数论专题-余数问题
第8讲 数论(余数问题)

第8讲数论(余数问题)1、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≢r<b;我们称上面的除法算式为一个带余除法算式。
这里:(1)当0r=时:我们称a可以被b整除,q称为a除以b的商或完全商;(2)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商。
余数一定要比除数小。
2、三大余数定理:(1)余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
(2)余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
(3)同余定理若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m 整除用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)。
3、弃九法:任何一个整数模9同余于它的各数位上数字之和。
以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。
(思考:有没有求一个整数被11除的余数的快速方法呢?)4、同余同补问题:例1:(1)用某自然数a去除1992,得到商是46,余数是r,求a和r。
(2)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?练习:(1)甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数;(2)用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?例2:三个不同的自然数的和为2001,它们分别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_______,_______,_______。
数论问题之余数问题-余数问题练习题含答案

数论问题之余数问题:余数问题练习题含答案1.数11 1(2007个1),被13除余多少分析:根据整除性质知:13能整除111111,而2007 6后余3,所以答案为7.2.求下列各式的余数:(1)2461 135 6047 11 (2)2123 6分析:(1)5;(2)6443 19=339 2,212=4096 ,4096 19余11 ,所以余数是11 .3.1013除以一个两位数,余数是12.求出符合条件的所有的两位数.分析:1013-12=1001,1001=7 11 13,那么符合条件的所有的两位数有13,77,91 有的同学可能会粗心的认为11也是.11小于12,所以不行.大家做题时要仔细认真.4.学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班分析:所求班级数是除以118,67,33余数相同的数.那么可知该数应该为118-67=51和67-33=34的公约数,所求答案为17.5.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.6.求下列各式的余数:(1)2461 135 6047 11(2)2123 6分析:(1)5;(2)找规律,2的n次方被6除的余数依次是(n=1,2,3,4 ):2 ,4 ,2 ,4 ,2 ,4因为要求的是2的123次方是奇数,所以被6除的余数是2.7.(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313 7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240 2=238(个) ,313 7=306(个) ,(238,306)=34(人) .8.(第十三届迎春杯决赛) 已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是 .分析:1477-49=1428是这两位数的倍数,又1428=2 2 3 717=51 28=68 21=84 17,因此所求的两位数51或68或84.9.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.10.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.第二页:练习题含答案11 20题第三页:练习题含答案21 28题11.除以99,余数是______.分析:所求余数与19 100,即与1900除以99所得的余数相同,因此所求余数是19.12.求下列各式的余数:(1)2461 135 6047 11(2)19992000 7分析:(1)5;(2)1999 7的余数是4,19992000 与42000除以7 的余数相同.然后再找规律,发现4 的各次方除以7的余数的排列规律是4,2,1,4,2,1......这么3个一循环,所以由2000 3 余2 可以得到42000除以7 的余数是2,故19992000 7的余数是2 .13.(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313 7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240 2=238(个) ,313 7=306(个) ,(238,306)=34(人) .14.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.15.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.16.除以99的余数是______.分析:所求余数与19 100,即与1900除以99所得的余数相同,因此所求余数是19.17.19941994 1994(1994个1994)除以15的余数是______.分析:法1:从简单情况入手找规律,发现1994 15余14,19941994 15余4,199419941994 15余9,1994199419941994 15余14,......,发现余数3个一循环,1994 3=664...2,19941994 1994(1994个1994)除以15的余数是4;法2:我们利用最后一个例题的结论可以发现199419941994能被3整除,那么19941994199400 0能被15整除,1994 3=664...2,19941994 1994(1994个1994)除以15的余数是4.18.a b c 是自然数,分别除以11的余数是2,7,9.那么(a+b+c) (a-b) (b-c)除以11的余数是多少分析:(a+b+c) 11的余数是7;(a b) 11的余数是1l+2 7=6;(b c) 11的余数是11+7 9=9.所求余数与7 6 9 11的余数相同,是4.19.盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个.这盒乒乓球至少有多少个?分析与解答:如果这盒乒乓球少3个的话,8个8个地数,10个10个地数,12个12个的数都正好无剩余,也就是这盒乒乓球减少3个后是8,10,12的公倍数,又要求至少有多少个乒乓球,可以先求出8,10,12的最小公倍数,然后再加上3.2 8 10 122 4 5 62 5 3故8,10,12的最小公倍数是22253=120.所以这盒乒乓球有123个.20.自然数,用它分别去除63,90,130都有余数,三个余数的和是25.这三个余数中最小的一个是_____.分析与解答:设这个自然数为,且去除63,90,130所得的余数分别为a,b,c,则63-a,90-b,130-c都是的倍数.于是(63-a)+(90-b)+(130-c)=283-(a+b+c)=283-25=258也是的倍数.又因为258=2343.则可能是2或3或6或43(显然,86,129,258),但是a+b+c=25,故a,b,c中至少有一个要大于8(否则,a,b,c都不大于8,就推出a+b+c 不大于24,这与a+b+c=25矛盾).根据除数必须大于余数,可以确定=43.从而a=20,b=4,c=1.显然,1是三个余数中最小的.21.求123456789101112 199200除以9的余数是________;解答:一位数个位数字之和是1+2+3+ ..9=45二位数数字之和是1 10+1+2+3+ .9 (10-19)2 10+1+2+3+ .9 (20-29)9 10+1+2+3+ .9 (90-99) 余90,9余0,11余2故二位数总和为(1+2 ..+9) 10+1+2 ..+9=495100 199与1 99的区别在于百位多了100个1,共100所以原数数字值和为45+495+495+100+2=1137,除以9余3. 22: 222 22除以13所得的余数是_____.2000个分析与解答:因为222222=2111111 =21111001=211171113所以222222能被13整除. 又因为2000=6333+2 222 2=222 200+22 2000个19982213=1 9所以要求的余数是9.求除以9,11,99,101,999,1001,13和91的余数分别是多少;解答:23: 除以9的余数是0,11: 一个2007奇数位上数字和与偶数位上数字的和的差为5. 2007个2007奇数位上数字和与偶数位上数字的和的差为5 2007.5 2007 3(mod11),所以除以11的余数是399: 能被9整除,被11除余3的数最小是36,所以除以99余36200720072007能被7,13,37整除.999=27 37 1001=7 11 13 91=7 1313: 0(mod13) 除以13余091: 0(mod91) 除以91余0所以除以13,91,999的余数都是0.1001: 除以11余3,除以7,13余0,满足次条件的最小数是1092,1092除以1001余91.所以除以1001的余数是91.101: 我们发现9999=101 99,所以=0000+2007= 10000+2007= 9999++2007 +2007(mod101)同样道理+2007 +2007 2(mod101)以此类推2007 2007(mod101)=6824、今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物最少几何解答:此数除以3余2,除以5余3,除以7余2,满足条件最小数是2325、(23+105k)2)一个数除以7余3,除以11余7,除以13余4,符合此条件的数最小是________;如果它是一个四位数,那么最大可能是________;解答:满足除以7余3,除以11余7的最小数为73,设此数为73+77a=13b+4, 69-a=13b.a最小等于4.满足条件的最小数是381.设最大的四位数为381+1001x,最大的四位数为9390.(1732)26、今天周一,天之后是星期________;这个数的个位数字是________;天之后是星期________;解答:只要求出7的余数就可以知道天后是星期几. 52007(mod7),56 1(mod7)2007 3(mod6), 52007 53 6(mod7) s所以天之后是星期日2007的个位数字是720072的个位数字是920073的个位数字是320074的个位数字是120075的个位数字是127、一个三位数,被17除余5,被18除余12,那么它可能是________________;一个四位数,被131除余112,被132除余98,那么它可能是________;解答:设此三位数为17a+5=18b+12. 可得到17a=17b+b+7,所以b+7一定能被17整除,b=10,27,44.这个三位数为192,498,804.设此四位数为131x+112=132y+98,可得到131x=131y+y-14,所以y-14一定能被131整除,y=14,145(太大)这个四位数是194628、甲,乙,丙三个数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2倍.A是________;解答:如果A除丙所得的余数是1份的话,那么A除乙所得余数就是2份,A除甲所得的余数就是4份.把2乙-甲,则没有余数,即2乙-甲使A的倍数;同理乙-2丙也同样没有余数,是A的倍数.939 2-603=1275,939-393 2=153A是1275和153的公约数,而1275与153的最大公约数是51,所以A可能是1,3,17,51再实验得到A为17,余数分别为8,4,2.。
小学生六年级奥数数论考点:余数问题

小学生六年级奥数数论考点:余数问题
一、同余的定义:
①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。
二、同余的性质:
①自身性:a≡a(mod m);
②对称性:若a≡b(mod m),则b≡a(mod m);
③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);
④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);
⑥乘方性:若a≡b(mod m),则an≡bn(mod m);
⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);
三、关于乘方的预备知识:
①若A=a×b,则MA=Ma×b=(Ma)b
②若B=c+d则MB=Mc+d=Mc×Md
四、被3、9、11除后的余数特征:
①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);
②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);
五、费尔马小定理:
如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。
数论问题之余数问题-余数问题练习题含答案

数论问题之余数问题:余数问题练习题含答案1.数11 1(2007个1),被13除余多少分析:根据整除性质知:13能整除111111,而2007 6后余3,所以答案为7.2.求下列各式的余数:(1)2461 135 6047 11 (2)2123 6分析:(1)5;(2)6443 19=339 2,212=4096 ,4096 19余11 ,所以余数是11 .3.1013除以一个两位数,余数是12.求出符合条件的所有的两位数.分析:1013-12=1001,1001=7 11 13,那么符合条件的所有的两位数有13,77,91 有的同学可能会粗心的认为11也是.11小于12,所以不行.大家做题时要仔细认真.4.学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班分析:所求班级数是除以118,67,33余数相同的数.那么可知该数应该为118-67=51和67-33=34的公约数,所求答案为17.5.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.6.求下列各式的余数:(1)2461 135 6047 11(2)2123 6分析:(1)5;(2)找规律,2的n次方被6除的余数依次是(n=1,2,3,4 ):2 ,4 ,2 ,4 ,2 ,4因为要求的是2的123次方是奇数,所以被6除的余数是2.7.(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313 7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240 2=238(个) ,313 7=306(个) ,(238,306)=34(人) .8.(第十三届迎春杯决赛) 已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是 .分析:1477-49=1428是这两位数的倍数,又1428=2 2 3 717=51 28=68 21=84 17,因此所求的两位数51或68或84.9.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.10.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.第二页:练习题含答案11 20题第三页:练习题含答案21 28题11.除以99,余数是______.分析:所求余数与19 100,即与1900除以99所得的余数相同,因此所求余数是19.12.求下列各式的余数:(1)2461 135 6047 11(2)19992000 7分析:(1)5;(2)1999 7的余数是4,19992000 与42000除以7 的余数相同.然后再找规律,发现4 的各次方除以7的余数的排列规律是4,2,1,4,2,1......这么3个一循环,所以由2000 3 余2 可以得到42000除以7 的余数是2,故19992000 7的余数是2 .13.(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313 7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240 2=238(个) ,313 7=306(个) ,(238,306)=34(人) .14.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.15.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.16.除以99的余数是______.分析:所求余数与19 100,即与1900除以99所得的余数相同,因此所求余数是19.17.19941994 1994(1994个1994)除以15的余数是______.分析:法1:从简单情况入手找规律,发现1994 15余14,19941994 15余4,199419941994 15余9,1994199419941994 15余14,......,发现余数3个一循环,1994 3=664...2,19941994 1994(1994个1994)除以15的余数是4;法2:我们利用最后一个例题的结论可以发现199419941994能被3整除,那么19941994199400 0能被15整除,1994 3=664...2,19941994 1994(1994个1994)除以15的余数是4.18.a b c 是自然数,分别除以11的余数是2,7,9.那么(a+b+c) (a-b) (b-c)除以11的余数是多少分析:(a+b+c) 11的余数是7;(a b) 11的余数是1l+2 7=6;(b c) 11的余数是11+7 9=9.所求余数与7 6 9 11的余数相同,是4.19.盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个.这盒乒乓球至少有多少个?分析与解答:如果这盒乒乓球少3个的话,8个8个地数,10个10个地数,12个12个的数都正好无剩余,也就是这盒乒乓球减少3个后是8,10,12的公倍数,又要求至少有多少个乒乓球,可以先求出8,10,12的最小公倍数,然后再加上3.2 8 10 122 4 5 62 5 3故8,10,12的最小公倍数是22253=120.所以这盒乒乓球有123个.20.自然数,用它分别去除63,90,130都有余数,三个余数的和是25.这三个余数中最小的一个是_____.分析与解答:设这个自然数为,且去除63,90,130所得的余数分别为a,b,c,则63-a,90-b,130-c都是的倍数.于是(63-a)+(90-b)+(130-c)=283-(a+b+c)=283-25=258也是的倍数.又因为258=2343.则可能是2或3或6或43(显然,86,129,258),但是a+b+c=25,故a,b,c中至少有一个要大于8(否则,a,b,c都不大于8,就推出a+b+c 不大于24,这与a+b+c=25矛盾).根据除数必须大于余数,可以确定=43.从而a=20,b=4,c=1.显然,1是三个余数中最小的.21.求123456789101112 199200除以9的余数是________;解答:一位数个位数字之和是1+2+3+ ..9=45二位数数字之和是1 10+1+2+3+ .9 (10-19)2 10+1+2+3+ .9 (20-29)9 10+1+2+3+ .9 (90-99) 余90,9余0,11余2故二位数总和为(1+2 ..+9) 10+1+2 ..+9=495100 199与1 99的区别在于百位多了100个1,共100所以原数数字值和为45+495+495+100+2=1137,除以9余3. 22: 222 22除以13所得的余数是_____.2000个分析与解答:因为222222=2111111 =21111001=211171113所以222222能被13整除. 又因为2000=6333+2 222 2=222 200+22 2000个19982213=1 9所以要求的余数是9.求除以9,11,99,101,999,1001,13和91的余数分别是多少;解答:23: 除以9的余数是0,11: 一个2007奇数位上数字和与偶数位上数字的和的差为5. 2007个2007奇数位上数字和与偶数位上数字的和的差为5 2007.5 2007 3(mod11),所以除以11的余数是399: 能被9整除,被11除余3的数最小是36,所以除以99余36200720072007能被7,13,37整除.999=27 37 1001=7 11 13 91=7 1313: 0(mod13) 除以13余091: 0(mod91) 除以91余0所以除以13,91,999的余数都是0.1001: 除以11余3,除以7,13余0,满足次条件的最小数是1092,1092除以1001余91.所以除以1001的余数是91.101: 我们发现9999=101 99,所以=0000+2007= 10000+2007= 9999++2007 +2007(mod101)同样道理+2007 +2007 2(mod101)以此类推2007 2007(mod101)=6824、今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物最少几何解答:此数除以3余2,除以5余3,除以7余2,满足条件最小数是2325、(23+105k)2)一个数除以7余3,除以11余7,除以13余4,符合此条件的数最小是________;如果它是一个四位数,那么最大可能是________;解答:满足除以7余3,除以11余7的最小数为73,设此数为73+77a=13b+4, 69-a=13b.a最小等于4.满足条件的最小数是381.设最大的四位数为381+1001x,最大的四位数为9390.(1732)26、今天周一,天之后是星期________;这个数的个位数字是________;天之后是星期________;解答:只要求出7的余数就可以知道天后是星期几. 52007(mod7),56 1(mod7)2007 3(mod6), 52007 53 6(mod7) s所以天之后是星期日2007的个位数字是720072的个位数字是920073的个位数字是320074的个位数字是120075的个位数字是127、一个三位数,被17除余5,被18除余12,那么它可能是________________;一个四位数,被131除余112,被132除余98,那么它可能是________;解答:设此三位数为17a+5=18b+12. 可得到17a=17b+b+7,所以b+7一定能被17整除,b=10,27,44.这个三位数为192,498,804.设此四位数为131x+112=132y+98,可得到131x=131y+y-14,所以y-14一定能被131整除,y=14,145(太大)这个四位数是194628、甲,乙,丙三个数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2倍.A是________;解答:如果A除丙所得的余数是1份的话,那么A除乙所得余数就是2份,A除甲所得的余数就是4份.把2乙-甲,则没有余数,即2乙-甲使A的倍数;同理乙-2丙也同样没有余数,是A的倍数.939 2-603=1275,939-393 2=153A是1275和153的公约数,而1275与153的最大公约数是51,所以A可能是1,3,17,51再实验得到A为17,余数分别为8,4,2.。
五年级奥数-第十讲.数论之余数问题.教师版

第十讲:数论之余数问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要.许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系.并且可以看出余数一定要比除数小.二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1。
当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2。
2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
奥数数论题库17-余数问题_知识例题精讲

余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
一、带余除法的定义及性质一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:(1)当0r=时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
知识点拨教学目标5-6余数问题例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
数字的余数学习求两个数字的余数

数字的余数学习求两个数字的余数数字的余数是在数学中常见的概念,它是指一个数字除以另一个数字所得的剩余部分。
余数的计算在日常生活和科学研究中都有广泛的应用,尤其在编程、密码学和数论等领域中更是重要。
本文将介绍数字的余数的概念、求余的方法以及应用场景。
一、余数的定义与性质余数是指两个整数相除时所得的剩余部分。
例如,当5除以3时,商为1,余数为2。
这里的商是两个整数相除所得的整数部分,而余数则是指这个除法操作所剩下的部分。
余数有一些性质值得我们关注:1. 余数一定小于除数。
例如,当5除以3时,商为1,余数为2,而3大于2。
2. 如果两个数相除时,余数为0,那么这两个数互为倍数关系。
例如,当9除以3时,商为3,余数为0,说明9是3的倍数。
3. 余数不仅适用于正整数,也适用于负整数和小数。
例如,当-5除以3时,商为-2,余数为1,这里的商和余数都可以是负数。
二、求余的方法在求余的过程中,有多种方法可供选择。
常用的方法包括短除法、取模运算符和数学公式计算。
1. 短除法短除法是一种简便的手算方法,通过将被除数从左到右的一位一位进行减法操作,直到不能再减为止,剩下的数即为余数。
例如,求12除以5的余数:12 ÷ 5 = 2 (2)这里的2是商,而最后的2是余数。
2. 取模运算符在编程中,常用的方法是使用取模运算符(%)来求余。
取模运算符是一种用来计算一个数除以另一个数后所得余数的运算符。
例如,在Python中求12除以5的余数的表达式为:12 % 5这个表达式的结果为2,即12除以5的余数。
3. 数学公式计算除了短除法和取模运算符,还可以利用数学公式来计算余数。
例如,可以使用以下公式来求两个整数除法的余数:余数 = 被除数 - 商 ×除数就像之前的例子,5除以3的商为1,被除数为5,除数为3,则根据以上公式:余数 = 5 - 1 × 3 = 2所以,5除以3的余数为2。
三、数字的余数的应用场景数字的余数在实际应用中具有广泛的应用场景。
余数的运用

余数的运用首先,我们来定义余数。
余数是一个数除以另一个数所得到的整数部分之外的部分。
换句话说,如果一个数除以另一个数,商为整数部分,余数为余数部分。
例如,8除以3,商为2,余数为2;10除以4,商为2,余数为2余数的性质有以下几点:1.余数不会小于0。
因为余数是除法运算之后得到的,它必定是非负整数。
2.如果两个数除以同一个数得到的余数相等,那么这两个数的差是该数的倍数。
例如,如果a除以b得到的余数为r,b除以c得到的余数也是r,那么a-b是b的倍数,b-c是c的倍数。
3.如果两个数除以同一个数得到的余数不相等,但除法得到的商相等,那么这两个数的差是该数的倍数。
例如,如果a除以b得到的余数为r1,b除以c得到的余数为r2,但a/b=b/c,那么a-b是b的倍数,b-c是c的倍数。
现在我们来看一些经典问题中余数的运用。
1.求余数问题:求一个数除以另一个数的余数是一个常见的问题。
比如,求24除以7的余数。
我们可以用除法运算得到商为3,余数为3、因此,24除以7的余数为32.除法算术的变化:我们可以利用余数来改变除法算术的运算方式。
例如,我们要求27除以6的商,并将商转换为小数。
我们可以先求余数,然后将余数除以6得到小数部分。
27除以6,商为4,余数为3、3除以6,小数为0.5、因此,27除以6的小数部分为0.5,整数部分为4,即27除以6等于4.5 3.进制转换:余数的运用在二进制、八进制和十六进制的转换中非常重要。
在二进制中,余数只有0和1两个值,可以把余数转换成相应的数字。
例如,我们要把二进制数1101转换成十进制数,可以将1对应为2的0次方,0对应为2的1次方,1对应为2的2次方,1对应为2的3次方。
然后,将这些数相加得到十进制数134.周期性问题:余数的周期性特征在解决一些周期性问题时非常有用。
例如,我们要计算2024年第N天是星期几。
我们知道一周有7天,所以可以通过求模运算来得到相应的余数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数论专题
一、带余除法及同余
余数的可加性
余数的可乘性
例1(★)一排吊灯,3个3个地数剩1个,4个4个地数剩1个,6个6个地数剩1个,这排吊灯至少有多少个?
例2一个数除以3余2,除以5余3,除以7余4,求符合条件的最小自然数。
例3求乘积34×37除以13所得的余数
例4 19983除以7余数是多少。
练习1 求33335555+ 55553333被7除的余数。
例5 5555
5555573⋅⋅⋅÷
个的余数是多少?
二、位值原理
例1、证明:一个三位数减去它的各个数位的数字之和后,必能被9整除
例2、有一个两位数,如果把数码1加写在它的前面,那么可得到一个三位数,如果把1加写在它的后面,那么也可以得到一个三位数,而且这两个三位数相差414,求原来的两位数。
例3、某三位数是其各位数字之和的23倍,求这个三位数。
数论综合:
1、某校的学生总数是一个三位数,平均每个班有35人,统计员提供的学生总数比实际总
数少270人,原来,他在记录时粗心的将这个三位数的百位与十位数字对调了。
这个学校的学生最多是多少人?
2、一次数学考试共有20道题,规定答对一题得2分,答错一题扣1分,未答题不得分,
小明得了23分,已知他未答题目是偶数,他答错了几道?
3、A.B.C.E.F.G七盏灯各自装有拉线开关,开始B.D.F亮着,一个小朋友从A到G再从A 到G,再……的顺序拉开关,一共拉了2000次,问此时哪几盏灯是亮着的。
4、“任何不小于4的偶数都可以表示为两个质数之和”这就是著名的哥德巴赫猜想,例如8=5+3.但是8只有一种表示形式,而22却有3+19和5+17两种表示成不同质数之和的形式,那么,能有两种表示成不同质数之和的形式的最小自然数是几?
5.有1,2,3,4,5,6,7,8,9,九张牌,甲乙丙各拿了3张,甲说:我的三张牌的积是48:;乙说:我的三张牌的和是15,丙说:我的三张牌的积是63,。
问,他们各拿的是哪三张牌?
6、李老师带领同学们去植树,学生们按人数分恰好分成三组,已知他们共种了312棵树,老师和学生每人种的树一样多,且不超过10棵。
问:一共多少学生?每人种了多少棵树?
7、1×2×3×4×……100,这个乘积的末尾有多少个0?将这个乘积再乘以一个个位不是零的数,使得最后的结果有尽量多的0,此时末尾将有多少个0?
8、四名学生做加法练习:任何一个六位数,把它的个位数字(不等于0)拿到这个数的最左边一位得道一个新六位数。
然后与原来的六位数相加,他们的的书分别为172535,588741,620708,845267,其中只有一名同学最对了。
问:正确答案是哪个?
9、老师在黑板上写下三个数:108/396、A,让同学们求他们的最小公倍数,小马虎误将108
当做180进行计算,结果竟然与答案一致,A最小是多少?
10、号码分别为37,57,77和97的四名运动员进行乒乓球比赛,规定每两个人比赛的盘数就是他们呢的号码和除以3的余数,那么打球盘数最多的运动员是几号?他打了多少盘?
11、有一串数。
1,1,2,3,5,8,13……从第三个数起,每个数都是前面两个数之和,在这串数中,前100个数里面有多少个5的倍数?。