工程弹塑性力学教学课件第四章弹性模型2

合集下载

工程塑性力学(第四章)弹塑性力学边值问题的简单实例

工程塑性力学(第四章)弹塑性力学边值问题的简单实例

σθ
−σr
=
2
p
b2 r2
在 r = a 时取最大值,则 r = a 处首先屈服
(σθ
− σ r ) max
=
2
p
b2 a2
=σs
求得弹性极限载荷(压力)为
pe
=
a2σ s 2b2

p
=
pe
=
b2 − a2 a2
pe
= σs 2
⎜⎜⎝⎛1 −
a2 b2
⎟⎟⎠⎞
(2)弹塑性解
(4-26)
p > pe 时,塑性区逐渐扩张。设弹、塑性区交界处 r = c , a < c < b 。
b
弹性区
c
用边界条件σ r r=a = − p ,可确定出 C′ = − p − σ s ln a ,
a
所以
⎪⎧σ r ⎨ ⎪⎩σθ
= σ s ln r − p − σ s ln a = − p + σ s
=σs
+σr
=
−p
+ σ s (1 +
ln
r) a
ln
r a
(4-27)
塑性区 图 4-3
属静定问题,未用到几何关系。
ΔFi = F&iΔt , ΔTi = T&iΔt , Δui = u&iΔt
(4-10) (4-11)
式中 F&i ,T&i 和 u&i 分别称为体力率、面力率和位移率(速度)。引入率的表达形式
可以简化公式表达。 求解过程为:
已知时刻 t 时,位移 ui ,应变 εij ,应力σij ,加载面 f (σij ,ξ ) = 0 。在 ST 上给

工程弹塑性力学课件

工程弹塑性力学课件
工程弹塑性力学课件
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。

弹塑性本构模型理论课件

弹塑性本构模型理论课件


材料屈服强度影响规律
屈服强度定义
材料开始发生明显塑性变形的最小应力值,反映了材料抵抗塑性变 形的能力。
屈服强度对弹塑性行为的影响
屈服强度越大,材料抵抗塑性变形的能力越强,进入塑性阶段所需 的应力水平越高,材料的塑性变形能力越差。
屈服强度的影响因素
材料的晶体结构、化学成分、温度、应变速率等都会影响屈服强度 的大小。
材料弹性模量影响规律
弹性模量定义
01
材料在弹性阶段内,应力与应变之比,反映了材料抵抗弹性变
形的能力。
弹性模量对弹塑性行为的影响
02
弹性模量越大,材料的刚度越大,相同应力作用下产生的弹性
变形越小,进入塑性阶段所需的应力水平越高。
弹性模量的影响因素
03
材料的晶体结构、化学成分、温度等都会影响弹性模量的大小
弹性阶段
材料在受力初期表现出弹性行为,应 力与应变呈线性关系,卸载后无残余 变形。
屈服阶段
当应力达到屈服强度时,材料进入塑 性阶段,应力不再增加但应变继续增 加,卸载后有残余变形。
强化阶段
材料在塑性阶段表现出应变硬化特性 ,随着塑性应变的增加,屈服强度逐 渐提高。
理想弹塑性模型
无强化阶段的弹塑性模型,屈服后应 力保持恒定,应变无限增加。
通过实验测定金属材料的弹性模量、屈服强度、硬化模量等参 数,为模拟提供准确数据。
利用有限元软件建立金属材料的弹塑性行为模型,进行加载、 卸载等模拟过程。
将模拟结果与实验结果进行对比,验证弹塑性本构模型在金属 材料行为模拟中的准确性和可靠性。
实例二:混凝土结构弹塑性损伤评估
损伤模型选择
针对混凝土结构的损伤特点,选择合适 的弹塑性损伤本构模型,如塑性损伤模

弹塑性力学第四章

弹塑性力学第四章

代入广义胡克定律
x c11 x c12 y c13 z c14 xy c15 yz c16 zx
x c11 x c12 y c13 z c14 xy c15 yz c16 zx
c11 x c12 y c13 z c14 xy c15 yz c16 zx
b
广义胡克定律
由应力分量的坐标变换公式(2-20)可得:
广 西 工 学 院 汽 车 工 程 系
xy l11l22 xy xy 2 x l11 x x 2 y l22 y y 2 z l33 z z
上述关系式是胡克(Hooke)定律在复杂应力条件下 的推广,因此又称作广义胡克定律。
广义胡克定律
广义胡克定律的张量表示: ij cijkl kl cijkl 称为弹性系数,一共有36个。
i, j, k , l 1, 2.3
广 西 工 学 院 汽 车 工 程 系
如果物体是非均匀材料构成的,物体内各点受力后将 有不同的弹性效应,因此一般的讲,cmn 是坐标x,y,z 的函数。 如果物体是由均匀材料构成的,那么物体内部各点, 如果受同样的应力,将有相同的应变;反之,物体内各 点如果有相同的应变,必承受同样的应力。 因此cmn为弹 性常数,与坐标无关。 各向同性材料,独立的弹性常数只有两个。
xy yz zx
xy
G
yz
G
zx
G
式中, G
E 2 1 v
为各向同性物体的剪切弹性模量。
表示材料弹性性能的常数有3个,但只有两个是独立的。 张量记法:
1 v v ij ij E E vE ij e E ij ij 1 v 1 v 1 2v

弹塑性力学第四章

弹塑性力学第四章


x

y
)
2019/7/26
36
§4-3 各向同性材料弹性常数

yz

2(1 )
E
yz

xy

2(1
E
)

xy

zx

2(1
E
)
zx
采用指标
符号表示:
ij

1 E
(1 ) ij
ij kk
ij

E
1
ij
1 2
ij kk
2G
0 0 0

2G
0
0
0


2G 0 0 0

2G 0
0



2G 0



2G
2019/7/26
31
§4-3 各向同性材料弹性常数
3.1 本构关系用、G表示
采用指标符号表示:
ij 2Gij ij kk 2Gij iⅠj
2019/7/26
16
§4-2 线弹性体的本构关系
2.1 各向异性材料 Eijkl 减少为66=36个独立系数,用矩阵 表示本构关系
{}=[c]{}
11
22
33
23
31
T 12
11
22
33
23
31
T 12
x3 弹性主轴
材料主轴,并取另一坐标
系x’i ,且x’1 = x1,x’2=x2,
x2
x’3=-x3。在两个坐标下,

弹塑性力学PPT课件

弹塑性力学PPT课件

早期研究: • 1773年Coulomb提出土质破坏条件,其后推广为
Mohr- Coulomb准则; • 1857年Rankine研究半无限体的极限平衡,提出滑移
面概念; • 1903年Kötter建立滑移线方法; • 1929年Fellenius提出极限平衡法; • 1943年Terzaghi发展了Fellenius的极限平衡法; • 1952~1955年Drucker和Prager发展了极限分析方法; • 1965年Sokolovskii发展了滑移线方法。
.
5
1.1 基本概念
• 弹塑性力学是固体力学的一个重要分支,是 研究弹性和弹塑性物体变形规律的一门科学。 应用于机械、土木、水利、冶金、采矿、建 筑、造船、航空航天等广泛的工程领域。
• 目的:(1)确定一般工程结构受外力作用时 的弹塑性变形与内力的分布规律;(2)确定 一般工程结构物的承载能力;(3)为进一步 研究工程结构物的振动、强度、稳定性等力 学问题打下必要的理论基础。
在加载过程中必须对其历史进行记录。
.
18
1.4 塑性力学的研究方法
• 宏观塑性理论 • 以若干宏观实验数据为基础,提出某些假设
和公设,从而建立塑性力学的宏观理论。特 点是: • 数学上力求简单,力学上能反映试验结果的 主要特性。 • 实验数据加以公式化,并不深入研究塑性变 形过程的物理化学本质。
.
.
6
弹塑性力学的基本假设
• (1)物体是连续的,其应力、应变、位移 都可用连续函数表示。
• (2)变形是微小的,忽略变形引起的几何 变化。
• 即连续介质和小变形假设。
.
7
弹性和塑性变形的特点
弹性变形的特点:
• 应力-应变之间具有一一对应的关系,

弹塑性力学第四章弹性本构关系资料

弹塑性力学第四章弹性本构关系资料
产生的x方向应变:
产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
eij
1 2G
sij
(4.40)
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个
因此应力偏张量形式的广义虎克定律,即
eij
1 2G
sij
em
1 3K
sm
(4.41)
用应变表示应力:
或: ✓ 各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
式(2)中的系数 有36个.
称为弹性常数,共
由均匀性假设,弹性体各点作用同样应力 时,必产生同样的应变,反之亦然.因此 为 常数,其数值由弹性体材料的性质而定.
式(2)推导过程未引用各向同性假设, 故可适用于极端各向异性体、正交各向异性体、 二维各向同性体以及各向同性体等.
式(2)可用矩阵表示
式(3)可用简写为 称为弹性矩阵.
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.

弹塑性力学第四章 弹性本构关系

弹塑性力学第四章 弹性本构关系
E K 3(1 2 )
(4.36) (4.37) (4.38)
K称为体积弹性模量,简称体积模量。
因此
q
sm
K
,em
sm
3K
1 3 1 1 ex e x e m ( sx sm) sm sx E E 3K 2G
1 ey e y e m sy 2G
1 eij sij 2G
(4.40)
1 eij sij 2G 1 em sm 3K
(4.41)
用应变表示应力:
或:
各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
• 材料的应力与应变关系需通过实验确定的。 • 本构方程实际是应力与应变关系实验结果的数学 描述。 • 由于实验的局限性,通常由简单载荷实验获得应 力与应变关系结果,建立描述相应的数学模型, 再将数学模型用于复杂载荷情况的分析。(用一 定实验验证结果)
• 例如:材料单轴拉伸应力-应变z e m sz 2G
1 1 1 1 yz s yz exy e xy xy sxy eyz e yz 2G 2G 2G 2G
1 1 exz e xz xz sxz 2G 2G
整理以上六个式子,得 整理以上六个式子,得
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个 因此应力偏张量形式的广义虎克定律,即
物理方程:
s ij 3 1 3 e ij s ij s m ij s m ij E E 2G E
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f
D(r )

r
f a 1 D a
Duncan-Chang模型
切线泊松比…
侧向应变与轴向应变关系曲线的切线斜率具有 增量泊松比的物理意义
t
(r ) a
f (1 A)2
A
D(1 3)
kpa
3
pa
1
Rf (1 sin )(1 3 2c cos 23 sin
)
Duncan-Chang模型
Duncan-Chang模型
讨论
基于重塑土的三轴试验建立,不能反映天然土 体的变形特性;不能反映压缩与剪切的完全交 叉影响、不能反映土体的软化及各向异性性质; 模型本身不能反映中主应力对E、μ和强度指标 的影响等。 针对上述一些不足,目前有许多相关的修正模 型。
t i tf i
1 3 (1 3) f
Duncan-Chang模型
切线体积模量
平均应力与体积应变的比值
B 1 1 3 v
模型的弹性常数只有两个是独立的,不同形式
间可以相互转换,邓肯张模型也可用E-B表示
B值与围压的关系
B
Kb
pa
(3
pa
)m
Duncan-Chang模型
回弹模量
对于卸荷情况,模量按下面表达式计算
广义虎克定律
应变
ij
1
E
v
ij
v E
kk
ij
应力
ij
1 v E
ij
(1
vE v)(1
2v)
kkij
一般各向异性材料,
36个常数中只有21个独立。对于各类特殊情况, 独立材料常数不同
ij Cijkl kl
线弹性模型…
各向同性线弹性本构模型
{} [D]{}
以偏应力和球应力的形式表示
Sij
a
b1
1
3
a
1 b1
➢双曲线参数a为图中直线的 竖向截距,倒数1/a为应力应 变曲线的初始切线斜率;
➢双曲线参数b为直线斜率, 倒数1/b为应力应变曲线的渐 近线值。
Duncan-Chang模型
所以
(1 3 )
1 Ei
1
Rf
(1 3 ) f
1
初始模量Ei
Ei
1 a
破坏比Rf :定义为土体破坏时的主应力差与双 曲线渐近线所对应主应力差的比值一般在0.75~
切线泊松比…
初始切线泊松比,与围压有关
i
r a
r 0
G
F
lg
3
pa
切线泊松比公式
t
G
F
lg
3
pa
(1 A)2
Duncan-Chang模型
切线泊松比…
切线泊松比按上式计算得到的结果有可能大于 0.5,会造成有限元分析的异常;所以,实际计 算中,当v大于0.49时取为0.49。
切线泊松比随应力水平而增加,Daniel提出一 种简化的内插计算方法:
第五章 弹性模型
主要内容
线弹性模型
各向同性线弹性模型 横观各向同性弹性模型
非线弹性模型理论
超弹性模型 Cauchy弹性模型 次弹性模型
Duncan-Chang模型
线弹性模型
虎克定律
应力应变成正比,比例常数为弹性常数(杨氏模 量)
E
广义虎克定律:一般指材料的各向同性线弹性 本构关系
线弹性Байду номын сангаас型…
Eur
Kur
pa
(
3
pa
)n
5.3 Duncan-Chang模型
讨论
1. 模型适用于正常固结粘性土。通过弹性常数 的调整来近似地考虑总变形中的塑性变形部分, 反映了土体变形的主要规律。
2. 涉及到的参数有c、φ、Rf、k、n、d、G、F 共八个,其中d、F、G是用于确定泊松比的, 计算中若假定泊松比为常数,那么仅需前面五 个参数。从正常固结土的室内常规三轴压缩试 验即可以较容易得到这些参数。
K,n:试验常数
Ei
Kpa
(
3
pa
)n
Mohr-Coulomb破坏准则
(1 3 ) f
2C cos 23 sin 1 sin
代入上式
Duncan-Chang模型
切线弹性模量
Et
1 Rf
(1 sin )(1 2C cos 2
3) 3 sin
2
Kpa
(
3
pa
)n
切线模量随应力水平的增加而降低,随围压增 加而增加;
应力状态与应变状态、应力路径有关 ij Fij (kl , mn )
Duncan-Chang模型
双曲线非线弹性模型,参数简单易确定, 应用广泛
模型建立,基于三轴试验
切线弹性模量 切线泊松比
1 :轴向应变 (1 3):主应力差
回弹模量
Duncan-Chang模型
双曲线应力应变关系
1 (1 3 )
参数5个,其中c、 为强度指标,另外三个参数 k、n 和 Rf 的确定方法在推导中已作说明,其中 Rf 对不同的围 压会有不同的值,取平均值。
Duncan-Chang模型
切线泊松比
库哈威(Kulhawy)和邓肯(Duncan)认为常规三轴 试验测得轴向应变与侧向应变之间也可用双曲 线来拟合,
r a
1.0之间
Rf
(1 3 ) f (1 3 )ult
b(1 3) f
Duncan-Chang模型
(1 3 )
1 Ei
1
Rf
(1 3 ) f
1
土体切线弹性模量
(1
3)
1
Ei
1/ Ei
Rf 1 (1 3 ) f
2
Et
(1 3) 1
Duncan-Chang模型
土体的初始模量(Janbu,1963)
横观各向同性模型
垂直某一方向的各个平面都是各向同性面:水 平向各向同性,竖向各向异性 弹性矩阵[D]:5个独立变量, EH,Ev,VHH, VHV,VVH
非线弹性模型理论
超弹性模型
通过材料的应变能函数或余能函数建立的本构
Cauchy弹性模型
ij
W
ij

ij
ij
与应力路径无关
次弹性模型
ij Fij ( kl )
1 v E
eij
2Geij
p
1 3
ij
3(1
E 2v)
kk
K kk
K v
线弹性模型…
弹性参数:两个独立变量
E, v
K, G
9KG
E
E
3K+G
3K-2G
v
v
2(3K+G)
E
K
K
3(1-2v)
E
G
G
2(1+2v)
E, K
E 3K-E 6K
K 3KE 9K-E
线弹性模型…
一般各向异性,21个独立变量;各向同性 线弹性模型,2个独立变量
相关文档
最新文档