“费马点”与中考数学试题
费马点与中考试题

费马点与中考试题LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】识别“费马点”思路快突破解题的成功取决于多种因素,其中最基本的有:解题的知识因素、解题的能力因素、解题的经验因素和解题的非智力因素,这也就是我们常说的解题基本功.可见解题的知识因素是第一位的,足以说明它的重要性.下面我们从解题的知识因素上关注两道中考题的思路获取.例1 (2010湖南永州)探究问题:(1)阅读理解:①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA=AC·BD.此为托勒密定理.(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C),已知点P为等边△ABC外接圆的BC上任意一点.求证:PB+PC=PA.②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在BC上任取一点P′,连结P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+;第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.思路探求:(2)知识迁移①问,只需按照题意套用托勒密定理,再利用等边三角形三边相等,将所得等式两边都除以等边三角形的边长,即可获证. ②问,借用①问中对于费马点的定义结论容易获解. (3)知识应用,模仿(2)的图形,先构造正三角形,由(2)中的结论,再计算AD即为最小距离.简解:(2)①证明:由托勒密定理可知PB·AC+PC·AB=PA·BC∵△ABC是等边三角形∴AB=AC=BC∴PB+PC=PA②P′D AD(3)解:如图,以BC为边长在△ABC的外部作等边△BCD,连接AD,则知线段AD的长即为△ABC的费马距离.∵△BCD为等边三角形,BC=4,∴∠CBD=60°,BD=BC=4.∵∠ABC=30°,∴∠ABD=90°.在Rt△ABD中,∵AB=3,BD=4∴AD22+=5(km)34AB BD+22∴从水井P到三村庄A、B、C所铺设的输水管总长度的最小值为5km.点评:此题集阅读理解、创新探究、实际应用于一体,题型新颖别致,综合考查自主探究、创新应用能力,是一道不可多得的好题.命题者设置成递进式问题,后续问题的思路获取、求解都靠对上一结论的解读、利用,这也是近年“课题学习”考查的一大风向,值得重视.如果说例1只是以“费马点”为课题学习的素材进行了考查,为了帮助同学们更好的理解三角形的费马点,我们补充几点:(1)平面内一点P 到△ABC 三顶点的之和为PA+PB+PC ,当点P 为费马点时,距离之和最小.特殊三角形中:(2)三内角皆小于120°的三角形,分别以 AB ,BC ,CA ,为边,向三角形外侧做正三角形ABC 1,ACB 1,BCA 1,然后连接AA 1,BB 1,CC 1,则三线交于一点P ,则点P 就是所求的费马点.(3)若三角形有一内角大于或等于120度,则此钝角的顶点就是所求. (4)当△ABC 为等边三角形时,此时外心与费马点重合.可见,永州卷这道考题对于费马点只是以课题学习为问题载体,考得比较直截了当;巧合的是2010年福建宁德一道考题对这个知识考查显得隐蔽了,请看:例2 (2010福建宁德)如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .⑴ 求证:△AMB ≌△ENB ;⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; ⑶ 当AM +BM +CM 的最小值为13 时,求正方形的边长.思路探求:⑴略;A DB C⑵ ①要使AM +CM 的值最小,根据“两点之间线段最短”,需设法将AM +CM 转化为一条线段,连接AC 即可获取;②要使AM +BM +CM 的值最小,由例3积累的知识经验:点M 应该是△ABC 的费马点.由例3中(2)的求解示范,只要连接CE 即可获得CE 为AM +BM +CM 的值最小.这样获到M 点至少帮助我们在思路获取上提高了效率.理由说明供助于第(1)问的全等获得BM=BN ,将三条线段转化到CE 上去,问题化为两点之间线段最短.⑶根据题意,添加辅助线,构造直角三角形,过E 点作EF ⊥BC 交CB 的延长线于F . 设正方形的边长为x ,则BF =23x ,EF =2x .在Rt △EFC 中,由勾股定理得(2x )2+(23x +x )2=()213+,解得即可.简答:⑴略;⑵①当M 点落在BD 的中点时,AM +CM 的值最小. ②如图,连接CE ,当M 点位于BD 与CE 的交点处时, AM +BM +CM 的值最小.理由如下:连接MN.由⑴知,△AMB∴AM =EN .∵∠MBN =60°,MB =NB , ∴△BMN 是等边三角形. ∴BM =MN .∴AM +BM +CM =EN +MN +CM .根据“两点之间线段最短”,得EN +MN +CM =EC 最短∴当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小,即等于EC 的长. ⑶过E 点作EF ⊥BC 交CB 的延长线于F ,∴∠EBF =90°-60°=30°.F A DB C设正方形的边长为x ,则BF =23x ,EF =2x . 在Rt △EFC 中,∵EF 2+FC 2=EC 2,∴(2x)2+(23x +x )2=()213+.解得,x =2(舍去负值).∴正方形的边长为2.点评:本题中“AM +BM +CM 的值最小”如果没有费马点的知识积累,会在探究点M 的位置上花费不少时间,这对紧张的考试来说,势必造成“隐性失分”.。
费马点与中考试题

识别“费马点”思路快突破例1 探究问题:(1)阅读理解:①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时P A+PB+PC的值为△ABC的费马距离.②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA=AC·BD.此为托勒密定理.(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C),已知点P为等边△ABC外接圆的»BC上任意一点.求证:PB+PC=P A.②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在»BC上任取一点P′,连结P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+;第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.(1)平面内一点P到△ABC三顶点的之和为PA+PB+PC,当点P为费马点时,距离之和最小.特殊三角形中:(2)三内角皆小于120°的三角形,分别以AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点.(3)若三角形有一内角大于或等于120度,则此钝角的顶点就是所求.(4)当△ABC为等边三角形时,此时外心与费马点重合.可见,永州卷这道考题对于费马点只是以课题学习为问题载体,考得比较直截了当;巧合的是例2 如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴求证:△AMB≌△ENB;⑵①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;3 时,求正方形的边长.⑶当AM+BM+CM的最小值为1A DB C思路探求:⑴略;⑵ ①要使AM +CM 的值最小,根据“两点之间线段最短”,需设法将AM +CM 转化为一条线段,连接AC 即可获取;②要使AM +BM +CM 的值最小,由例3积累的知识经验:点M 应该是△ABC 的费马点.由例3中(2)的求解示范,只要连接CE 即可获得CE 为AM +BM +CM 的值最小.这样获到M 点至少帮助我们在思路获取上提高了效率.理由说明供助于第(1)问的全等获得BM=BN ,将三条线段转化到CE 上去,问题化为两点之间线段最短.⑶根据题意,添加辅助线,构造直角三角形,过E 点作EF ⊥BC 交CB 的延长线于F . 设正方形的边长为x ,则BF =23x ,EF =2x .在Rt △EFC 中,由勾股定理得(2x )2+(23x +x )2=()213+,解得即可.简答:⑴略;⑵①当M 点落在BD 的中点时,AM +CM 的值最小.②如图,连接CE ,当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小.理由如下:连接MN.由⑴知,△AMB ≌△ENB∴AM =EN .∵∠MBN =60°,MB =NB ,∴△BMN 是等边三角形.∴BM =MN .∴AM +BM +CM =EN +MN +CM .根据“两点之间线段最短”,得EN +MN +CM =EC 最短∴当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小,即等于EC 的长.⑶过E 点作EF ⊥BC 交CB 的延长线于F ,∴∠EBF =90°-60°=30°.设正方形的边长为x ,则BF =23x ,EF =2x . 在Rt △EFC 中,∵EF 2+FC 2=EC 2,∴(2x )2+(23x +x )2=()213+. 解得,x =2(舍去负值).∴正方形的边长为2.F A D B C点评:本题中“AM+BM+CM的值最小”如果没有费马点的知识积累,会在探究点M的位置上花费不少时间,这对紧张的考试来说,势必造成“隐性失分”.。
2024成都中考数学二轮复习专题:费马点求最小值

费马点求最小值内容导航方法点拨△APC≌△AQE,且△APQ为等边三角形,∴PC=QE,AP=PQ∴AP+BP+CP=BP+PQ+QE当B、P、Q、E共线时,AP+BP+CP和最小例题演练题组1:费马点在三角形中运用例1.如图,在△ABC中,P为平面内一点,连结PA,PB,PC,分别以PC和AC为一边向右作等边三角形△PCM和△ACD.【探究】求证:PM=PC,MD=PA【应用】若BC=a,AC=b,∠ACB=60°,则PA+PB+PC的最小值是(用a,b表示)【解答】【探究】证明:∵以PC和AC为一边向右作等边三角形△PCM和△ACD,∴PM=PC,AC=CD,PC=CM,∠PCM=∠ACD=60°,∴∠PCA=∠MCD,在△ACP和△DCM中,,∴△ACP≌△DCM(SAS),∴MD=PA;【应用】解:连接BD,如图所示:∵△APC≌△DCM,∴∠ACP=∠DCM,AC=CD=b,∴∠ACP+∠PCB=∠DCM+∠PCB,∴∠DCM+∠PCB=∠ACB=60°,∴∠BCD=∠DCM+∠PCB+∠PCM=60°+60°=120°,作DF⊥BC于F,则∠CFD=90°,在Rt△CDF中,∵∠DCF=180°﹣120°=60°,CD=b,∴∠CDF=30°,∴CF=AC=b,DF=CF=b,∴BF=a+b,∴BD===;当B、P、M、D共线时,PA+PB+PC的值最小,即PA+PB+PC的最小值为:;故答案为:.练1.1问题提出(1)如图①,在△ABC中,BC=2,将△ABC绕点B顺时针旋转60°得到△A′B′C′,则CC′=;问题探究(2)如图②,在△ABC中,AB=BC=3,∠ABC=30°,点P为△ABC内一点,连接PA、PB、PC,求PA+PB+PC的最小值,并说明理由;问题解决(3)如图③,在四边形ABCD中,AD∥BC,AB=6,AD=4,∠ABC=∠BCD=60°.在四边形ABCD内部有一点,满足∠APD=120°,连接BP、CP,点Q为△BPC内的任意一点,是否存在一点P和一点Q,使得PQ+BQ+CQ有最小值?若存在,请求出这个最小值;若不存在,请说明理由.【解答】解:(1)如图①,由旋转的性质可知:△BCC′是等边三角形,∴CC′=BC=2,故答案为2.(2)如图②,将△ABP绕点B逆时针旋转60°得到△BFE,连接PF,EC.由旋转的性质可知:△PBF是等边三角形,∴PB=PF,∵PA=EF,∴PA+PB+PC=PC+PF+EF,∵PC+PF+EF≥EC,∴当P,F在直线EC上时,PA+PB+PC的值最小,易证BC=BE=BA=3,∠CBE=90°,∵EB⊥BC,∴EC=BC=3,∴PA+PB+PC的最小值为3.(3)如图③﹣1中,将△PBQ绕点B逆时针旋转60°得到△EBG,则PQ=EG,△BQG是等边三角形,∴BQ=QG,PQ=EG,∴PQ+BQ+CQ=EG+GQ+QC≥EC,∴EC的值最小时,QP+QB+QC的值最小,如图③﹣2中,延长BA交CD的延长线于J,作△ADJ的外接圆⊙O,将线段BO,BP绕点B逆时针旋转60°得到线段BO′,BE,连接EO′,OB,OP.易证△BEO′≌△BPO(SAS),∴EO′=OP,∵∠APD+∠AJD=180°,∴A,P,D,J四点共圆,∴OP=,∴EO′=,∴点E的运动轨迹是以O′为圆心,为半径的圆,∴当点E在线段CO′上时,EC的值最小,最小值=CO′﹣EO′,连接OO′,延长OO′到R,使得O′R=OO′,连接BR,则∠OBR=90°,作RH⊥CB交CB 的延长线于H,O′T⊥CH于T,OM⊥BC于M.在Rt△OBM中,BM=5,OM=,∴OB==,∴BR=OB=14,由△BHR∽△OMB,∴=,∴RH=5,∵HR∥O′T∥OM,OO′=RO′,∴TM=TH,∴O′T==,∴BT==3,∴CO′==,∴CO′﹣EO′=﹣=.∴QP+QB+QC的最小值为.题组2:费马点在四边形中运用例2.如图,P为正方形ABCD内的动点,若AB=2,则PA+PB+PC的最小值为.【解答】解:将△BPC绕点B顺时针旋转60°,得到△BP'C',∴BP=BP',∠PBP'=60°,△BPC≌△BP'C',∴△BPP'是等边三角形,PC=P'C',∠PBC=∠P'BC',BC=BC'=2,∴BP=PP',∴PA+PB+PC=AP+PP'+P'C',∴当线段AP,PP',P'C'在一条直线上时,PA+PB+PC有最小值,最小值是AC'的长,过点C'作C'E⊥AB交AB的延长线于E,∵∠ABP+∠PBP'+∠P'BC'=60°+∠ABP+∠PBC=150°,∴∠EBC'=30°,∴EC'=1,BE=EC'=,∴AE=2+,∴AC'===+,故答案为:+.练2.1如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD上任意一点,将BM 绕点B逆时针旋转60°得到BN,连接BN、AM、CM.(1)求证:△AMB≌△ENB;(2)若正方形的边长为,正方形内是否存在一点P,使得PA+PB+PC的值最小?若存在,求出它的最小值;若不存在,说明理由.【解答】解:(1)如图1,∵四边形ABCD为正方形,△ABE为等边三角形,∴BE=BA,BA=BC,∠ABE=60°;∵∠MBN=60°,∴BE=BA,∠MBN=∠ABE,∴∠MBA=∠NBE;在△AMB与△ENB中,,∴△AMB≌△ENB(SAS),(2)顺时针旋转△BPC60度,可得△PBE为等边三角形.即得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一条直线上,即如下图:可得最小PA+PB+PC=AF.BM=BF•cos30°=BC•cos30°=,则AM=+=,∵AB=BF,∠ABF=150°∴∠BAF=15°既得AF==+1.例3.如图,在平面直角坐标系xOy中,点B的坐标为(0,2),点D在x轴的正半轴上,∠ODB=30°,OE为△BOD的中线,过B、E两点的抛物线与x轴相交于A、F两点(A在F的左侧).(1)求抛物线的解析式;(2)等边△OMN的顶点M、N在线段AE上,求AE及AM的长;(3)点P为△ABO内的一个动点,设m=PA+PB+PO,请直接写出m的最小值,以及m取得最小值时,线段AP的长.【解答】解:(1)过E作EG⊥OD于G(1分)∵∠BOD=∠EGD=90°,∠D=∠D,∴△BOD∽△EGD,∵点B(0,2),∠ODB=30°,可得OB=2,;∵E为BD中点,∴∴EG=1,∴∴点E的坐标为(2分)∵抛物线经过B(0,2)、两点,∴,可得;∴抛物线的解析式为;(3分)(2)∵抛物线与x轴相交于A、F,A在F的左侧,∴A点的坐标为∴,∴在△AGE中,∠AGE=90°,(4分)过点O作OK⊥AE于K,可得△AOK∽△AEG∴∴∴∴∵△OMN是等边三角形,∴∠NMO=60°∴;∴,或;(6分)(写出一个给1分)(3)如图;以AB为边做等边三角形AO′B,以OA为边做等边三角形AOB′;易证OE=OB=2,∠OBE=60°,则△OBE是等边三角形;连接OO′、BB′、AE,它们的交点即为m最小时,P点的位置(即费马点);∵OA=OB′,∠B′OB=∠AOE=150°,OB=OE,∴△AOE≌△B′OB;∴∠B′BO=∠AEO;∵∠BOP=∠EOP′,而∠BOE=60°,∴∠POP'=60°,∴△POP′为等边三角形,∴OP=PP′,∴PA+PB+PO=AP+OP′+P′E=AE;=AE=;即m最小如图;作正△OBE的外接圆⊙Q,根据费马点的性质知∠BPO=120°,则∠PBO+∠BOP=60°,而∠EBO=∠EOB=60°;∴∠PBE+∠POE=180°,∠BPO+∠BEO=180°;即B、P、O、E四点共圆;易求得Q(,1),则H(,0);∴AH=;由割线定理得:AP•AE=OA•AH,即:AP=OA•AH÷AE=×÷=.故:m可以取到的最小值为当m取得最小值时,线段AP的长为.(如遇不同解法,请老师根据评分标准酌情给分)练3.1如图,抛物线y=ax2+bx+过点A(1,0),B(5,0),与y轴相交于点C.(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点O到二次函数图象的垂直距离是线段OC的长.已知点E为抛物线对称轴上的一点,且在x轴上方,点F为平面内一点,当以A,B,E,F为顶点的四边形是边长为4的菱形时,请求出点F到二次函数图象的垂直距离.(3)在(2)中,当点F到二次函数图象的垂直距离最小时,在以A,B,E,F为顶点的菱形内部是否存在点Q,使得AQ,BQ,FQ之和最小,若存在,请求出最小值;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+过点A(1,0),B(5,0),∴0=a+b+0=25a+5b+∴a=,b=﹣3∴解析式y=x2﹣3x+(2)当y=0,则0=x2﹣3x+∴x1=5,x2=1∴A(1,0),B(5,0)∴对称轴直线x=3,顶点坐标(3,﹣2),AB=4∵抛物线与y轴相交于点C.∴C(0,)如图1①如AB为菱形的边,则EF∥AB,EF=AB=4,且E的横坐标为3∴F的横坐标为7或﹣1∵AE=AB=4,AM=2,EM⊥AB∴EM=2∴F(7,2),或(﹣1,2)∴当x=7,y=×49﹣7×3+=6∴点F到二次函数图象的垂直距离6﹣2②如AB为对角线,如图2∵AEBF是菱形,AF=BF=4∴AB⊥EF,EM=MF=2∴F(3,﹣2)∴点F到二次函数图象的垂直距离﹣2+2(3)当F(3,﹣2)时,点F到二次函数图象的垂直距离最小如图3,以BQ为边作等边三角形BQD,将△BQF绕B逆时针旋转60°到△BDN位置,连接AN,作PN⊥AB于P∵等边三角形BQD∴QD=QB=BD,∵将△BQF绕B逆时针旋转60°到△BDN位置∴NB=BF=4,∠FBN=60°,DN=FQ∵AQ+BQ+FQ=AQ+QD+DN∴当AQ,QD,DN共线时AQ+BQ+FQ的和最短,即最短值为AN的长.∵AF=BF=4=AB,∴∠ABF=60°∴∠NBP=60°且BN=4,∴BP=2,PN=2∴AP=6在Rt△ANP中,AN==4∴AQ+BQ+FQ的和最短值为4.。
中考数学专题复习最值问题费马点

中考数学专题复最值问题费马点学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、单选题1.如图,四边形ABCD 是菱形,AB=4,且∠ABC=∠ABE=60°,G 为对角线BD (不含B 点)上任意一点,将△ABG 绕点B 逆时针旋转60°得到△EBF ,当AG+BG+CG 取最小值时EF 的长( )A .33 2B .23 3C .33 3D .43 3评卷人 得分二、填空题 2.如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.3.问题背景:如图,将ABC ∆绕点A 逆时针旋转60°得到ADE ∆,DE 与BC 交于点P ,可推出结论:PA PC PE +=问题解决:如图,在MNG ∆中,6MN =,75M ∠=︒,42MG =.点O 是MNG ∆内一点,则点O 到MNG ∆三个顶点的距离和的最小值是___________4.如图,∠ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为22,则BC=_____.5.如图,四边形ABCD是菱形,A B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为________.评卷人得分三、解答题6.如图,∠ABC中,∠BAC=45°,AB=6,AC=4,P为平面内一点,求2253BP AP PC++最小值7.如图,在∠ABC中,∠BAC=90°,AB=AC=1,P是∠ABC内一点,求P A+PB+PC的最小值.8.【问题提出】(1)如图1,四边形ABCD 是正方形,ABE △是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60︒得到BN ,连接EN 、AM ,CM .若连接MN ,则BMN △的形状是________.(2)如图2,在Rt ABC 中,90BAC ∠=︒,10AB AC +=,求BC 的最小值. 【问题解决】(3)如图3,某高新技术开发区有一个平行四边形的公园ABCD ,6AB BC +=千米,60ABC ∠=︒,公园内有一个儿童游乐场E ,分别从A 、B 、C 向游乐场E 修三条,,AE BE CE ,求三条路的长度和(即AE BE CE ++)最小时,平行四边形公园ABCD的面积.9.在正方形ABCD 中,点E 为对角线AC (不含点A )上任意一点,AB=22; (1)如图1,将△ADE 绕点D 逆时针旋转90°得到△DCF ,连接EF ; ∠把图形补充完整(无需写画法); ∠求2EF 的取值范围; (2)如图2,求BE+AE+DE 的最小值.10.如图,在平面直角坐标系xoy中,点B的坐标为(0,2),点D在x轴的正半轴上,30ODB∠=︒,OE为∠BOD的中线,过B、E两点的抛物线236y ax x c=++与x 轴相交于A、F两点(A在F的左侧).(1)求抛物线的解析式;(2)等边∠OMN的顶点M、N在线段AE上,求AE及AM的长;(3)点P为∠ABO内的一个动点,设m PA PB PO=++,请直接写出m的最小值,以及m取得最小值时,线段AP的长.11.背景资料:在已知ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当ABC三个内角均小于120°时,费马点P 在ABC内部,当120APB APC CPB∠=∠=∠=︒时,则PA PB PC++取得最小值.(1)如图2,等边ABC 内有一点P ,若点P 到顶点A 、B 、C 的距离分别为3,4,5,求APB ∠的度数,为了解决本题,我们可以将ABP △绕顶点A 旋转到ACP '△处,此时ACP ABP '≌这样就可以利用旋转变换,将三条线段PA 、PB 、PC 转化到一个三角形中,从而求出APB ∠=_______;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与ABC 的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,ABC 三个内角均小于120°,在ABC 外侧作等边三角形ABB ',连接CB ',求证:CB '过ABC 的费马点.(3)如图4,在RT ABC 中,90C ∠=︒,1AC =,30ABC ∠=︒,点P 为ABC 的费马点,连接AP 、BP 、CP ,求PA PB PC ++的值.(4)如图5,在正方形ABCD 中,点E 为内部任意一点,连接AE 、BE 、CE ,且边长2AB =;求AE BE CE ++的最小值.参考答案:1.D【解析】【分析】根据“两点之间线段最短”,当G点位于BD与CE的交点处时,AG+BG+CG的值最小,即等于EC的长.【详解】解:如图,∠将△ABG绕点B逆时针旋转60°得到△EBF,∠BE=AB=BC,BF=BG,EF=AG,∠∠BFG是等边三角形.∠BF=BG=FG,.∠AG+BG+CG=FE+GF+CG.根据“两点之间线段最短”,∠当G点位于BD与CE的交点处时,AG+BG+CG的值最小,即等于EC的长,过E点作EF∠BC交CB的延长线于F,∠∠EBF=180°-120°=60°,∠BC=4,∠BF=2,EF=23,在Rt△EFC中,∠EF2+FC2=EC2,∠EC=43.∠∠CBE=120°,∠∠BEF=30°,∠∠EBF=∠ABG=30°,∠EF=BF=FG,∠EF=13CE=433,故选:D.【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的性质,轴对称最短路线问题,正确的作出辅助线是解题的关键.2.4+33【解析】【分析】【详解】【分析】依然构造60°旋转,将三条折线段转化为一条直线段.分别以AD、AM为边构造等边∠ADF、等边∠AMG,连接FG,易证∠AMD∠∠AGF,∠MD=GF∠ME+MA+MD=ME+EG+GF过F作FH∠BC交BC于H点,线段FH的长即为所求的最小值.3.229【解析】【分析】如图,将∠MOG绕点M逆时针旋转60°,得到∠MPQ,易知∠MOP为等边三角形,继而得到点O到三顶点的距离为:ON+OM+OG=ON+OP+PQ,由此可以发现当点N、O、P、Q在同一条直线上时,有ON+OM+OG最小,此时,∠NMQ=75°+60°=135°,过Q 作QA∠NM交NM的延长线于A,利用勾股定理进行求解即可得.【详解】如图,将∠MOG绕点M逆时针旋转60°,得到∠MPQ,显然∠MOP为等边三角形,∠,OM+OG=OP+PQ,∠点O到三顶点的距离为:ON+OM+OG=ON+OP+PQ,∠当点N、O、P、Q在同一条直线上时,有ON+OM+OG最小,此时,∠NMQ=75°+60°=135°,过Q作QA∠NM交NM的延长线于A,则∠MAQ=90°,∠∠AMQ=180°-∠NMQ=45°,∠MQ=MG=42,∠AQ=AM=MQ•cos45°=4,∠NQ=2222AN AQ+=++=,(46)4229故答案为229.【点睛】本题考查了旋转的性质,最短路径问题,勾股定理,解直角三角形等知识,综合性较强,有一定的难度,正确添加辅助线是解题的关键.4.62-【解析】【分析】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.首先证明当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,想办法求出AC的长即可解决问题.【详解】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.∠AB=AC,AH∠BC,∠∠BAP=∠CAP,∠PA=PA,∠∠BAP∠∠CAP(SAS),∠PC=PB,∠MG=PB,AG=AP,∠GAP=60°,∠∠GAP是等边三角形,∠PA=PG,∠PA+PB+PC=CP+PG+GM,∠当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,∠AP+BP+CP的最小值为22,∠CM=22,∠∠BAM=60°,∠BAC=30°,∠∠MAC=90°,∠AM=AC=2,作BN∠AC于N.则BN=12AB=1,AN=3,CN=2-3,∠BC=2222=1(23)=62BN CN++--.故答案为62.【点睛】本题考查轴对称-最短问题,等腰三角形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用两点之间线段最短解决问题5.63【解析】【分析】以BM为边作等边∠BMN,以BC为边作等边∠BCE,如图,则∠BCM∠∠BEN,由全等三角形的对应边相等得到CM=NE,进而得到AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.根据等腰三角形“三线合一”的性质得到BH∠AE,AH=EH,根据30°直角三角形三边的关系即可得出结论.【详解】以BM为边作等边∠BMN,以BC为边作等边∠BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∠∠MBC=∠NBE,∠∠BCM∠∠BEN,∠CM=NE,∠AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.∠AB=BC=BE=6,∠ABH=∠EBH=60°,∠BH∠AE,AH=EH,∠BAH=30°,∠BH=1AB=3,2AH=3BH=33,∠AE=2AH=63.故答案为63.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.6.36【解析】【分析】将∠APC 绕点A 逆时针旋转45°,得到∠A P 'C ',将∠A P 'C '扩大324倍,得到∠AP C '''',当点B 、P 、P ''、C ''在同一直线上时,2253BP AP PC ++=()''''''22PB PP P C ++最短,利用勾股定理求出BC ''即可.【详解】解:如图,将∠APC 绕点A 逆时针旋转45°,得到∠A P 'C ',将∠A P 'C '扩大,相似比为324倍,得到∠AP C '''',则32=4AP AP ''',32=4P C P C '''''',32=4AC AC ''', 过点P 作PE ∠A P ''于E ,∠AE=22PE AP =, ∠P ''E=A P ''-AE=24AP , ∠P P ''=22104PE P E AP ''+=, 当点B 、P 、P ''、C ''在同一直线上时,2253BP AP PC ++=()''''''22PB PP P C ++最短,此时()''''''22PB PP P C ++=B C '',∠∠BA C ''=∠BAC +∠CA C ''=90°,AB =6,3232==43244AC AC '''⨯=,∠2222=6(32)36BC AB AC ''''+=+=.【点睛】此题考查旋转的性质,全等三角形的性质,勾股定理,正确理解费马点问题的造图方法:利用旋转及全等的性质构建等量的线段,利用三角形的三边关系及点共线的知识求解,有时根据系数将图形扩大或缩小构建图形.7.22+62 【解析】【分析】以点A 为旋转中心,将△ABP 顺时针旋转60°得到△AMN ,连接BN .根据△PAM 、△ABN 都是等边三角形,可得PA+PB+PC=CP+PM+MN ;根据当C 、P 、M 、N 四点共线时,由CA=CB ,NA=NB 可得CN 垂直平分AB ,进而求得PA+PB+PC 的最小值.【详解】证明:如图所示,以点A 为旋转中心,将△ABP 顺时针旋转60°得到△AMN ,连接BN .由旋转可得,△AMN∠∠ABP ,∠MN=BP ,PA=AM ,∠PAM=60°=∠BAN ,AB=AN ,∠∠PAM 、△ABN 都是等边三角形,∠PA=PM ,∠PA+PB+PC=PM+MN+PC ; (3)当AC=BC=1时,AB=22,当C 、P 、M 、N 四点共线时,由CA=CB ,NA=NB 可得CN 垂直平分AB ,∠AQ=12AB=22=CQ ,NQ=62, 此时CN=CP+PM+MN=PA+PB+PC=22+628.(1)等边三角形;(2)BC 的最小值为52;(3)平行四边形公园ABCD 的面积为932(平方米).【解析】【分析】(1)由旋转得BN =BM ,∠MBN =60°,可判断出△BMN 是等边三角形即可;(2)设AB =a ,则AC=10-a ,进而根据勾股定理得出()222550BC a =-+即可得出结论; (3)先判断出点A',E',E ,C 在同一条线上,设BF =x ,进而依次得出AB =2x ,BC =6-2x ,CF =6-x ,再利用勾股定理得出223'4()272A C x =-+,得出x =32是A'C 最小,进而求出A'F ,BC ,利用平行四边形面积公式计算即可.【详解】(1)证明:BMN △的形状是等边三角形,理由如下;由旋转知,BN =BM ,∠MBN =60°∠△BMN 为等边三角形故答案为:等边三角形;(2)解:设AB=a,∠AB+AC=10,∠AC=10-AB=10a-,在Rt△ABC中,根据勾股定理得,()2222210BC AB AC a a=+=+-2220100a a=-+()22550a=-+,∠()250a-≥,∠()2255050a-+≥,即250BC≥,∠52BC≥,即BC的最小值为52;(3)解:如图3,将△ABE绕点B逆时针旋转60°得到△A'BE',∠∠ABE∠∠A'BE',∠∠A'E'B=∠AEB,AB=A'B,A'E'=AE,BE'=BE,∠EBE'=60°,∠∠EBE'为等边三角形,∠∠BE'E=∠BEE'=60°,EE'=BE,∠AE+BE+CE=A'E'+EE'+CE,要AE+BE+CE最小,即点A',E',E,C在同一条线上,即最小值为A'C,过点A'作A'F∠CB,交CB的延长线于F,在Rt△A'FB中,∠A'BF=180°-∠ABA'-∠ABC=60°,设BF=x,则A'B=2x,根据勾股定理得,A'F=3x,∠AB=A'B,∠AB =2x ,∠AB +BC =6,∠BC =6-AB =6-2x ,∠CF =BF +BC =6-x ,在Rt △A'FC 中,根据勾股定理得,2222223''3(6)4()272A C A F CF x x x =+=+-=-+, ∠当x =32,即AB =2x =3时,2'A C 最小, 此时,BC =6-3=3,A'F =3332x =, ∠平行四边形公园ABCD 的面积为3393322⨯=(平方千米). 【点睛】本题是四边形综合题,主要考查了等边三角形的判定和性质,旋转的性质,勾股定理,用代数式表示线段,利用配方法确定极值问题,判断出AB =BC 时,AE +BE +CE 最小是解本题的关键.9.(1)∠补图见解析;∠2816EF ≤≤;(2)232+【解析】【分析】(1)∠根据要求画出图形即可;∠首先证明∠ECF =90°,设AE =CF =x ,EF 2=y ,则EC =4−x ,在Rt∠ECF 中,利用勾股定理即可解决问题;(2)如图2中,将∠ABE 绕点A 顺时针旋转60°得到∠AFG ,连接EG ,DF .作FH∠AD 于H .根据两点之间线段最短可得DF≤FG +EG +DE ,BE =FG ,推出AE +BE +DE 的最小值为线段DF 的长;【详解】(1)∠如图∠DCF 即为所求;∠∠四边形ABCD是正方形,∠BC=AB=22,∠B=90°,∠DAE=∠ADC=45°,∠AC=22AB BC=2AB=4,∠∠ADE绕点D逆时针旋转90°得到∠DCF,∠∠DCF=∠DAE=45°,AE=CF,∠∠ECF=∠ACD+∠DCF=90°,设AE=CF=x,EF2=y,则EC=4−x,∠y=(4−x)2+x2=2x2−8x+160(0<x≤4).即y=2(x−2)2+8,∠2>0,∠x=2时,y有最小值,最小值为8,当x=4时,y最大值=16,∠8≤EF2≤16.(2)如图中,将∠ABE绕点A顺时针旋转60°得到∠AFG,连接EG,DF.作FH∠AD于H.由旋转的性质可知,∠AEG是等边三角形,∠AE=EG,∠DF≤FG+EG+DE,BE=FG,∠AE+BE+DE的最小值为线段DF的长.在Rt∠AFH中,∠FAH=30°,AB=22=AF,∠FH =12AF =2,AH =22AF FH -=6, 在Rt∠DFH 中,DF =()2222(226)2FH DH +=++=232+,∠BE +AE +ED 的最小值为232+.【点睛】本题考查作图−旋转变换,正方形的性质,勾股定理,两点之间线段最短等知识,解题的关键是学会构建二次函数解决最值问题,学会利用旋转法添加辅助线,学会用转化的思想思考问题,属于中考常考题型.10.(1)213 226y x x =-++ (2) 13AE = ;71313AM =或51313AM = (3)m 可以取到的最小值为13.当m 取得最小值时,线段AP 的长为51313【解析】【分析】 (1)已知点B 的坐标,可求出OB 的长;在Rt △OBD 中,已知了∠ODB=30°,通过解直角三角形即可求得OD 的长,也就得到了点D 的坐标;由于E 是线段BD 的中点,根据B 、D 的坐标即可得到E 点的坐标;将B 、E 的坐标代入抛物线的解析式中,即可求得待定系数的值,由此确定抛物线的解析式;(2)过E 作EG∠x 轴于G ,根据A 、E 的坐标,即可用勾股定理求得AE 的长;过O 作AE 的垂线,设垂足为K ,易证得△AOK∠∠AEG ,通过相似三角形所得比例线段即可求得OK 的长;在Rt △OMK 中,通过解直角三角形,即可求得MK 的值,而AK 的长可在Rt △AOK 中由勾股定理求得,根据AM=AK-KM 或AM=AK+KM 即可求得AM 的长; (3)由于点P 到△ABO 三顶点的距离和最短,那么点P 是△ABO 的费马点,即∠APO=∠OPB=∠APB=120°;易证得△OBE 是等边三角形,那么PA+PO+PB 的最小值应为AE 的长;求AP 的长时,可作△OBE 的外接圆(设此圆为∠Q ),那么∠Q 与AE 的交点即为m 取最小值时P 点的位置;设∠Q 与x 轴的另一交点(O 点除外)为H ,易求得点Q 的坐标,即可得到点H 的坐标,也就得到了AH 的长,相对于∠Q 来说,AE 、AH 都是∠Q 的割线,根据割线定理(或用三角形的相似)即可求得AP 的长.【详解】(1)过E 作EG∠OD 于G∠∠BOD=∠EGD=90°,∠D=∠D ,∠∠BOD∠∠EGD ,∠点B (0,2),∠ODB=30°,可得OB=2,OD =23;∠E 为BD 中点,∠EG DE GD BO DB OD ===12∠EG=1,GD =3∠OG =3∠点E 的坐标为(3,1)∠抛物线236y ax x c =++经过()0,2B 、()3,1E 两点, ∠()2313326a =+⨯+. 可得12a =-. ∠抛物线的解析式为213226y x x =-++. (2)∠抛物线与x 轴相交于A 、F ,A 在F 的左侧,∠A 点的坐标为()3,0-.过E 作EG∠x 轴于G∠23,1AG EG ==,∠在△AGE 中,90AGE ∠=︒, ()2223113AE =+=. 过点O 作OK ∠AE 于K ,可得△AOK ∠∠AEG .∠OK EG AO AE=. ∠1313OK =. ∠39.13OK = ∠2261313AK AO OK =-=.∠∠OMN是等边三角形,∠60NMO∠=︒.∠391313tan133OKKMKMO===∠.∠71313AM AK KM=+=,或51313AM AK KM=-=(3)如图;以AB为边做等边三角形AO′B,以OA为边做等边三角形AOB′;易证OE=OB=2,∠OBE=60°,则△OBE是等边三角形;连接OO′、BB′、AE,它们的交点即为m最小时,P点的位置(即费马点);∠OA=OB′,∠B′OB=∠AOE=150°,OB=OE,∠∠AOE∠∠B′OB;∠∠B′BO=∠AEO;∠∠BOP=∠EOP′,而∠BOE=60°,∠∠POP'=60°,∠∠POP′为等边三角形,∠OP=PP′,∠PA+PB+PO=AP+OP′+P′E=AE;即m最小=AE=13如图;作正△OBE的外接圆∠Q,根据费马点的性质知∠BPO=120°,则∠PBO+∠BOP=60°,而∠EBO=∠EOB=60°;∠∠PBE+∠POE=180°,∠BPO+∠BEO=180°;即B、P、O、E四点共圆;易求得Q(33,1),则H(233,0);∠AH=533;由割线定理得:AP•AE=OA•AH,即:AP=OA•AH÷AE=3×533÷13=51313故:m可以取到的最小值为13.当m取得最小值时,线段AP的长为513 13【点睛】此题是二次函数的综合类试题,涉及到二次函数解析式的确定、等边三角形的性质、解直角三角形以及费马点位置的确定和性质,能力要求极高,难度很大.11.(1)150°;(2)见详解;(3)7;(4)62+.【解析】【分析】(1)根据旋转性质得出ABP△∠ACP'△,得出∠BAP=∠CAP′,∠APB=∠AP′C,AP =AP′=3,BP=CP′=4,根据∠ABC 为等边三角形,得出∠BAC =60°,可证∠APP′为等边三角形,PP′=AP =3,∠AP′P =60°,根据勾股定理逆定理222223425PP P C PC ''+=+==,得出△PP′C 是直角三角形,∠PP′C =90°,可求∠AP′C =∠APP +∠PPC =60°+90°=150°即可; (2)将△APB 逆时针旋转60°,得到△AB′P′,连结PP′,根据△APB ∠△AB′P′,AP =AP′,PB =PB′,AB =AB′,根据∠P AP′=∠BAB′=60°,△APP′和△ABB′均为等边三角形,得出PP′=AP ,根据PA PB PC PP P B PC '''++=++,根据两点之间线段最短得出点C ,点P ,点P′,点B′四点共线时,PA PB PC ++最小=CB′,点P 在CB′上即可;(3)将△APB 逆时针旋转60°,得到△AP′B′,连结BB′,PP′,得出△APB ∠∠AP′B′,可证△APP′和△ABB′均为等边三角形,得出PP′=AP ,BB′=AB ,∠ABB′=60°,根据PA PB PC PP P B PC '''++=++,可得点C ,点P ,点P′,点B′四点共线时,PA PB PC ++最小=CB′,利用30°直角三角形性质得出AB =2AC =2,根据勾股定理BC =2222213AB AC -=-=,可求BB′=AB =2,根据∠CBB′=∠ABC +∠ABB′=30°+60°=90°,在Rt △CBB′中,B′C =()2222327BC BB '+=+=即可; (4)将△BCE 逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F ∠AB ,交AB 延长线于F ,得出△BCE ∠△CE′B′,BE =B′E′,CE =CE ′,CB =CB′,可证△ECE′与△BCB′均为等边三角形,得出EE ′=EC ,BB′=BC ,∠B′BC =60°,AE BE CE AE EE E B '''++=++,得出点C ,点E ,点E′,点B′四点共线时,AE BE CE AE EE E B '''++=++最小=AB′,根据四边形ABCD 为正方形,得出AB =BC =2,∠ABC =90°,可求∠FBB′=180°-∠ABC -∠CBB′=180°-90°-60°=30°,根据30°直角三角形性质得出BF =112122BB '=⨯=,勾股定理BF =2222213BB B F ''-=-=,可求AF =AB +BF =2+3,再根据勾股定理AB′=()222223162AF B F '+=++=+即可. (1)解:连结PP′,∠ABP △∠ACP '△,∠∠BAP =∠CAP′,∠APB =∠AP′C ,AP =AP′=3,BP=CP′=4,∠∠ABC 为等边三角形,∠∠BAC =60°∠∠P AP ′=∠P AC +∠CAP ′=∠P AC +∠BAP =60°,∠∠APP′为等边三角形,,∠PP′=AP =3,∠AP′P =60°,在△P′PC 中,PC =5,222223425PP P C PC ''+=+==,∠∠PP′C 是直角三角形,∠PP′C =90°,∠∠AP′C =∠APP +∠PPC =60°+90°=150°,∠∠APB =∠AP′C =150°,故答案为150°;(2)证明:将△APB 逆时针旋转60°,得到△AB′P′,连结PP′,∠∠APB ∠△AB′P′,∠AP =AP′,PB =PB′,AB =AB′,∠∠P AP′=∠BAB′=60°,∠∠APP′和△ABB′均为等边三角形,∠PP′=AP ,∠PA PB PC PP P B PC '''++=++,∠点C ,点P ,点P′,点B′四点共线时,PA PB PC ++最小=CB′,∠点P 在CB′上,∠CB '过ABC 的费马点.(3)解:将∠APB 逆时针旋转60°,得到∠AP′B′,连结BB′,PP′,∠∠APB ∠∠AP′B′,∠AP′=AP ,AB′=AB ,∠∠P AP′=∠BAB′=60°,∠∠APP′和∠ABB′均为等边三角形,∠PP′=AP ,BB′=AB ,∠ABB′=60°,∠PA PB PC PP P B PC '''++=++∠点C ,点P ,点P′,点B′四点共线时,PA PB PC ++最小=CB′,∠90C ∠=︒,1AC =,30ABC ∠=︒,∠AB =2AC =2,根据勾股定理BC =2222213AB AC -=-=∠BB′=AB =2,∠∠CBB′=∠ABC +∠ABB′=30°+60°=90°,∠在Rt∠CBB′中,B′C =()2222327BC BB '+=+= ∠PA PB PC ++最小=CB′=7;(4)解:将∠BCE 逆时针旋转60°得到∠CE′B′,连结EE′,BB′,过点B′作B′F ∠AB ,交AB 延长线于F ,∠∠BCE ∠∠CE′B′,∠BE =B′E′,CE =CE ′,CB =CB′,∠∠ECE′=∠BCB′=60°,∠∠ECE′与∠BCB′均为等边三角形,∠EE ′=EC ,BB′=BC ,∠B′BC =60°,∠AE BE CE AE EE E B '''++=++,∠点C ,点E ,点E′,点B′四点共线时,AE BE CE AE EE E B '''++=++最小=AB′, ∠四边形ABCD 为正方形,∠AB =BC =2,∠ABC =90°,∠∠FBB′=180°-∠ABC -∠CBB′=180°-90°-60°=30°,∠B′F ∠AF ,∠BF =112122BB '=⨯=,BF =2222213BB B F ''-=-=, ∠AF =AB +BF =2+3,∠AB′=()222223162AF B F '+=++=+,∠AE BE CE ++最小=AB′=62+.【点睛】本题考查图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质,掌握图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质是解题关键.。
中考复习之线段和差最值之费马点问题-附练习题含参考答案

ABCP中考数学复习线段和差最值系列之费马点皮耶·德·费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学.费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”、“费马大定理”等.言归正传,今天的问题不是费马提出来的,是他解决的,故而叫费马点. 问题:在△ABC 内找一点P ,使得P A +PB +PC 最小.【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.以上依据似乎都用不上,怎么办?若点P 满足∠PAB=∠BPC=∠CPA=120°,则PA+PB+PC 值最小,P 点称为该三角形的费马点.一、如何作费马点问题要从初一学到的全等说起:(1)如图,分别以△ABC 中的AB 、AC 为边,作等边△ABD 、等边△ACE . (2)连接CD 、BE ,即有一组手拉手全等:△ADC ≌△ABE .(3)记CD 、BE 交点为P ,点P 即为费马点.(到这一步其实就可以了)(4)以BC 为边作等边△BCF ,连接AF ,必过点P ,有∠P AB =∠BPC =∠CP A =120°.在图三的模型里有结论:(1)∠BPD =60°;(2)连接AP ,AP 平分∠DPE .有这两个结论便足以说明∠P AB =∠BPC =∠CP A =120°.但是在这里有个小小的要求,细心的同学会发现,这个图成立的一个必要条件是∠BAC <120°,若120BAC ∠≥︒ ,这个图就不是这个图了,会长成这个样子:EB ACAB CDE此时CD 与BE 交点P 点还是我们的费马点吗?显然这时候就不是了,显然P 点到A 、B 、C 距离之和大于A 点到A 、B 、C 距离之和.所以,是的,你想得没错,此时三角形的费马点就是A 点!当然这种情况不会考的,就不多说了.二、为什么是这个点为什么P 点满足∠P AB =∠BPC =∠CP A =120°,P A +PB +PC 值就会最小呢?归根结底,还是要重组这里3条线段:P A 、PB 、PC 的位置,而重组的方法是构造旋转!在上图3中,如下有△ADC ≌△ABE ,可得:CD =BE .类似的手拉手,在图4中有3组,可得:AF =BE =CD .巧的,它们仨的长度居然一样长!更巧的是,其长度便是我们要求的P A +PB +PC 的最小值,这一点是可以猜想得到的,毕竟最小值这个结果,应该也是个特别的值! 接下来才是真正的证明:考虑到∠APB =120°,∴∠APE =60°,则可以AP 为边,在PE 边取点Q 使得PQ =AP ,则△APQ 是等边三角形.△APQ 、△ACE 均为等边三角形,且共顶点A ,故△APC ≌△AQE ,PC =QE . 以上两步分别转化P A =PQ ,PC =QE ,故P A +PB +PC =PB +PQ +QE =BE .没有对比就没有差别,我们换个P 点位置,如下右图,同样可以构造等边△APQ ,同样有△APC ≌△AQE ,转化P A =PQ ,PC =QE ,显然,P A +PB +PC =PB +PQ +QE >BE .还剩下第3个问题!如果说费马点以前还算是课外的拓展内容,那现在,已经有人把它搬上了中考舞台!【中考再现】问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE .问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG=O 是△MNG 内一点,则点O 到△MNG 三个顶点的距离和的最小值是______.【分析】本题的问题背景实际上是提示了解题思路,构造60°的旋转,当然如果已经了解了费马点问题,直接来解决就好了!如图,以MG 为边作等边△MGH ,连接NH ,则NH 的值即为所求的点O 到△MNG 三个顶点的距离和的最小值.(此处不再证明)过点H 作HQ ⊥NM 交NM 延长线于Q 点,根据∠NMG =75°,∠GMH =60°,可得∠HMQ =45°,∴△MHQ 是等腰直角三角形, ∴MQ =HQ =4,∴NH== 练习题1.如图,在△ABC 中,△ACB=90°,AB=AC=1,P 是△ABC 内一点,求P A +PB +PC 的最小值.2. 如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.NG图2图1ABCD EPHGN M464Q HGN MABCDME3.如图,矩形ABCD中,AB=10,BC=15,现在要找两点E、F,则EA+EB+EF+FC+FD的最小值为__________4.如图,等腰Rt∆ABC中,AB=4,P为∆ABC内部一点,则PA+PB+PC的最小值为_______5.如图,∆ABC中,AB=4,,∠ABC=75°,P为∆ABC内的一个动点,连接PA、PB、PC,则PA+PB+PC的最小值为________6.如图,P为正方形ABCD对角线BD上一动点,若AB=2,则PA+PB+PC的最小值为______7.在Rt∆ABC中,∠ACB=90°,AC=1,,点O为Rt∆ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,则OA+OB+OC=_______8.如图,在四边形ABCD中,∠B=60°,AB=BC=3,AD=4,∠BAD=90°,点P是四边形内部一点,则PA+PB+PD的最小值是______9.如图,点P是矩形ABCD对角线BD上的一个动点,已知AB=2,,则PA+PB+PC 的最小值为_______10.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则PA+PB+PD的最小值为__________11.已知,在∆ABC中,∠ACB=30°点P是ABC内一动点,则PA+PB+PC的最小值为__________12.如图,设点P到等边三角形ABC两顶点A、B的距离分别为2则PC的最大值为______13.如图,设点P到正方形ABCD两顶点A、D的距离为2PC的最大值为________14.如图,设点P到正方形ABCD两顶点A、D的距离为2则PO的最大值为_________.15.如图,在Rt∆ABC中,∠BAC=90⁰,AB=AC,点D是BC边上一动点,连接AD,把AD 绕点A逆时针旋转90⁰,得到AE,连接CE、DE,点F是DE的中点,连接CF问题:在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小,当PA+PB+PC 取最小值时,AP的长为m,用含有m的式子表示CE的长.参考答案1.7.8.7 9.3 10. 12.2+13.2+1 15.32m +。
费马点问题(含答案)

费马点的问题定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。
它是这样确定的:1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。
3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。
我们称这一结果为最短路线原理。
性质:费马点有如下主要性质:1.费马点到三角形三个顶点距离之和最小。
2.费马点连接三顶点所成的三夹角皆为120°。
3.费马点为三角形中能量最低点。
4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。
例1:已知:△ABH是等边三角形。
求证:GA+GB+GH最小证明:∵△ABH是等边三角形。
G是其重心。
∴∠AGH=∠AGB=∠BGH=120°。
以HB为边向右上方作等边三角形△DBH.以HG为边向右上方作等边三角形△GHP.∵ AH=BH=AB=12.∴∠AGH=120°, ∠HGP=60°.∴ A、G、P三点一线。
再连PD两点。
∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°.∴∠PHD=30°,.在△HGB和△HPD中∵ HG=HP∠GHB=∠PHD;HB=HD;∴△HGB≌△HPD;(SAS)∴∠HPD=∠HGB=120°;∵∠HPG=60°.∴ G、P、D三点一线。
∴ AG=GP=PD,且同在一条直线上。
∵ GA+GH+GB=GA+GP+PD=AD.∴ G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。
也就是重心。
例2:已知:△ABC是等腰三角形,G是三角形内一点。
∠AGC=∠AGB=∠BGC=120°。
求证:GA+GB+GC最小证明:将△BGC逆时针旋转60°,连GP,DB.则△HGB≌△HPD;∴∠CPD=∠CGB=120°,CG=CP,GB=PD, BC=DC,∠GCB=∠PCD.∵∠GCP=60°,∴∠BCD=60°,∴△GCP和△BCD都是等边三角形。
中考数学试卷费马点

的位置关系是()A. 共线B. 共圆C. 共点D. 无规律2. 已知三角形ABC的边长分别为a、b、c,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么下列哪个结论一定成立?()A. DE=EF=FDB. ∠ABC=∠DEFC. AB+BC+CA=DE+EF+FDD. ABC≌DEF3. 已知三角形ABC中,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么下列哪个结论一定不成立?()A. AB=ACB. ∠ABC=∠DEFC. DE=EF=FDD. ABC≌DEF4. 在三角形ABC中,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么下列哪个结论一定成立?()A. ∠ABC=∠DEFB. ∠ABD=∠BCDC. ∠ACF=∠BCED. ∠BAC=∠BCF5. 已知三角形ABC中,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么下列哪个结论一定成立?()A. AB=ACB. ∠ABC=∠DEFC. AB+BC+CA=DE+EF+FDD. ABC≌DEF二、填空题6. 在三角形ABC中,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么点D、E、F 的位置关系是()7. 已知三角形ABC的边长分别为a、b、c,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么下列哪个结论一定成立?()8. 已知三角形ABC中,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么下列哪个结论一定不成立?()9. 在三角形ABC中,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么下列哪个结论一定成立?()10. 已知三角形ABC中,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么下列哪个结论一定成立?()三、解答题点D、E、F在同一直线上。
12. (15分)已知三角形ABC的边长分别为a、b、c,点D、E、F分别满足AD=BD,BE=CE,CF=AF,求证:DE=EF=FD。
(新版)初中数学中考复习专题15 几何最值之费马点巩固练习(基础)试题(含答案解析)

几何最值之费马点巩固练习(基础)1.已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点。
已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点。
若点P是腰长为的等腰直角三角形DEF的费马点,则PD+PE+PF=.【解析】如图,在等腰Rt△DEF过点D作DM⊥EF于点M,过E、f分别作∠MEP=∠MFP=30°,则EM=DM=1,,.2. 如图,点P为锐角△ABC的费马点,且PA=3,PC=4,∠ABC=60°,则费马距离为 .【解答】【解析】如图所示,∵∠APB=∠BPC=∠CPA=120,∠ABC=60°,∴∠1+∠3=60°,∠1+∠2=60°,∠2+∠4=60°,∴∠1=∠4,∠2=∠3,∴△BPC∽△APB,3. 已知正方形ABCD内一动点E到A、B、C三点的距离之和的最小值为,求此正方形的边长.【解答】2【解析】如图,连接AC,把△AEC绕着点C顺时针旋转60º得到△GFC,连接EF、BG、AG,易证△EFG、△AGC都是等边三角形,则EF=CE,又∵FG=AE,∴AE+BE+CE=BE+EF+FG,如下图所示:∵点B、G为定点,∴线段BG即为点E到A、B、C三点距离之和的最小值,此时E、F两点都在BG上,设正方形的边长为,则∵点E到A、B、C三点的距离之和的最小值是,∴.4.若点P 为△ABC所在平面上一点,且∠APB=∠BPC=∠CP A=120°,则点P叫做△ABC的费马点.(1) 若P为锐角△ABC的费马点,且∠ABC=60°,P A=3,PC=4,则PB的值为;(2)如图,在锐角△ABC的外侧作等边△ACB′,连结BB′.求证:BB′ 过△ABC的费马点P,且BB′=P A+PB +PC.【解答】;(2)见解析【解析】(1)∵∠PAB+∠PBA=180º-∠APB=60º,∠PBC+∠PBA=∠ABC=60º,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120º,∴△ABP ∽△BCP,;(2)设点P为锐角△ABC的费马点,即∠APB=∠BPC=∠CP A=120°如图,把△ACP绕点C顺时针旋转60°到△B′CE,连结PE,则△EPC为正三角形.∵∠B′EC=∠APC=120°,∠PEC=60°∴∠B′EC+∠PEC=180°即P、E、B′ 三点在同一直线上,∵∠BPC=120°,∠CPE=60° ,∴∠BPC+∠CPE=180°,即B、P、E 三点在同一直线上∴B、P、E、B′ 四点在同一直线上,即BB′ 过△ABC的费马点P.又PE=PC,B′E=P A,∴BB′=E B′+PB+PE=P A+PB+PC.5.如图,向△ABC外作等边三角形△ABD,△AEC.连接BE,DC相交于点P,连接AP.(1)证明:点P就是△ABC费马点;(2)证明:PA+PB+PC=BE=DC;【解答】(1)见解析;(2)见解析【解析】(1)作AM⊥CD于M,AN⊥BE于N,设AB交CD于O,如图所示:∵△ADB,△ACE都是等边三角形,∴AD=AB,AC=AE,∠DAB=∠CAE=60°,∴∠DAB=∠BAE,∴△ADC≌△ABE(SAS),∴CD=BE,S△DAC=S△ABE,∠ADC=∠ABE,∵AM⊥CD,AN⊥BE,,∴AM=AN,∴∠APM=∠APN,∵∠AOD=∠POB,∴∠OPB=∠DAO=60°,∴∠APN=∠APM=60°,∴∠APC=∠BPC=∠APC=120°,∴点P是就是△ABC费马点;(2)在线段PD上取一点T,使得PA=PT,连接AT,如图所示:∵∠APT=60°,PT=PA,∴△APT是等边三角形,∴∠PAT=60°,AT=AP,∵∠DAB=∠TAP=60°,∴∠DA T=∠BAP,∵AD=AB,∴△DA T≌△BAP(SAS),∴PB=DT,∴PD=DT+PT=PA+PB,. PA+PB+PC=PD+PC=CD=BE.6.如图,在△MNG O是△MNG内一点,则点O到△MNG三个顶点的距离和最小值是.【解析】以MG为边作等边三角形△MGD,以OM为边作等边△OME,连接ND,作DF⊥NM,交M的延长线于F,如图所示:∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME,在△GMO和△DME中,,∴△GMO≌△DME(SAS),∴OG=DE,∴NO+GO+MO=DE+OE+NO,∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=3,,,∴NO+GO+MO的最小值是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“费马点”与中考数学试题
费尔马,法国业余数学家,拥有业余数学之王的称号,他是解析几何的发明者之一.费马点——就是到三角形的三个顶点的距离之和最小的点.费尔马的结论:对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点.
△三个顶点的距离之和P A+PB+PC最小?这就下面简单说明如何找点P使它到ABC
是所谓的费尔马问题.
图1
解析:如图1,把△APC绕A点逆时针旋转60°得到△AP′C′,连接PP′.
则△APP′为等边三角形,AP= PP′,P′C′=PC,
所以P A+PB+PC= PP′+ PB+ P′C′.
点C′可看成是线段AC绕A点逆时针旋转60°而得的定点,BC′为定长,所以当B、P、P′、C′四点在同一直线上时,P A+PB+PC最小.
这时∠BP A=180°-∠APP′=180°-60°=120°,
∠APC=∠A P′C′=180°-∠AP′P=180°-60°=120°,
∠BPC=360°-∠BP A-∠APC=360°-120°-120°=120°
△的每一个内角都小于120°时,所求的点P对三角形每边的张角都是因此,当ABC
120°,可在AB、BC边上分别作120°的弓形弧,两弧在三角形内的交点就是P点;当有一内角大于或等于120°时,所求的P点就是钝角的顶点.
费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.
本文列举近年“费马点”走进中考试卷的实例,供同学们学习参考.
例1 (2008年广东中考题)已知正方形ABCD内一动点E到A、B、C三点的距离26
图2 图3 分析:连接AC ,发现点E 到A 、B 、C 三点的距离之和就是到ABC △三个顶点的距离
之和,这实际是费尔马问题的变形,只是背景不同.
解 如图2,连接AC ,把△AEC 绕点C 顺时针旋转60°,得到△GFC ,连接EF 、BG 、A G ,可知△EFC 、△AGC 都是等边三角形,则EF =CE .
又FG =AE ,
∴AE +BE +CE = BE +EF +FG (图4).
∵ 点B 、点G 为定点(G 为点A 绕C 点顺时针旋转60°所得).
∴ 线段BG 即为点E 到A 、B 、C 三点的距离之和的最小值,此时E 、F 两点都在BG
上(图3).
设正方形的边长为a ,那么
BO =CO 2,GC 2a , GO 6. ∴ BG=BO +GO =
22+62a . ∵ 点E 到A 、B 、C 26
∴ 22a 626a =2. 注 本题旋转△AEB 、△BEC 也都可以,但都必须绕着定点旋转,读者不妨一试.
例2 (2009年北京中考题) 如图4,在平面直角坐标系xOy 中,△ABC 三个顶点的坐标分别为()6,0A -,()6,0B ,(0,43C ,延长AC 到点D , 使CD =
12
AC ,过点D 作DE ∥AB 交BC 的延长线于点E .
(1)求D 点的坐标;
(2)作C 点关于直线DE 的对称点F ,分别连结DF 、EF ,若过B 点的直线y kx b =+将
四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;
(3)设G 为y 轴上一点,点P 从直线y kx b =+与y 轴的交点出发,先沿y 轴到达G
点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短.
分析和解:(1)D 点的坐标(3
,(过程略).
(2) 直线BM
的解析式为y =+.
图4
(3)如何确定点G 的位置是本题的难点也是关健所在.设Q 点为y 轴上一点,P 在y 轴上运动的速度为v ,则P 沿M →Q →A 运动的时间为
2MQ AQ v v +,使P 点到达A 点所用的时间最短,就是12
MQ +AQ 最小,或MQ +2AQ 最小. 解法1 ∵ BQ =AQ , ∴MQ +2AQ 最小就是MQ +AQ +BQ 最小,就是在直线MO
上找点G 使他到A 、B 、M 三点的距离和最小.至此,再次发现这又是一个费尔马问题的变形,注意到题目中等边三角形的信息,考虑作旋转变换.
把△MQB 绕点B 顺时针旋转60°,得到△M ′Q ′B ,连接QQ ′、MM ′(图5),可知△
QQ ′B 、△MM ′B 都是等边三角形,则QQ ′=BQ .
又M ′Q ′=MQ ,
∴MQ +AQ +BQ = M ′Q ′+ QQ ′+AQ .
∵点A 、M ′为定点,所以当Q 、Q ′两点在线段A M ′上时,MQ +AQ +BQ 最小.由条件
可证明Q ′点总在AM ′上,所以A M ′与OM 的交点就是所要的G 点(图6).可证OG =12
MG .
图5 图6 图7
解法2 考虑1
2
MQ+AQ最小,过Q作BM的垂线交BM于K,由OB=6,OM=63,
可得∠BMO=30°,所以QK=1
2 MQ.
要使1
2
MQ+AQ最小,只需使AQ+QK最小,根据“垂线段最短”,可推出当点A、
Q、K在一条直线上时,AQ+QK最小,并且此时的QK垂直于BM,此时的点Q即为所求的点G(图7).
过A点作AH⊥BM于H,则AH与y轴的交点为所求的G点.
由OB=6,OM=63,可得
∠OBM=60°,∴∠BAH=30°
在Rt△OAG中,OG=AO·tan∠BAH=23
∴G点的坐标为(0,23)(G点为线段OC的中点).
例3 (2009年湖州中考题)若点P 为△ABC所在平面上一点,且∠APB=∠BPC=∠CP A=120°, 则点P叫做△ABC的费马点.
(1)若P为锐角△ABC的费马点,且∠ABC=60°,P A=3,PC=4, 则PB的值为;
(2)如图8,在锐角△ABC的外侧作等边△ACB′,连结BB′.求证:BB′过△ABC的费马点P,且BB′=P A+PB+PC.
图8
解:(1)利用相似三角形可求PB的值为3
(2)设点P为锐角△ABC的费马点,
即∠APB=∠BPC=∠CP A=120°
如图8,把△ACP绕点C顺时针旋转60°到△B′CE,连结PE,则△EPC为正三角形.
∵∠B′EC = ∠APC =120°,∠PEC=60°
∴∠B′EC+∠PEC=180°
即P、E、B′三点在同一直线上
∵∠BPC=120°,∠CPE=60°,
∴∠BPC +∠CPE =180°,
即B、P、E 三点在同一直线上
∴B、P、E、B′四点在同一直线上,即BB′过△ABC的费马点P.
又PE=PC,B′E= P A,
∴BB′=E B′+PB+PE=P A+PB+PC.
注通过旋转变换,可以改变线段的位置,优化图形的结构.在使用这一方法解题时需注意图形旋转变换的基础,即存在相等的线段,一般地,当题目出现等腰三角形(等边三角形)、正方形条件时,可将图形作旋转60°或90°的几何变换,将不规则图形变为规则图形,或将分散的条件集中在一起,以便挖掘隐含条件,使问题得以解决.费尔马问题是个有趣的数学问题,这些问题常常可通过旋转变换来解决.。