【精品】清华材料科学基础习题及答案
(清华大学)材料科学基础真题2002年

(清华大学)材料科学基础真题2002年(总分:100.00,做题时间:90分钟)一、论述题(总题数:10,分数:100.00)1.已知面心立方合金α-黄铜的轧制织构为110<112>。
1.解释这种织构所表达的意义。
2.用立方晶体001标准投影图说明其形成原因。
(分数:10.00)__________________________________________________________________________________________ 正确答案:(1.为板织构。
{110}<112>织构表示{110}∥轧面,<112>∥轧向。
2.α-黄铜为FCC结构,滑移系统为{111}<101>。
沿轧向受到拉力的作用,晶体滑移转动。
如图所示,在晶体学坐标系中,设拉力轴T1位于001-101-111取向三角形中,则始滑移系为[011],拉力轴转向[011]方向,使拉力轴与滑移方向的夹角λ减小。
当力轴到达两个取向三角形的公共边,即T2时,开始发生双滑移,滑移系[101]也启动,拉力轴既转向[011]方向,又转向[101]方向,结果沿公共边转动。
到达[112]方向时,由于[101]、[112]、[011]位于同一个大圆上,两个λ角同时减小到最小值,故[112]为最终稳定位置,从而使<112>方向趋向于轧向;在轧面上受到压力作用,设压力轴Pl位于取向三角形中,则始滑移系为[101],压力轴转向面,使压力轴与滑移面的夹角减小。
当力轴到达两个取向三角形的公共边,即P2时,开始发生双滑移,滑移系也启动,压力轴既转向面,又转向面,结果沿公共边转动。
到达面时,由于、、位于同一大圆上,两个角同时减小到最小值,故为最终稳定位置,从而使面趋于平行于轧面。
其结果,{110}∥轧面,<112>∥轧向。
)解析:2.证明:对立方晶系,有[hkl]⊥(hkl)。
(分数:5.00)__________________________________________________________________________________________ 正确答案:(根据晶面指数的确定规则并参照下图,(hkl)晶面ABC在a、b、c坐标轴上的截距分别是根据晶向指数的确定规则,[hkl]晶向L=ha+kb+lc。
(清华大学)材料科学基础真题2003年-2

(清华大学)材料科学基础真题2003年-2(总分:100.00,做题时间:90分钟)一、论述题(总题数:10,分数:100.00)1.标出图中(a)、(b)、(c)、(d)的晶向指数和(E)、(F)、(G)、(H)的晶面指数。
(分数:8.00)__________________________________________________________________________________________ 正确答案:((a)的晶向指数是;(b)的晶向指数是;(c)的晶向指数是;(d)的晶向指数是。
(E)的晶面指数是;(F)的晶面指数是;(G)的晶面指数是;(H)。
) 解析:2.写出FCC、BCC、(分数:5.00)__________________________________________________________________________________________ 正确答案:(见下表。
)解析:3.写出镍(Ni)晶体中面间距为0.1246nm的晶面族指数。
镍的点阵常数为0.3524nm。
(分数:5.00)__________________________________________________________________________________________ 正确答案:(镍(Ni)的晶体结构和点阵都是面心立方(FCC),立方晶体的晶面距公式是:所以有因为h、k、l都是整数,所以h、k、l可能取的可能值为:0、2、2,所以符合题意的晶面族指数为{022}。
) 解析:4.由600℃降至300℃时,锗晶体中的空位平衡浓度降低了六个数量级,试计算锗晶体中的空位形成能(波耳兹曼常数k=8.617×10-5eV/K)。
(分数:8.00)__________________________________________________________________________________________ 正确答案:(Schottky缺陷的平衡浓度公式为:有有有≈1.91432×105J·mol-1即锗晶体中空位形成能为1.91432×105J·mol-1。
材料科学基础经典习题及答案

第一章 材料科学基础1.作图表示立方晶体的()()()421,210,123晶面及[][][]346,112,021晶向。
2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001等。
3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。
4.镁的原子堆积密度和所有hcp 金属一样,为0.74。
试求镁单位晶胞的体积。
已知Mg 的密度3Mg/m 74.1=mg ρ,相对原子质量为24.31,原子半径r=0.161nm 。
5.当CN=6时+Na 离子半径为0.097nm ,试问:1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少?6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少?7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。
试确定在镍的(100),(110)及(111)平面上12mm 中各有多少个原子。
8. 石英()2SiO 的密度为2.653Mg/m 。
试问: 1) 13m 中有多少个硅原子(与氧原子)?2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)?9.在800℃时1010个原子中有一个原子具有足够能量可在固体内移动,而在900℃时910个原子中则只有一个原子,试求其激活能(J/原子)。
10.若将一块铁加热至850℃,然后快速冷却到20℃。
试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。
11.设图1-18所示的立方晶体的滑移面ABCD 平行于晶体的上、下底面。
若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b ∥AB 。
1) 有人认为“此位错环运动移出晶体后,滑移面上产生的滑移台阶应为4个b ,试问这种看法是否正确?为什么?2)指出位错环上各段位错线的类型,并画出位错运动出晶体后,滑移方向及滑移量。
材料科学基础课后习题答案

《材料科学基础》课后习题答案第一章材料结构的基本知识4. 简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。
其中一次键的结合力较强,包括离子键、共价键和金属键。
一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。
二次键的结合力较弱,包括范德瓦耳斯键和氢键。
二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。
6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。
一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。
相反,对于离子键或共价键结合的材料,原子排列不可能很致密。
共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。
9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。
答:单相组织,顾名思义是具有单一相的组织。
即所有晶粒的化学组成相同,晶体结构也相同。
两相组织是指具有两相的组织。
单相组织特征的主要有晶粒尺寸及形状。
晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。
单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。
等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。
对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。
如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。
如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。
清华大学材料科学基础习题答案.doc

清华大学材料科学基础习题答案第1章练习和答案1第2章练习和答案8第3章练习和答案11第4章练习和答案15 《晶体结构与缺陷》第1章练习和答案1-1。
勇敢格子的基本特征是什么?答:它具有周期性和对称性,每个节点都是一个等价点。
1-具有周期性和对称性,每个节点都是一个等价点。
1:首先,不少于14种点阵。
对于14种晶格中的任何一种,在不改变对称性的情况下,都不可能找到一种方法来连接节点以形成一个新的晶胞。
第二,不超过14种。
如果每个晶体系统包括四种晶格,即简单晶格、平面晶格、体晶格和底晶格,那么在七个晶体系统中有28种布拉瓦晶格。
然而,这28种晶格中的一些可以在不改变对称性的情况下连接成14种晶格中的一种。
例如,体心单斜可以连接成底部中心单斜晶格,所以它不是一种新的晶格类型。
1-但是这28种晶格中的一些可以连接成14种晶格中的一种,而不改变对称性。
例如,体心单斜可以连接成底部中心单斜晶格,所以它不是一种新的晶格类型。
1.单位胞元和原胞元都可以反映晶格的周期性,即单位胞元和原胞元的无限积累可以获得一个完整的完整晶格。
然而,晶胞需要反映晶格的对称性。
在这个前提下,最小体积单位是单位单元。
然而,原始单元只需要最小的体积,而勇敢晶格的原始单元只包含一个节点。
例如:BCC单元中的节点数为2,原始单元为1。
催化裂化装置单元中的节点数为4,原单元为1。
六边形网格单元中的节点数为3,原始单元为1。
如下图所示,直线是单位单元格,虚线是原始单元格。
虽然原始细胞只需要最小的体积,雅鲁藏布江晶格的原始细胞只包含一个节点。
例如: BCC单元中的节点数为2,原始单元为1。
催化裂化装置单元中的节点数为4,原单元为1。
六边形网格单元中的节点数为3,原始单元为1。
如下图所示,直线是单位单元格,虚线是原始单元格。
立方立方立方立方六边形晶格1:晶胞中相邻三条边的长度A、B和C以及三条边之间的夹角α、β和γ分别决定晶胞的大小和形状。
这六个参数被称为晶格常数。
(清华大学)材料科学基础真题2006年

(清华大学)材料科学基础真题2006年(总分:150.00,做题时间:90分钟)一、论述题(总题数:9,分数:150.00)1.什么是Kirkendall效应?请用扩散理论加以解释。
若Cu-Al组成的互扩散偶发生扩散时,界面标志物会向哪个方向移动?(分数:10.00)__________________________________________________________________________________________ 正确答案:(Kirkendall效应:在置换式固溶体的扩散过程中,放置在原始界面上的标志物朝着低熔点元素的方向移动,移动速率与时间成抛物线关系。
Kirkendall效应否定了置换式固溶体中扩散的换位机制,而证实了空位机制;系统中不同组元具有不同的分扩散系数;相对而言,低熔点组元扩散快,高熔点组元扩散慢,这种不等量的原子交换造成了Kirkendall 效应。
当Cu-AI组成的互扩散偶发生扩散时,界面标志物会向着Al的方向移动。
)解析:2.标出图a、b(立方晶体)和c、d(六方晶体,用四指数)中所示的各晶面和晶向的指数:1.图a中待求晶面:ACF、AFI(Ⅰ位于棱EH的中点)、BCHE、ADHE。
2.图b中待求晶向:BC、EC、FN(N点位于面心位置)、ME(M点位于棱BC的中点)。
3.图c中待求晶面:ABD′E′、ADE′F′、AFF′A′、BFF′B′。
4.图d中待求晶向:A′F、O′M(M点位于棱AB的中点)、F′O、F′D。
(分数:16.00)__________________________________________________________________________________________ 正确答案:(1.ACF(111)、AFI、BCHE、ADHE(010)2.BC、EC、FN、ME3.ABD′E′、ADE′F′、AFF′A′、BFF′B′4.A′F′、D′M、F′O、F′D)解析:3.已知金刚石晶胞中最近邻的原子间距为0.1544nm,试求出金刚石的点阵常数a、配位数C.N.和致密度ξ。
清华大学 材料科学基础——作业习题第六章

第六章目录6.1 要点扫描 (1)6.1.1 金属的弹性变形 (1)6.1.2 单晶体的塑性变形 (2)6.1.3 多晶体的塑性变形与细晶强化 (8)6.1.4 纯金属的塑性变形与形变强化 (10)6.1.5 合金的塑性变形与固溶强化和第二相强化 (14)6.1.6 冷变形金属的纤维强化和变形织构 (16)6.1.7 冷变形金属的回复与再结晶 (17)6.1.8 热变形、蠕变和超塑性 (20)6.1.9 断裂 (22)6.2 难点释疑 (25)6.2.1 从原子间结合力的角度了解弹性变形。
(25)6.2.2 从分子链结构的角度分析粘弹性。
(25)6.2.3 FCC、BCC和HCP晶体中滑移线的区别。
(25)6.2.4 Schmid定律与取向规则的应用。
(26)6.2.5 孪生时原子的运动特点。
(27)6.2.6 Zn单晶任意的晶向[uvtw]方向在孪生后长度的变化情况 (29)6.3 解题示范 (30)3.4 习题训练 (33)参考答案 (38)第六章 金属与合金的形变6.1 要点扫描6.1.1 金属的弹性变形1. 弹性和粘弹性所谓弹性变形就是指外力去除后能够完全恢复的那部分变形。
从对材料的力学分析中可以知道,材料受力后要发生变形,外力较小时发生弹性变形,外力较大时产生塑性变形,外力过大就会使材料发生断裂。
对于非晶体,甚至某些多晶体,在较小的应力时,可能会出现粘弹性现象。
粘弹性变形即与时间有关,又具有可恢复的弹性变形,即具有弹性和粘性变形两方面的特性。
2. 应力状态金属的弹性变形服从虎克定律,应力与应变呈线性关系:γτεσG E == 其中: yx G E εενν-==+,)1(2 E 、G 分别为杨氏模量和剪切模量,v 为泊松比。
工程上,弹性模量是材料刚度的度量。
在外力相同的情况下,E 越大,材料的刚度越大,发生弹性形变的形变量就越小。
3. 弹性滞后由于应变落后于应力,使得εσ-曲线上的加载线和卸载线不重合而形成一个闭合回路,这种现象称为弹性滞后。
材料科学基础习题及参考答案

材料科学基础参考答案材料科学基础第一次作业1.举例说明各种结合键的特点。
⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。
⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。
常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。
⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。
⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。
结合较弱。
⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。
2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。
3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。
的等价晶面:的等价晶面:的等价晶向:的等价晶向:4立方点阵的某一晶面(hkl)的面间距为M/,其中M为一正整数,为晶格常数。
该晶面的面法线与a,b,c轴的夹角分别为119.0、43.3和60.9度。
请据此确定晶面指数。
h:k:l=cosα:cosβ:cosγ5.Cu具有FCC结构,其密度为8.9g/cm3,相对原子质量为63.546,求铜的原子半径。
=> R=0.128nm。
6. 写出溶解在γ-Fe中碳原子所处的位置,若此类位置全部被碳原子占据,那么试问在这种情况下,γ-Fe能溶解多少重量百分数的碳?而实际上在γ-Fe中最大的溶解度是多少?两者在数值上有差异的原因是什么?固溶于γ-Fe中的碳原子均处于八面体间隙中,且γ-Fe中的八面体间隙有4个,与一个晶胞中Fe原子个数相等,所以:C wt%=12/(12+56)×100%=17.6%实际上C在γ-Fe中的最大溶解度为2.11%两者数值上有较大差异,是因为此固溶体中,碳原子尺寸比间隙尺寸大,会引起点阵晶格畸变,畸变能升高,限制了碳原子的进一步溶解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《晶体结构与缺陷》第一章习题及答案1-1.布拉维点阵的基本特点是什么?答:具有周期性和对称性,而且每个结点都是等同点。
1-2.论证为什么有且仅有14种Bravais点阵。
答:第一,不少于14种点阵。
对于14种点阵中的任一种,不可能找到一种连接结点的方法,形成新的晶胞而对称性不变.第二,不多于14种。
如果每种晶系都包含简单、面心、体心、底心四种点阵,七种晶系共28种Bravais点阵。
但这28种中有些可以连成14种点阵中的某一种而对称性不变。
例如体心单斜可以连成底心单斜点阵,所以并不是新点阵类型。
1-3.以BCC、FCC和六方点阵为例说明晶胞和原胞的异同.答:晶胞和原胞都能反映点阵的周期性,即将晶胞和原胞无限堆积都可以得到完整的整个点阵。
但晶胞要求反映点阵的对称性,在此前提下的最小体积单元就是晶胞;而原胞只要求体积最小,布拉维点阵的原胞都只含一个结点。
例如:BCC晶胞中结点数为2,原胞为1;FCC晶胞中结点数为4,原胞为1;六方点阵晶胞中结点数为3,原胞为1。
见下图,直线为晶胞,虚线为原胞。
BCCF CC六方点阵1-4.什么是点阵常数?各种晶系各有几个点阵常数?答:晶胞中相邻三条棱的长度a、b、c与这三条棱之间的夹角α、β、γ分别决定了晶胞的大小和形状,这六个参量就叫做点阵常数。
晶系a、b、c,α、β、γ之间的关系点阵常数的个数三斜a≠b≠c,α≠β≠γ≠90º6(a、b、c、α、β、γ)单斜a≠b≠c,α=β=90≠γ或α=γ=90≠β4(a、b、c、γ或a、b、c、β)斜方a≠b≠c,α=β=γ=90º3(a、b、c)1-5.分别画出锌和金刚石的晶胞,并指出其点阵和结构的差别。
答:点阵和结构不一定相同,因为点阵中的结点可以代表多个原子,而结构中的点只能代表一个原子.锌的点阵是六方点阵,但在非结点位置也存在原子,属于HCP结构;金刚石的点阵是FCC点阵,但在四个四面体间隙中也存在碳原子,属于金刚石结构。
见下图。
锌的结构金刚石的结构1-6.写出立方晶系的{123}晶面族和〈112>晶向族中的全部等价晶面和晶向的具体指数。
答:{123}=(123)+(23)+(13)+(12)+(132)+(32)+(12)+(13)+(213)+(13)+(23)+(21)+(231)+(31)+(21)+(23)+(312)+(12)+(32)+(31)+(321)+(21)+(31)+(32)<112>=[112]+[12]+[12]+[11]+[121]+[21]+[11]+[12]+[211]+[11]+[21]+[21]1-7.在立方晶系的晶胞图中画出以下晶面和晶向:(102)、(11)、(1)、[110]、[11]、[10]和[21]。
标注图中所示立方晶胞中的各晶面及晶向指数.写出六方晶系的{110}、{102}晶面族和<20>、<011〉晶向族中的各等价晶面及等价晶向的具体指数。
答:{110}=(110)+(20)+(20){102}=(102)+(012)+(102)+(012)+(012)+(102)<20〉=[20]+[110]+[20]〈011>=[011]+[011]+[101]+[101]+[011]+[101]1-8.在六方晶胞图中画出以下晶面和晶向:(0001)、(010)、(110)、(102)、(012)、[0001]、[010]、[110]、[011]和[011].标注图中所示的六方晶胞中的各晶面及晶向指数。
用解析法求1-11第二图中的各晶向指数(按三指数-四指数变换公式)。
解:由三指数[UVW]转化为四指数[uvtw]可利用公式:U=2u+v,V=2v+u,W=w将⅓[23]、⅓[110]、⅓[113]、½[010]中的u、v、w代入公式,得[1]、[110]、[111]、½[120]。
1-9.根据FCC和HCP晶体的堆垛特点论证这两种晶体中的八面体和四面体间隙的尺寸必相同。
答:研究FCC晶体的(111)密排面和HCP晶体的(0001)密排面,发现两者原子排列方式完全相同;再研究两者的相邻两层密排面,发现它们层与层之间的吻合方式也没有差别。
事实上只有研究相邻的三层面时,才会发现FCC和HCP的区别,而八面体间隙与四面体间隙都只跟两层密排原子有关,所以对于这两种间隙,FCC与HCP提供的微观环境完全相同,他们的尺寸也必相同.1-10.以六方晶体的三轴a、b、c为基,确定其八面体和四面体间隙中心的坐标。
答:八面体间隙有六个,坐标分别为:(⅓,—⅓,¼)、(⅓,⅔,¼)、(-⅔,-⅓,¼)、(⅓,-⅓,¾)、(⅓,⅔,¾)、(—⅔,-⅓,¾);四面体间隙共有二十个,在中轴上的为:(0,0,⅜)、(0,0,⅝);在六条棱上的为:(1,0,⅜)、(1,1,⅜)、(0,1,⅜)、(-1,0,⅜)、(—1,-1,⅜)、(0,-1,⅜)、(1,0,⅝)、(1,1,⅝)、(0,1,⅝)、(-1,0,⅝)、(—1,—1,⅝)、(0,—1,⅝);在中部的为:(⅔,⅓,⅛)、(—⅓,⅓,⅛)、(-⅓,—⅔,⅛)、(⅔,⅓,⅞)、(—⅓,⅓,⅞)、(—⅓,—⅔,⅞).1-11.按解析几何证明立方晶系的[hkl]方向垂直与(hkl)面。
证明:根据定义,(hkl)面与三轴分别交于a/h、a/k、a/l,可以推出此面方程为x/(a/h)+y/(a/k)+z/(a/l)=1=>hx+ky+lz=a;平行移动得面hx+ky+lz=0;又因为(h,k,l)•(x,y,z)=hx+ky+lz≡0,知矢量(h,k,l)恒垂直于此面,即[hkl]方向垂直于hx+ky+lz=0面,所以垂直于hx+ky+lz=a即(hkl)面。
1-12.由六方晶系的三指数晶带方程导出四指数晶带方程。
解:六方晶系三指数晶带方程为HU+KV+LW=0;面(HKL)化为四指数(hkil),有H=h,K=k,L=l;方向[UVW]化为四指数[uvtw]后,有U=2u+v,V=2v+u,W=w;代入晶带方程,得h(2u+v)+k(2v+u)+lw=0;将i=–(h+k),t=–(u+v)代入上式,得hu+kv+it+lw=0。
1—21。
求出立方晶体中指数不大于3的低指数晶面的晶面距d和低指数晶向长度L(以晶胞边长a为单位).解:晶面间距为d=a/sqrt(h2+k2+l2),晶向长度为L=a·sqrt(u2+v2+w2),可得{310} √10/10<310〉√101-22.求出六方晶体中[0001]、[100]、[110]和[101]等晶向的长度(以点阵常数a和c为单位)。
解:六方晶体晶向长度公式:L=a·sqrt(U2+V2+W2c2/a2-UV);(三指数)L=a·sqrt(u2+v2+2t2+w2c2/a2—uv);(四指数)代入四指数公式,得长度分别为c、√3*a、3a、√(3a2+c2)。
1—23.计算立方晶体中指数不大于3的各低指数晶面间夹角(列表表示)。
为什么夹角和点阵常数无关。
解:利用晶面夹角公式cosφ=(h1h2+k1k2+l1l2)/sqrt((h12+k12+l12)*(h22+k22+l22))计算。
两晶面族之间的夹角根据所选晶面的不同可能有多个,下面只列出一个,其他这里不讨论。
cosφ{100}{110}{111}{210}{211}{221} {310}{100} 1 √2/2√3/32√5/5√6/32/3 3√10/10{110} 1 √6/33√10/10√3/22√2/32√5/5{111} 1 √15/52√2/35√3/92√30/15 {210} 1 √30/6 2√5/57√2/10{211} 1 7√6/187√15/30 {221} 1 4√10/15{310} 1后面的结果略.1-24.计算立方晶体中指数不大于3的各低指数晶向间夹角(列表表示),并将所得结果和上题比较。
解:利用晶向夹角公式cosθ=(u1u2+v1v2+w1w2)/sqrt((u12+v12+w12)*(u22+v22+w22))计算.两晶向族之间的夹角根据所选晶向的不同可能有多个,所得结果与上题完全相同,只将表示晶面的“{}”替换为“<>"即可。
从表面上看是因为晶向夹角公式与晶面夹角公式完全相同的原因,深入分析,发现晶向[xyz]是晶面(xyz)的法线方向,是垂直关系,所以两晶面的夹角恒等于同指数的晶向夹角。
1-25。
计算六方晶体中(0001)、{100}和{110}之间的夹角。
解:化为三指数为:(001)、(210)或(120)或(10)、(110)或(10)或(20),利用六方晶系面夹角公式(P41公式1-39),分别代入求得(0001)与{100}或{110}:夹角为90º;{100}与{110}:夹角为30º或90º。
1-26.分别用晶面夹角公式及几何法推导六方晶体中(102)面和(012)面的夹角公式(用点阵常数a和c表示)。
解:(1)化为三指数为(102)、(02),代入公式(P41公式1-39)得cosφ=…=(3a2—c2)/(3a2+c2)(2)如右图,利用余弦定律,可得cosφ=…=(3a2—c2)/(3a2+c2)1—27.利用上题所得的公式具体计算Zn(c/a=1。
86)、Mg(c/a=1.62)和Ti(c/a=1.59)三种金属的(102)面和(012)面的夹角。
解:代入公式,得cosφ1=—0。
0711,cosφ2=0。
0668,cosφ3=0.0854;得夹角为φ1(Zn)=94。
1º,φ2(Mg)=86.2º,φ3(Ti)=85.1º。
1-28.将(102)和(012)分别换成[011]和[101],重做1-26、1—27题.解:化为三指数为[1]和[211],代入公式,得cosβ=…=(c2—3a2)/(3a2+c2) 见1—26题答案中的图,利用余弦定律,可得cosβ=…=(c2—3a2)/(3a2+c2) 代入公式,得cosφ1=0。
0711,cosφ2=-0。
0668,cosφ3=-0。
0854;得夹角为φ1(Zn)=85.9º,φ2(Mg)=93.8º,φ3(Ti)=94。
9º。
1—29。
推导菱方晶体在菱方轴下的点阵常数a R、αR和在六方轴下的点阵常数a H、c H之间的换算公式。
解:在a H、b H、c H下,a R=⅓[11],所以点阵常数a R=L=a H·sqrt(U2+V2+W2c H2/a H2-UV)=⅓√(3a H2+c H2),又因为αR是晶向⅓[11]与⅓[121]的夹角,所以点阵常数αR=arcos((c H2/a H2-3/2)/(3+c H2/a H2))=arcos((2c H2—3a H2)/(6a H2+2c H2)).可得a H=a R·sqrt(2(1-cosα));c H=a R·sqrt(3(1+2cosα))。