火电厂典型废水零排放专业技术

合集下载

火电厂废水零排放技术及工艺案例

火电厂废水零排放技术及工艺案例

火电厂废水零排放技术及工艺案例随着环境保护意识的增强和环境法规的日益严格,火电厂的环境管理也面临着更大的挑战。

废水是火电厂产生的一种主要污染物,如果不能有效处理和排放,将对周边环境造成严重影响。

因此,实现火电厂废水零排放是当前的一个重要课题。

废水零排放是指通过有效的技术手段,将产生的废水经过处理后全部达到国家废水排放标准,不对环境造成任何污染。

下面将介绍一种常用的火电厂废水零排放技术及工艺案例。

膜分离技术作为一种高效、节能的固液(气)分离技术,在废水处理中得到了广泛应用。

其基本原理是通过选择性渗透和分离作用,将废水中的污染物分离并浓缩,最终得到清洁的水和浓缩的废液。

下面以火电厂烟气脱硫废水处理为例,介绍膜分离技术在火电厂废水零排放中的应用。

火电厂烟气脱硫废水主要是脱硫过程中产生的废水,其中含有高浓度的SO42-和颗粒物等有害物质。

为了实现废水的零排放,可以采用多级反渗透(RO)工艺处理该废水。

具体工艺流程如下:1.预处理:将烟气脱硫废水首先进行过滤和沉淀,去除悬浮物和杂质,以保护后续膜组件的正常运行。

2.一级反渗透:使用一级反渗透膜组件对废水进行处理,通过膜的选择性渗透作用,去除大部分的溶解性污染物和离子。

3.二级反渗透:对一级反渗透处理后的水再次进行反渗透处理,进一步浓缩废水中的溶质和离子,提高水的纯净度。

4.浓缩液处理:根据实际情况,对二级反渗透得到的浓缩液进行处理,可以采取蒸发结晶、离子交换等技术进行处理和回收。

通过以上工艺步骤,火电厂烟气脱硫废水中的有害物质可以被有效去除和浓缩,清洁的水可达到国家的排放标准,实现零排放。

当然,废水零排放的实现需要综合考虑技术、经济和环境等因素。

不同的火电厂废水特性和废水处理目标,可能需要选择不同的技术和工艺组合来实现零排放。

因此,在实际应用中,需要对火电厂废水进行详细的实地调查和实验研究,结合具体情况来确定最佳的处理方法。

总之,火电厂废水零排放是一项具有挑战性的任务,但通过应用膜分离技术等先进工艺,结合工程实践和科学研究,可以有效地实现废水的零排放,为火电厂的可持续发展提供有力保障。

火电厂废水零排放技术及工艺案例

火电厂废水零排放技术及工艺案例

污泥外运
存在的问题:1、多效蒸发结晶器能耗高(1吨废水需0.4吨蒸汽)。 2、产生混盐,无法综合利用。
废水零排放技术及案例分析
废水零排放案例
案例1:河源电厂
每1m3废水, 消耗蒸汽约300kg, 耗电约30kW.h
进水
原水池
二级软化 澄清
清水箱
蒸馏水换 热器
4效MED蒸发 +结晶
实际~240~360m3/d
废水零排放技术及案例分析
废水零排放案例
案例:准格尔大路园区零排放
废水零排放技术及案例分析
五、废水零排放案例
案例11:准格尔大路园区零排放
废水零排放技术及案例分析
废水零排放案例
案例:华能沁北电厂
灰场机械雾化蒸发:在灰场安装机械雾化装置,对脱硫废水进行雾化蒸发,现在安装4 台机械雾化装置,每台装置的蒸发水量为6t/h,电机功率为30千瓦
吨水运行费用70~80元
废水零排放技术及案例分析
废水零排放案例
案例1:河源电厂照片
废水零排放技术及案例分析
废水零排放案例
案例1:河源电厂照片
预处理加药
石灰澄清池
处理 度高
原水与产品
废水零排放技术及案例分析
废水零排放案例
案例2:华能长兴电厂
技术路线:处理22吨/小时脱硫废水,经预处理加氢氧化钙、碳酸钠、盐酸后沉淀脱泥, 出水进入石英砂过滤器后经钠离子交换器去除钙、镁离子后,进入两级反渗透装置(陶氏膜 ),反渗透浓水进入正渗透装置(正调试中,国内外首例),正渗透浓水进入两级多效蒸发 结晶器出混盐,经离心干燥期后打包装袋。
废水零排放技术及案例分析
废水零排放案例
案例4:南通王子纸业废水政府能达水务零排放照片

燃煤电厂脱硫废水零排放技术

燃煤电厂脱硫废水零排放技术

燃煤电厂脱硫废水零排放技术目前,国内外燃煤电厂脱硫废水主要采用混凝沉淀处理工艺,水质到达《火电厂石灰石-石膏湿法脱硫废水水质控制指标》(D1/T997-20**)要求后直接排放或者送往灰场、渣场用作喷淋水。

电厂脱硫废水的排放关系到环境的可持续发展,废水零排放可以实现环境减排目标和污水回用,对治理水污染和缓解水资源短缺困境有重要意义。

本文从技术与管理双重角度对零排放处理开展了分析。

1、前言燃煤电厂脱硫废水零排放可以实现环境减排目标,保护生态环境,防止水体和地下水污染,对治理水污染有着重要的意义;也可以将工业废水再利用,减少工业用水总量;将污水大幅度回用,节约水资源,缓解目前水资源严重短缺的困境;也可以将含有难降解的物质固化,在解决工业污水处理难题的同时实现污染物回收利用。

如果能够实现全部工业废水的零排放,将会对水资源需求量大幅减少、环境负荷大量降低和生存环境大为改善,意义非同一般。

2废水来源和水质特点电厂石灰石-石膏湿法脱硫过程中会产生脱硫废水。

为T降低脱硫吸收塔石灰石循环浆液里的C1-和F-这些离子的浓度,控制浆液对脱硫设备造成的腐蚀,排出烟气里面经由洗涤出的飞灰,由系统里面排出一些废水。

排出的脱硫废水中,Ca2+、Mg2+、S042-等离子含量较高,其中Ca2+约1650~5500mg/1、Mg2+约3150~6200mg∕1.S042-约4500mg∕1,且CaS04到达过饱和状态,在加热浓缩后非常容易结垢。

此外脱硫废水中还含有Na+、Ca2+、Mg2+、K+、和F-、S042-、C1-、N03-等离子。

脱硫废水中的盐分非常高,尤其是C1-,且呈酸性,腐蚀性非常强,对设备及管道材质防腐要求很高。

随着燃煤产地的变化,脱硫废水中的成分也会出现非常大的变化。

3脱硫废水预处理工艺高浓度的脱硫废水喷入炉渣中,通过炉渣吸收其中的重金属和盐,到达降低溶液中重金属和氯盐的浓度的目的,实践结论告诉我们此方法确实有一定的成效,但是经处理的出水中的重金属、氯盐含量还是很高,再次回用此溶液时,常常引起喷淋装置的喷淋头堵塞(盐含量太高,蒸发结晶太快,引起堵塞)。

火力发电厂废水处理及其回用技术

火力发电厂废水处理及其回用技术

火力发电厂废水处理及其回用技术1. 引言1.1 火力发电厂废水处理及其回用技术火力发电厂废水处理及其回用技术一直是环境保护和资源利用的重要课题。

火力发电厂废水中含有大量的重金属离子、悬浮物、有机物和其他污染物,如果直接排放到环境中会对周围生态环境造成严重危害。

对火力发电厂废水进行有效处理是必不可少的。

火力发电厂废水处理技术主要包括物理方法、化学方法和生物方法。

物理方法包括沉淀、过滤和吸附等,可以有效去除悬浮物和部分有机物;化学方法则是通过加入化学药剂来沉淀或氧化污染物;生物方法利用微生物降解有机物和氧化废水中的污染物。

而火力发电厂废水回用技术则是将经过处理的废水再次利用,可以用于工业生产、农业灌溉等领域,实现资源的再利用和减少对自然水资源的消耗。

火力发电厂废水处理及其回用技术的研究和应用具有重要意义,不仅可以保护环境、节约资源,还可以促进火力发电行业的可持续发展。

未来,随着技术的不断创新和完善,火力发电厂废水处理及回用技术将迎来更广阔的发展前景。

2. 正文2.1 火力发电厂废水处理技术火力发电厂废水处理技术是保障环境安全和资源利用的重要手段之一。

随着工业化进程的加快,火力发电厂排放的废水中含有大量的污染物和重金属,如果不经过有效处理就直接排放到水体中,将对周边环境造成严重的污染。

火力发电厂废水处理技术的研究和应用具有重要的意义。

目前,常用的火力发电厂废水处理技术包括物理处理、化学处理和生物处理等。

物理处理主要是通过过滤、沉淀、吸附等方法去除悬浮物和颗粒物;化学处理则是利用化学药剂对废水中的污染物进行溶解或沉淀处理;生物处理则是通过微生物的作用将有机物降解成无害物质。

这些方法可以单独使用,也可以结合使用,以达到更好的处理效果。

在火力发电厂废水处理中,合理选择水处理设备也是非常重要的。

根据废水的性质和处理要求选择合适的过滤器、沉淀池、活性炭吸附器等设备,可以提高处理效率,降低处理成本。

火力发电厂废水处理技术的不断改进和创新,能够有效减少环境污染,保护水资源。

火电厂废水零排放技术及应用研究

火电厂废水零排放技术及应用研究

火电厂废水零排放技术及应用研究摘要:电厂废水不仅会对生态环境造成严重威胁,还会浪费大量水资源。

如何对电厂进行废水零排放改造,成为电厂管理者需要着重思考的问题。

某电厂为了实现废水零排放目标,积极尝试对现有的废水处理技术进行优化升级,从节能、经济、可持续发展等视角对废水处理子系统进行优化,最终确定适合本电厂的废水零排放技术,为其他电厂废水处理提供参考与借鉴。

关键词:火电厂;废水;零排放引言随着国家环保要求的提高以及对用、排水要求的日益严格,对全厂废水进行节水与废水综合治理成为不少电厂亟待解决的问题。

这就需要正视电厂废水排放现状,确定废水排放总体目标以及技术要求,加强火电厂废水零排放技术及应用的研究,提升废水处理效率。

1废水零排放现状概述燃料短缺与污染,已经成为影响我国经济社会可持续发展的主要矛盾。

用水量高和用水严重浪费的情况也普遍存在。

节约用水、清洁化生产,对我国社会经济的持续发展产生重要的战略意义。

随着我国环保、水环境日益受到人们的关注,燃煤电厂等大型企业SO2排放标准的日益严格,而烟气湿法脱硫技术在煤炭行业得到推广后,其产生的废气由于盐分浓度过大,一直是废水处理的难点。

近几年,随着我国环境污染治理水平的不断提高,废水零排放关键技术的研发也越来越受到了有关技术人员的关注,特别是作为燃煤电站的废水零排放关键技术的可靠性问题越来越受到人们的关注。

燃煤电厂虽然耗水较多,但剩余电量较多,因此,其“零排放”已成为中国国内污水处理的一个主要趋势。

火力发电厂的湿法施工产生脱磺碱基废水,和火力发电厂其他系统中生成的废水有较大区别,是中国火力发电厂的废水体系中条件最复杂、环境污染最严重的一种。

废水中含有高浓度的悬浮液、多氯根、高含盐量、高浓度有机废物等,其中重金属含量高,环境污染严重,因此必须实现废水的零排放。

目前,燃烧电厂产生的热交换污染废水、反渗透浓水、化水、电厂其他生产过程废水等都集中在脱硫塔内,所以脱磺碱基废水已成为该企业的最终废弃物,且污染程度进一步加剧。

火力发电厂废水治理设计技术规程

火力发电厂废水治理设计技术规程

火力发电厂废水治理设计技术规程随着能源需求的不断增加,火力发电厂作为主要能源供应商,扮演着至关重要的角色。

然而,火力发电过程中产生的废水却成为环境污染的一个主要来源。

为了减少废水对环境的影响,火力发电厂需要制定废水治理设计技术规程。

1.废水治理目标和原则火力发电厂废水治理的主要目标是减少废水的排放量,降低污染物浓度,并确保达到排放标准。

废水治理应遵循“预防为主、综合治理、资源化利用、减量化排放”的原则。

2.原料水处理火力发电厂原料水处理是废水治理的第一道关口。

应建立完善的原料水处理系统,对进厂原水进行深度处理,以减少污染物的进入。

3.废水收集与预处理火力发电厂废水收集与预处理是确保后续处理工艺正常运行的关键环节。

废水应按照不同来源进行收集,并进行初级处理,包括沉淀、澄清和过滤等,以去除废水中的悬浮物、沉淀物和颗粒物。

4.二次处理工艺火力发电厂废水的二次处理包括物理、化学和生物处理等多个环节。

对于高浓度有机污染物和重金属污染物,可以采用活性炭吸附、化学沉淀和络合等方法进行处理。

对于低浓度有机污染物和溶解物质,可以采用生物处理工艺,如活性污泥法、生物膜法和生物吸附法等。

5.深度处理与回用为了提高废水治理效果和资源利用率,火力发电厂可以对经过二次处理的废水进行深度处理。

深度处理包括进一步去除残余有机物、氮和磷等营养物质,以及消毒杀菌等工艺。

同时,可考虑将经过深度处理的废水回用于火力发电过程中,如循环冷却水、锅炉给水等。

6.排放与监测火力发电厂废水治理的最终目标是达到国家和地方的排放标准。

治理工程完成后,应进行废水排放测试,确保排放水质符合标准。

同时,应建立完善的废水监测系统,定期监测和评估废水排放情况,并及时调整和改进治理工艺。

7.废水处理设施建设与运维管理火力发电厂废水治理需要建设相应的处理设施,并按照规程进行运维管理。

设施建设应符合环保法规和相关工艺标准,操作人员应接受必要的培训,并定期进行设备维护、检修和更新,以确保废水治理工艺的正常运行和效果。

火力发电厂的废水处理及其回用技术

火力发电厂的废水处理及其回用技术

火力发电厂的废水处理及其回用技术1. 引言1.1 背景介绍在现代社会,能源需求不断增长,火力发电厂作为主要的能源生产方式之一,在满足人们生活用电需求的也产生了大量的废水问题。

火力发电厂废水中含有高浓度的重金属、有机物、悬浮物等污染物质,对水环境造成了严重的威胁。

废水处理的对废水进行回用成为了一个重要的课题。

有效地利用废水资源不仅能够减少对自然水资源的开采,还能降低废水对环境的污染。

火力发电厂的废水处理及其回用技术备受关注。

本文将围绕火力发电厂废水处理及其回用技术展开深入研究,探讨火力发电厂废水的污染特点、废水处理技术、废水回用技术、应用案例分析及生态环保效益评估,旨在探讨如何有效地处理和利用火力发电厂废水,为推动火力发电行业的可持续发展提供参考依据。

1.2 问题意义火力发电厂是解决我国电力需求的重要方式之一,但其废水排放却成为了环境污染的主要原因之一。

火力发电厂废水中含有大量的重金属物质、悬浮物、油污等有害物质,直接排放会对环境造成严重影响,污染水源、危害生态系统。

火力发电厂废水处理及回用技术的研究具有重要的现实意义和社会意义。

在当前环境保护日益受到重视的背景下,火力发电厂废水处理与回用技术的研究已成为重要课题。

通过有效地处理火力发电厂废水,不仅可以减少对水资源的浪费,提高水资源的利用率,还可以减少污染物对环境的危害,保护生态系统的健康。

废水回用技术的研究还可以为火力发电厂节约能源、降低生产成本提供支持,促进火力发电行业的可持续发展。

研究火力发电厂废水处理及回用技术的问题具有重要的意义,对环境保护、资源利用和经济发展都具有积极的促进作用。

1.3 研究目的研究目的是为了探讨火力发电厂废水处理及其回用技术在当前环境污染严重的背景下的重要性和必要性。

通过对废水处理技术和回用技术的介绍和探讨,旨在提高火力发电厂废水处理效率,减少对环境的污染,并实现资源的循环利用。

通过应用案例分析和生态环保效益评估,明确废水处理与回用技术在生态环境维护和可持续发展方面的作用,为未来的发展方向提供参考和借鉴。

火电厂湿法脱硫废水零排放工艺技术

火电厂湿法脱硫废水零排放工艺技术

火电厂湿法脱硫废水零排放工艺技术火电厂湿法脱硫废水零排放工艺技术是指通过一系列工艺处理,将火电厂湿法脱硫产生的废水中的污染物去除或转化为无害物质,实现废水的零排放。

这种技术在环保领域具有重要意义,既可以保护水资源,又可以减少排放对环境的影响。

火电厂湿法脱硫废水主要含有浓度较高的硫酸盐、氯离子、氟离子等物质,如果直接排放到江河湖海中,会对水体生态系统造成严重污染。

因此,通过零排放工艺技术处理火电厂湿法脱硫废水,才能实现环保要求。

火电厂湿法脱硫废水零排放工艺技术大致包括以下几个步骤:预处理、中水回用、深度脱水和污泥处理。

首先,预处理是指对废水进行初步处理,主要是去除废水中的悬浮物、颜色及重金属等杂质。

这一步骤通常采用物理化学方法,如沉淀、过滤、絮凝等过程。

然后,通过中水回用技术将预处理后的废水中的水分回收利用。

利用一系列处理工艺,如过滤、反渗透、蒸发浓缩等方式,将回收的水分重新用于火力发电过程中的冷却等环节。

这种方法能够减少水的消耗,降低用水成本。

接下来,深度脱水是指对回收利用后的水进行进一步处理,将其中的废物浓缩成为固体,以便后续处理。

通常采用的方法有压滤、离心等技术,将水分脱除,得到固体废物。

最后,对产生的固体废物进行处理。

焚烧、填埋、消纳等处理方法可以有效地处理固体废物,并确保固体废物不会对环境造成二次污染。

通过以上几个步骤的综合运用,火电厂湿法脱硫废水零排放工艺技术能够实现废水的零排放。

这一技术的应用不仅可以保护水环境,减少对生态系统的影响,同时也达到了节约水资源的效果,符合可持续发展的要求。

火电厂湿法脱硫废水零排放工艺技术是当前环保领域研究的热点之一,其重要性不言而喻。

随着环保意识的提高和环境监管的加强,火电厂湿法脱硫废水零排放工艺技术的研究和应用已成为国内外研究学者和环保专家关注的焦点,大量的研究和实践表明,火电厂湿法脱硫废水零排放工艺技术在减少污染物排放、提高资源利用率等方面具有巨大的潜力和优势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
监测项目
单位
检测结果
外观
澄清
COD
mg/L
20
全盐
mg/L
1800
硬度
mg/L
1500
电导率
μs/cm
2700
以上水质经过预处理,完全可已达到抗污染卷式膜的进水要求,但是抗污染卷式膜产生的浓水水质较差,水质如下:
监测项目
单位
检测结果
COD
mg/L
100
全盐
mg/L
10000
硬度
mg/L
500
电导率
μs/cm
1、北方多省市明确废水排放含盐量,要求严格,传统工艺无法满足处理要求。
2、对废水进行资源回收、综合利用,实施深度节水措施,势在必行;
3、通过反渗透设备浓缩到极致,浓液再蒸发,可减少蒸发量,彻底降低蒸发一次投资及运行费用,技术经济均可行。
三、反渗透浓水实现资源回收与零排放
1.反渗透废水水质
锅炉补给水选用地下水或自来水进行反渗透处理制取,其浓水水质检测如下:

mg/L
0.22

mg/L
1600

mg/L
890
全硅
mg/L
200
由上表分析,脱硫废水无法使用卷式膜做预处理
2.工艺流程
ﻩﻩﻩﻩCa(OH)2ﻩTMT15FeClSO4/Na2CO3
五、选择CS-RO膜思路
1.CS-RO技术源于德国DTRO技术
众所周知,反渗透膜技术是一种常用的脱盐技术。目前,适用于工业规模的反渗透膜,主要包括乙酸纤维素和聚酰胺膜,其盐截留率为99%以上。废水通过物化、生物等方法使废水达到排放标准。

运行压力
≤60BAR
20
7
总硬度(以CaCO3计算)
50
300
8
耐受COD
20
100000
9
耐受游离氯量
< 0.1ppm
< 0.1ppm
10
盐去除率
90-99.5%
98-99.5%
11
浓水最高盐度
<5.8%
14%
12
清洗频率比
6:1
13
使用年限
1-3
3-10
14
维修程度
5)化学清洗的频率低
CS-RO特殊结构及水力学设计使膜组件易于清洗,清洗后通量恢复性非常好;加上膜组件有效避免膜的结垢,膜污染减轻,减少化学清洗的频率,使反渗透膜的寿命延长;
6)维修简单,更换成本低
膜组件采用标准化设计,易于拆卸维护,打开组件可以轻松检查维护任何一片过滤膜片及其它部件,维修简单;组件内部任何单个部件均允许单独更换。过滤部分由多个过滤膜片及导流盘装配而成,当膜片需要更换时可进行单个更换,对于过滤性能好的膜片仍可继续使用,最大程度降低膜片更换成本;
全换
换单个膜片
15
浓水蒸发量比
>2:1
3.CS-RO膜技术优势
1) 简单预处理,占地面积小,可移动性强
CS-RO系统进水要求低,因此只需要简单的预处理,无需复杂的土建工程,而且系统模块单元灵活紧凑,为集成式安装,可移动性强,占地面积很小。
2)膜使用寿命长
特殊改性的RO/NF膜片膜分离功能层更厚、电负性更低、膜表面更光滑、亲水效果更好,具有更强的抗污染和耐高压性能。相比传统膜片,具有更长的使用寿命,一般5年以上;
工作原理:原水通过膜芯与高压容器的间隙到达膜元件底部,均匀布流进入导流盘,在导流盘表面以雷达扫描方式流动,从投币式切口进入下一组导流盘和膜片,在整个膜柱内呈涡流状流动,产水通过中心管排出膜元件。
导流盘特殊的力学设计使液体流经遇凸点碰撞时形成湍流,增加自清洗功能,有效避免膜堵塞和浓差极化现象,延长膜片的使用寿命;清洗时也容易将膜片上的积垢洗净,保证碟管式膜组适用于处理高浑浊度和高含沙系数的废水,适应恶劣的进水条件。
15000
SDI15
~10
2.工艺流程
四、脱硫高盐废水实现资源回收与零排放
1.石灰石-石膏脱硫废水水质ﻫ
监测项目
单位
检测结果
外观
浑浊
COD
mg/L
300
氨氮
mg/L
60
全固形物
mg/L
27000
硬度
mg/L
12500
SS
mg/L
9790
硫酸盐
mg/L
5990
氟化物
mg/L
32.2
氯化物
mg/L
7920
2.海淡膜与CS-RO技术比较
上述两种废水最终浓缩均选用碟管式反渗透而不选用海淡膜,通过下表比较可明显看出采用CS-RO工艺对盐水浓缩的优势:
序号
类目
某品牌海淡膜
CS-RO
1
膜类型
卷式膜
碟管式膜
2
单只膜规格
35㎡/8寸
9.7㎡/9寸

膜片材质
聚酰胺复合膜
改性聚酰胺复合薄膜
4
运行温度
5-45℃
5-45℃
7)全自动化控制,系统易于维护,减少人力成本
8)建设周期短,调试、启动迅速
CS-RO系统的建设主要为机械加工,附以配套的厂房、水池建设,规模很小,建设速度快。设备运抵现场后只需两周左右的时间安装调试工作就可完成;
碟管式反渗透(DTRO)技术是一种高新反渗透技术,最早始于德国,相对于卷式反渗透其耐高压、抗污染特点更加明显,即使在高浊度、高SDI值、高盐分、高COD的情况下,也能经济有效稳定运行,更加适应高盐废水的处理。
山东百川集大环境工程有限公司引进德国一流DTRO设备及技术,自主研发以CS-RO为主的组合工艺,使该技术得以在国内广泛推广。
在CS-RO中,化学超级膜元件CS-Module,是平板膜组件技术的革新性变形,属于第三代碟管式反渗透。采用特殊改性的专用膜片,优化的流体在膜柱内部流动形态和压力补偿结构设计,确保系统的安全性和高效性,增强对高浓度物料的适应性和稳定性。
CS-MODULE主要由过滤膜片、导流盘、中心拉杆、高压容器、两端法兰、各种密封件及联接螺栓等组成。过滤膜片和导流盘交替叠放,中心拉杆串成模芯置入高压容器后两端法兰进行固定,再用拉杆结合形成。
火电厂典型废水零排放技术
————————————————————————————————作者:
————————————————————————————————日期:
火电厂典型废水零排放
——卷式膜+CS-RO+蒸发结晶组合工艺
一、某火电厂典型废水
1.锅炉补给水系统:反渗透浓水ﻫ2.脱硫系统:脱硫废水
二、废水回收思路
3)优越的抗污染性能
开放式的宽流道,膜片与支撑导流盘空间高度达到2.5mm,有效避免物理堵塞,允许SDI高达20的料液直接进入膜系统;
支撑导流盘表面特殊设计,使流体分流均匀,并形成更佳湍流效果,最大程度上减少了膜表面结垢、污染及浓差极化现象的产生,体现其优越的抗污染性能;
4)最低限度降低压力损失
支撑导流盘旋流狭缝的专利设计,流体在膜装置内形成涡流式螺旋流程,几乎没有流动变向并匀速扫过膜片表层,最低限度降低压力损失,解决常规圆盘式膜柱因流体急剧转向造成的大量能耗缺点;
相关文档
最新文档