79.68kN 2) 由车辆荷载引起的内力 跨中弯矩24.94kN.m 边墙内侧边缘处剪力跨中弯矩q=K·γ2·H·b= p=P/La/Lb= V1=(q+g)·L 0/2= M1=(q+g)·L²/8= g=γ1·d·b/100= La=1.6+2·H·tan30°= Lb=5+2·H·tan30°= M2=p·L²·b/8=γ0γ0=1) 砼受压区高度0.093m根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)中5.2.1关于 相对界限受压区高度ξb的规定:HRB335钢筋的相对界限受压区高度ξb=0.56。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课型:理论课
教学目的与要求:
1.了解大偏心受压构件破坏特征;
2. 掌握大偏心受压构件的承载力计算公式及其适用条件。

教学重点、难点:
1、大小偏心受压构件破坏特征。

2、大小偏心受压构件的承载力计算公式及其适用条件。

采用教具、挂图:
复习、提问:
1、轴心受压构件的破坏特征;长短柱的区分。

2、轴心受压构件普通箍筋柱的正截面承载力计算要点。

3、φ的含义
课堂小结:
大偏心受压构件的承载力计算公式及其适用条件。

作业:预习:§4.3.4、§4.4
思考题:4.4、4.5
课后分析:
[新课导入]上一节介绍了轴心受压构件的承载力计算。

本节将向大家介绍偏心受压构件承载力计算。

[新课内容]
§4.3 偏心受压构件承载力计算
一、偏心受压构件破坏特征
按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。

1.大偏心钢筋混凝土受压构件破坏过程(受拉破坏)
破坏特征:受拉钢筋首先达到屈服强度,最后受压区混凝土达到
界限压应变而被压碎,构件破坏。

此时,受压区钢筋也达到屈服
强度。

破坏性质:延性破坏
2.小偏心钢筋混凝土受压构件破坏过程(受压破坏)
破坏特征:临近破坏时,构件截面压应力较大一侧混凝
土达到极限压应变而被压碎。

构件截面压应力较大一侧
的纵向钢筋应力也达到了屈服强度;而另一侧混凝土及
纵向钢筋可能受拉,也可能受压,但应力较小,均未达
到屈服强度。

破坏性质:脆性破坏
3.受拉破坏与受压破坏的界限
界限破坏:在受拉钢筋达到受拉屈服强度时,受压区混凝土也达到极限压应变而被压碎,构件破坏,这就是大小偏心受压破坏的界限。

判断条件:当§≤§b,属于大偏心受压构件;
当§>§b,属于小偏心受压构件;
二、偏心距增大系数η
1.压弯效应:在偏心力作用下,钢筋混凝土受压构件将产生纵向
弯曲变形,即会产生侧向挠度,从而导致截面的初始偏心距增大(图
4.3.3)。

如1/2柱高处的初始偏心距将由增大为ei +f,截面最大弯
矩也将由Nei增大为N(ei +f),致使柱的承载力降低。

这种偏
心受压构件截面内的弯矩受轴向力和侧向挠度变化影响的现象称为
“压弯效应”。

截面弯矩中的Ne i称为一阶弯矩,将N·f称为二阶弯矩或附加弯
矩。

引入偏心距增大系数η,相当于用代替ei +f。

2.偏心矩增大系数η
钢筋混凝土偏心受压构件按其长细比λ不同分为短柱、长柱和细长柱,其偏心距增大系数η分别按下述方法确定:
(1)对短柱(矩形截面
h
l 0≤5),可不考虑纵向弯曲对偏心距的影响,取λ=1.0。

(2)对长柱(矩形截面5<h l 0≤30),偏心距增大系数按下式计算: η21200)(14001
1ςςh
l h e i += 式中l 0—构件的计算长度;
h —矩形截面的高度;
h 0—截面的有效高度;
ζ1——偏心受压构件的截面曲率修正系数,当ζ1>1.0时,取ζ1=1.0;
ζ2—构件长细比对截面曲率的影响系数,当l 0/h <15时,取ζ2=1.0;
A —构件的截面面积。

三、对称配筋矩形截面偏心受压构件
正截面承载力计算
1.基本公式及适用条件
(1)基本假定
1)截面应变保持为平面;
2)不考虑混凝土的受拉作用;
3)受压区混凝土采用等效矩形应力图;
4)考虑到实际工程中由于施工的误差、混凝土质量的不均匀性,以及荷载实际作用位置的偏差等原因,都会造成轴向压力在偏心方向产生附加偏心距e a ,因此在偏心受压构件的正截面承载力计算中应考虑e a 的影响,e a 应取20mm 和偏心方向截面尺寸h 的1/30中的较大值,即e a=max(h /30 ,20 mm ) 。

(2)大偏心受压(ξ≤ξb )
1)基本公式
矩形截面大偏心受压构件破坏时的应力分布如图4.3.4a 所示。

为简化计算,将其简化为图4.3.4b 所示的等效矩形图。

由静力平衡条件可得出大偏心受压的基本公
式:
s y s y c A f A f bx f N -+≤''1α (4.3.4 )
)2
()2(0''01x h A f x h bx f Ne s y c -+-≤α (4.3.5) 将对称配筋条件A s=A s ′,f y= f y ′代入式
(4.3.1)得
bx f N c 1α= (4.3.6)
式中N —轴向压力设计值;
x —混凝土受压区高度;
e —轴向压力作用点至纵向受拉钢筋合力点之间的距离;
)2
(s i a h e e -+=η a i e e e +=0
η—偏心剧增大系数;
i e —初始偏心距;
e 0 —轴向压力N 对截面重心的偏心距,e 0=N
M 故对称配筋矩形截面偏心受压构件截面设计面积计算公式:
)
()5.01()()2('0'201'0'01's y c s y c s s a h f bh f Ne a h f x h bx f Ne A A ---=---==ξξαα 2)基本公式适用条件
①为了保证构件在破坏时,受拉钢筋应力能达到抗拉强度设计值f y ,必须满足: ξ=0h x ≤ξ b (4.3.10)
②为了保证构件在破坏时,受压钢筋应力能达到抗压强度设计值f y ′,必须满足: x ≥2as ′ (4.3.11)
当x <2as ′时,表示受压钢筋的应力可能达不到f y ′,此时,近似取x =2a s ′,构件正截面承载力按下式计算:
Ne ′=f y A s(h 0-a s ′) (4.3.12)
相应的,对称配筋时纵向钢筋截面面积计算公式为
)('0''
'
s y s
s a h f Ne A A -== (4.3.13) ''2s i a h e e +-
=η (4.3.14)。

相关文档
最新文档