费马点与中考试题

合集下载

初三数学费马点练习题

初三数学费马点练习题

初三数学费马点练习题费马点(Fermat Point)是指在一个三角形中,距离三个顶点的距离之和最小的点。

它被称为费马点,是为了纪念法国数学家皮埃尔·费马(Pierre de Fermat)。

在本文中,将提供一些初三数学费马点练习题,通过这些题目的解答,读者将更好地理解费马点的概念和特性。

题目一:已知△ABC中,∠ABC = 60°,AD为边BC上的高,点E为三角形内部一点,满足∠BAE = ∠CAE = 30°。

证明:点E为△ABC的费马点。

解答一:我们需要证明点E到三个顶点A、B、C的距离之和最小。

首先,连接AE、BE、CE,构造△BAE和△CAE。

由已知条件可知,∠BAE = ∠CAE = 30°,而∠ABC = 60°。

观察三角形△BAE,角度和为180°,因此∠AEB = 180° - 30° - 30°= 120°。

同理,在三角形△CAE中,∠AEC = 180° - 30° - 30° = 120°。

现在我们可以继续分析三角形△ABC,∠ABC = 60°,∠BAC = 180°- 60° - 30° - 30° = 60°。

接下来,我们来考虑三角形△BAE和△CAE的外角。

对于△BAE,∠BEA = 180° - 120° = 60°;对于△CAE,∠CEA = 180° - 120° = 60°。

现在,我们可以观察到三角形△BAE、△CAE和△ABC中都有一个60°的角,并且对应的外角也是60°。

根据确定费马点的性质,可知点E为△ABC的费马点。

题目二:已知△ABC中,∠BAC = 90°,点D为边BC上的一点,满足BD = DC。

费马点与中考试题

费马点与中考试题

费马点与中考试题LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】识别“费马点”思路快突破解题的成功取决于多种因素,其中最基本的有:解题的知识因素、解题的能力因素、解题的经验因素和解题的非智力因素,这也就是我们常说的解题基本功.可见解题的知识因素是第一位的,足以说明它的重要性.下面我们从解题的知识因素上关注两道中考题的思路获取.例1 (2010湖南永州)探究问题:(1)阅读理解:①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA=AC·BD.此为托勒密定理.(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C),已知点P为等边△ABC外接圆的BC上任意一点.求证:PB+PC=PA.②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在BC上任取一点P′,连结P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+;第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.思路探求:(2)知识迁移①问,只需按照题意套用托勒密定理,再利用等边三角形三边相等,将所得等式两边都除以等边三角形的边长,即可获证. ②问,借用①问中对于费马点的定义结论容易获解. (3)知识应用,模仿(2)的图形,先构造正三角形,由(2)中的结论,再计算AD即为最小距离.简解:(2)①证明:由托勒密定理可知PB·AC+PC·AB=PA·BC∵△ABC是等边三角形∴AB=AC=BC∴PB+PC=PA②P′D AD(3)解:如图,以BC为边长在△ABC的外部作等边△BCD,连接AD,则知线段AD的长即为△ABC的费马距离.∵△BCD为等边三角形,BC=4,∴∠CBD=60°,BD=BC=4.∵∠ABC=30°,∴∠ABD=90°.在Rt△ABD中,∵AB=3,BD=4∴AD22+=5(km)34AB BD+22∴从水井P到三村庄A、B、C所铺设的输水管总长度的最小值为5km.点评:此题集阅读理解、创新探究、实际应用于一体,题型新颖别致,综合考查自主探究、创新应用能力,是一道不可多得的好题.命题者设置成递进式问题,后续问题的思路获取、求解都靠对上一结论的解读、利用,这也是近年“课题学习”考查的一大风向,值得重视.如果说例1只是以“费马点”为课题学习的素材进行了考查,为了帮助同学们更好的理解三角形的费马点,我们补充几点:(1)平面内一点P 到△ABC 三顶点的之和为PA+PB+PC ,当点P 为费马点时,距离之和最小.特殊三角形中:(2)三内角皆小于120°的三角形,分别以 AB ,BC ,CA ,为边,向三角形外侧做正三角形ABC 1,ACB 1,BCA 1,然后连接AA 1,BB 1,CC 1,则三线交于一点P ,则点P 就是所求的费马点.(3)若三角形有一内角大于或等于120度,则此钝角的顶点就是所求. (4)当△ABC 为等边三角形时,此时外心与费马点重合.可见,永州卷这道考题对于费马点只是以课题学习为问题载体,考得比较直截了当;巧合的是2010年福建宁德一道考题对这个知识考查显得隐蔽了,请看:例2 (2010福建宁德)如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .⑴ 求证:△AMB ≌△ENB ;⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; ⑶ 当AM +BM +CM 的最小值为13 时,求正方形的边长.思路探求:⑴略;A DB C⑵ ①要使AM +CM 的值最小,根据“两点之间线段最短”,需设法将AM +CM 转化为一条线段,连接AC 即可获取;②要使AM +BM +CM 的值最小,由例3积累的知识经验:点M 应该是△ABC 的费马点.由例3中(2)的求解示范,只要连接CE 即可获得CE 为AM +BM +CM 的值最小.这样获到M 点至少帮助我们在思路获取上提高了效率.理由说明供助于第(1)问的全等获得BM=BN ,将三条线段转化到CE 上去,问题化为两点之间线段最短.⑶根据题意,添加辅助线,构造直角三角形,过E 点作EF ⊥BC 交CB 的延长线于F . 设正方形的边长为x ,则BF =23x ,EF =2x .在Rt △EFC 中,由勾股定理得(2x )2+(23x +x )2=()213+,解得即可.简答:⑴略;⑵①当M 点落在BD 的中点时,AM +CM 的值最小. ②如图,连接CE ,当M 点位于BD 与CE 的交点处时, AM +BM +CM 的值最小.理由如下:连接MN.由⑴知,△AMB∴AM =EN .∵∠MBN =60°,MB =NB , ∴△BMN 是等边三角形. ∴BM =MN .∴AM +BM +CM =EN +MN +CM .根据“两点之间线段最短”,得EN +MN +CM =EC 最短∴当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小,即等于EC 的长. ⑶过E 点作EF ⊥BC 交CB 的延长线于F ,∴∠EBF =90°-60°=30°.F A DB C设正方形的边长为x ,则BF =23x ,EF =2x . 在Rt △EFC 中,∵EF 2+FC 2=EC 2,∴(2x)2+(23x +x )2=()213+.解得,x =2(舍去负值).∴正方形的边长为2.点评:本题中“AM +BM +CM 的值最小”如果没有费马点的知识积累,会在探究点M 的位置上花费不少时间,这对紧张的考试来说,势必造成“隐性失分”.。

费马点最值问题(中考备考宝典)

费马点最值问题(中考备考宝典)

费马点最值问题例题精讲例1:如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则AM+BM+CM的最小值为.例2:如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)若点P是等边三角形三条中线的交点,点P(填是或不是)该三角形的费马点.(2)如果点P为锐角△ABC的费马点,且∠ABC=60°.求证:△ABP∽△BCP;(3)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.强化练习1、在Rt △ABC 中,∠ACB=90°,AC=1,BC= ,点O 为Rt △ABC 内一点,连接AO 、BO 、CO ,且∠AOC=∠COB=∠BOA=120°,则OA+OB+OC= .2、如图,在四边形ABCD 中,60B ο∠=,AB=BC=3,AD=4,90BAD ο∠=,点P 是形内一点,则PA+PB+PD 的最小值为________第1题图 第2题图3、如图,点P 是矩形ABCD 对角线BD 上的一个动点,已知,,则的最小值是_______4、如图,菱形ABCD 的对角线AC 上有一动点P ,BC =6,∠ABC =150°,则线段 AP +BP +PD 的最小值为________第3题图 第4题图PDCA5、(1)如图①,△ABD 和△ACE 均为等边三角形,BE 、CE 交于F ,连AF , 求证:AF +BF +CF =CD ;(2)在△ABC 中,∠ABC =30°,AB =6,BC =8,∠A ,∠C 均小于120°,求作一点P ,使PA +PB +PC 的值最小,试求出最小值并说明理由.图①D图②CA6、如图,ABC ∆为正三角形,做ABC ∆的外接圆(1)D 为劣弧AB 上一点,则ADB ∠=(2)若三角形的3个内角均小于120°,三角形存在一点P ,使得PA 、PB 、PC 的夹角均为120°,我们称点P 为ABC ∆的费马点。

费马点与中考试题

费马点与中考试题

识别“费马点”思路快突破解题的成功取决于多种因素,其中最基本的有:解题的知识因素、解题的能力因素、解题的经验因素和解题的非智力因素,这也就是我们常说的解题基本功.可见解题的知识因素是第一位的,足以说明它的重要性.下面我们从解题的知识因素上关注两道中考题的思路获取.例1 (2010湖南永州)探究问题:(1)阅读理解:①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时P A+PB+PC的值为△ABC的费马距离.②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA=AC·BD.此为托勒密定理.(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C),已知点P为等边△ABC外接圆的»BC上任意一点.求证:PB+PC=P A.②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在»BC上任取一点P′,连结P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+;第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.思路探求:(2)知识迁移①问,只需按照题意套用托勒密定理,再利用等边三角形三边相等,将所得等式两边都除以等边三角形的边长,即可获证. ②问,借用①问中对于费马点的定义结论容易获解. (3)知识应用,模仿(2)的图形,先构造正三角形,由(2)中的结论,再计算AD即为最小距离.简解:(2)①证明:由托勒密定理可知PB·AC+PC·AB=P A·BC∵△ABC是等边三角形∴AB=AC=BC∴PB+PC=P A②P′D AD(3)解:如图,以BC为边长在△ABC的外部作等边△BCD,连接AD,则知线段AD的长即为△ABC的费马距离.∵△BCD 为等边三角形,BC =4,∴∠CBD =60°,BD =BC =4.∵∠ABC =30°, ∴∠ABD =90°.在Rt △ABD 中,∵AB =3,BD =4∴AD 22AB BD +2234+=5(km )∴从水井P 到三村庄A 、B 、C 所铺设的输水管总长度的最小值为5km.点评:此题集阅读理解、创新探究、实际应用于一体,题型新颖别致,综合考查自主探究、创新应用能力,是一道不可多得的好题.命题者设置成递进式问题,后续问题的思路获取、求解都靠对上一结论的解读、利用,这也是近年“课题学习”考查的一大风向,值得重视.如果说例1只是以“费马点”为课题学习的素材进行了考查,为了帮助同学们更好的理解三角形的费马点,我们补充几点:(1)平面内一点P 到△ABC 三顶点的之和为PA+PB+PC ,当点P 为费马点时,距离之和最小.特殊三角形中:(2)三内角皆小于120°的三角形,分别以 AB ,BC ,CA ,为边,向三角形外侧做正三角形ABC 1,ACB 1,BCA 1,然后连接AA 1,BB 1,CC 1,则三线交于一点P ,则点P 就是所求的费马点.(3)若三角形有一内角大于或等于120度,则此钝角的顶点就是所求.(4)当△ABC 为等边三角形时,此时外心与费马点重合.可见,永州卷这道考题对于费马点只是以课题学习为问题载体,考得比较直截了当;巧合的是2010年福建宁德一道考题对这个知识考查显得隐蔽了,请看:例2 (2010福建宁德)如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .⑴ 求证:△AMB ≌△ENB ;⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;⑶ 当AM +BM +CM 的最小值为13+时,求正方形的边长.思路探求:⑴略;⑵ ①要使AM +CM 的值最小,根据“两点之间线段最短”,需设法将AM +CM 转化为一条线段,连接AC 即可获取;②要使AM +BM +CM 的值最小,由例3积累的知识经验:点M 应该是△ABC 的费马点.由例3中(2)的求解示范,只要连接CE 即可获得CE 为AM +BM +CM 的值最小.这样获到M 点至少帮助我们在思路获取上提高了效率.理由说明供助于第(1)问的全等获得BM=BN ,将三条线段转化到CE 上去,问题化为两点之间线段最短.⑶根据题意,添加辅助线,构造直角三角形,过E 点作EF ⊥BC 交CB 的延长线于F . 设正方形的边长为x ,则BF =23x ,EF =2x .在Rt △EFC 中,由勾股定理得(2x )2+(23x +x )2=()213+,解得即可.简答:⑴略;⑵①当M 点落在BD 的中点时,AM +CM 的值最小.②如图,连接CE ,当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小.理由如下:连接MN.由⑴知,△AMB ≌△ENB∴AM =EN .∵∠MBN =60°,MB =NB ,∴△BMN 是等边三角形.∴BM =MN .∴AM +BM +CM =EN +MN +CM .根据“两点之间线段最短”,得EN +MN +CM =EC 最短∴当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小,即等于EC 的长.⑶过E 点作EF ⊥BC 交CB 的延长线于F ,∴∠EBF =90°-60°=30°.设正方形的边长为x ,则BF =23x ,EF =2x . 在Rt △EFC 中,∵EF 2+FC 2=EC 2,∴(2x )2+(23x +x )2=()213+. 解得,x =2(舍去负值).∴正方形的边长为2.点评:本题中“AM +BM +CM 的值最小”如果没有费马点的知识积累,会在探究点M 的位置A DB C F A D B C上花费不少时间,这对紧张的考试来说,势必造成“隐性失分”.。

费马点与中考试题

费马点与中考试题

费马点与中考试题文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]识别“费马点”思路快突破解题的成功取决于多种因素,其中最基本的有:解题的知识因素、解题的能力因素、解题的经验因素和解题的非智力因素,这也就是我们常说的解题基本功.可见解题的知识因素是第一位的,足以说明它的重要性.下面我们从解题的知识因素上关注两道中考题的思路获取.例1 (2010湖南永州)探究问题:(1)阅读理解:①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA=AC·BD.此为托勒密定理.(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C),已知点P为等边△ABC外接圆的BC上任意一点.求证:PB+PC =PA.②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在BC上任取一点P′,连结P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+;第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.思路探求:(2)知识迁移①问,只需按照题意套用托勒密定理,再利用等边三角形三边相等,将所得等式两边都除以等边三角形的边长,即可获证.②问,借用①问中对于费马点的定义结论容易获解. (3)知识应用,模仿(2)的图形,先构造正三角形,由(2)中的结论,再计算AD即为最小距离.简解:(2)①证明:由托勒密定理可知PB·AC+PC·AB=PA·BC∵△ABC是等边三角形∴ AB=AC=BC∴PB+PC=PA②P′D AD(3)解:如图,以BC为边长在△ABC的外部作等边△BCD,连接AD,则知线段AD的长即为△ABC的费马距离.∵△BCD为等边三角形,BC=4,∴∠CBD=60°,BD=BC=4.∵∠ABC=30°,∴∠ABD=90°.在Rt△ABD中,∵AB=3,BD=4∴AD=5(km)∴从水井P到三村庄A、B、C所铺设的输水管总长度的最小值为5km.点评:此题集阅读理解、创新探究、实际应用于一体,题型新颖别致,综合考查自主探究、创新应用能力,是一道不可多得的好题.命题者设置成递进式问题,后续问题的思路获取、求解都靠对上一结论的解读、利用,这也是近年“课题学习”考查的一大风向,值得重视.如果说例1只是以“费马点”为课题学习的素材进行了考查,为了帮助同学们更好的理解三角形的费马点,我们补充几点:(1)平面内一点P到△ABC三顶点的之和为PA+PB+PC,当点P为费马点时,距离之和最小.特殊三角形中:(2)三内角皆小于120°的三角形,分别以 AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点.(3)若三角形有一内角大于或等于120度,则此钝角的顶点就是所求.(4)当△ABC为等边三角形时,此时外心与费马点重合.可见,永州卷这道考题对于费马点只是以课题学习为问题载体,考得比较直截了当;巧合的是2010年福建宁德一道考题对这个知识考查显得隐蔽了,请看:例2 (2010福建宁德)如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .⑴ 求证:△AMB ≌△ENB ;⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; ⑶ 当AM +BM +CM 的最小值为13 时,求正方形的边长.思路探求:⑴略;⑵ ①要使AM +CM 的值最小,根据“两点之间线段最短”,需设法将AM +CM 转化为一条线段,连接AC 即可获取;②要使AM +BM +CM 的值最小,由例3积累的知识经验:点M 应该是△ABC 的费马点.由例3中(2)的求解示范,只要连接CE 即可获得CE 为AM +BM +CM 的值最小.这样获到M 点至少帮助我们在思路获取上提高了效率.理由说明供助于第(1)问的全等获得BM=BN ,将三条线段转化到CE 上去,问题化为两点之间线段最短.B⑶根据题意,添加辅助线,构造直角三角形,过E 点作EF ⊥BC 交CB 的延长线于F . 设正方形的边长为x ,则BF =23x ,EF =2x .在Rt △EFC 中,由勾股定理得(2x )2+(23x +x )2=()213+,解得即可.简答:⑴略;⑵①当M 点落在BD 的中点时,AM +CM 的值最小. ②如图,连接CE ,当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小.理由如下:连接MN.由⑴知,△AMB∴AM =EN .∵∠MBN =60°,MB =NB , ∴△BMN 是等边三角形. ∴BM =MN .∴AM +BM +CM =EN +MN +CM .根据“两点之间线段最短”,得EN +MN +CM =EC 最短∴当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小,即等于EC 的长.⑶过E 点作EF ⊥BC 交CB 的延长线于F ,∴∠EBF =90°-60°=30°. 设正方形的边长为x ,则BF =23x ,EF =2x .在Rt △EFC 中,∵EF 2+FC 2=EC 2,∴(2x )2+(23x +x )2=()213+.解得,x =2(舍去负值).∴正方形的边长为2.FB点评:本题中“AM+BM+CM的值最小”如果没有费马点的知识积累,会在探究点M的位置上花费不少时间,这对紧张的考试来说,势必造成“隐性失分”.。

费马点与中考试题

费马点与中考试题

“费马点”与中考试题费尔马,法国业余数学家,拥有业余数学之王的称号,他是解析几何的发明者之一.费马点——就是到三角形的三个顶点的距离之和最小的点.费尔马的结论:对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点.△三个顶点的距离之和P A+PB+PC最小?这就下面简单说明如何找点P使它到ABC是所谓的费尔马问题.图1解析:如图1,把△APC绕A点逆时针旋转60°得到△AP′C′,连接PP′.则△APP′为等边三角形,AP= PP′,P′C′=PC,所以P A+PB+PC= PP′+ PB+ P′C′.点C′可看成是线段AC绕A点逆时针旋转60°而得的定点,BC′为定长,所以当B、P、P′、C′四点在同一直线上时,P A+PB+PC最小.这时∠BP A=180°-∠APP′=180°-60°=120°,∠APC=∠A P′C′=180°-∠AP′P=180°-60°=120°,∠BPC=360°-∠BP A-∠APC=360°-120°-120°=120°△的每一个内角都小于120°时,所求的点P对三角形每边的张角都是因此,当ABC120°,可在AB、BC边上分别作120°的弓形弧,两弧在三角形内的交点就是P点;当有一内角大于或等于120°时,所求的P点就是钝角的顶点.费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.本文列举近年“费马点”走进中考试卷的实例,供同学们学习参考.例1 (2008年广东中考题)已知正方形ABCD内一动点E到A、B、C三点的距离26图2 图3 分析:连接AC ,发现点E 到A 、B 、C 三点的距离之和就是到ABC △三个顶点的距离之和,这实际是费尔马问题的变形,只是背景不同.解 如图2,连接AC ,把△AEC 绕点C 顺时针旋转60°,得到△GFC ,连接EF 、BG 、A G ,可知△EFC 、△AGC 都是等边三角形,则EF =CE .又FG =AE ,∴AE +BE +CE = BE +EF +FG (图4).∵ 点B 、点G 为定点(G 为点A 绕C 点顺时针旋转60°所得).∴ 线段BG 即为点E 到A 、B 、C 三点的距离之和的最小值,此时E 、F 两点都在BG 上(图3).设正方形的边长为a ,那么BO =CO 2,GC 2a , GO 6. ∴ BG=BO +GO =22+62a . ∵ 点E 到A 、B 、C 26∴ 22a 6a 26a =2. 注 本题旋转△AEB 、△BEC 也都可以,但都必须绕着定点旋转,读者不妨一试. 例2 (2009年北京中考题) 如图4,在平面直角坐标系xOy 中,△ABC 三个顶点的坐标分别为()6,0A -,()6,0B ,(0,43C ,延长AC 到点D , 使CD =12AC ,过点D 作DE ∥AB 交BC 的延长线于点E .(1)求D 点的坐标;(2)作C 点关于直线DE 的对称点F ,分别连结DF 、EF ,若过B 点的直线y kx b =+将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;(3)设G 为y 轴上一点,点P 从直线y kx b =+与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短.分析和解:(1)D 点的坐标(3,(过程略).(2) 直线BM的解析式为y =+.图4(3)如何确定点G 的位置是本题的难点也是关健所在.设Q 点为y 轴上一点,P 在y 轴上运动的速度为v ,则P 沿M →Q →A 运动的时间为2MQ AQ v v +,使P 点到达A 点所用的时间最短,就是12MQ +AQ 最小,或MQ +2AQ 最小. 解法1 ∵ BQ =AQ , ∴MQ +2AQ 最小就是MQ +AQ +BQ 最小,就是在直线MO 上找点G 使他到A 、B 、M 三点的距离和最小.至此,再次发现这又是一个费尔马问题的变形,注意到题目中等边三角形的信息,考虑作旋转变换.把△MQB 绕点B 顺时针旋转60°,得到△M ′Q ′B ,连接QQ ′、MM ′(图5),可知△QQ ′B 、△MM ′B 都是等边三角形,则QQ ′=BQ .又M ′Q ′=MQ ,∴MQ +AQ +BQ = M ′Q ′+ QQ ′+AQ .∵点A 、M ′为定点,所以当Q 、Q ′两点在线段A M ′上时,MQ +AQ +BQ 最小.由条件可证明Q ′点总在AM ′上,所以A M ′与OM 的交点就是所要的G 点(图6).可证OG =12MG .图5 图6 图7解法2 考虑12MQ+AQ最小,过Q作BM的垂线交BM于K,由OB=6,OM=63,可得∠BMO=30°,所以QK=12 MQ.要使12MQ+AQ最小,只需使AQ+QK最小,根据“垂线段最短”,可推出当点A、Q、K在一条直线上时,AQ+QK最小,并且此时的QK垂直于BM,此时的点Q即为所求的点G(图7).过A点作AH⊥BM于H,则AH与y轴的交点为所求的G点.由OB=6,OM=63,可得∠OBM=60°,∴∠BAH=30°在Rt△OAG中,OG=AO·tan∠BAH=23∴G点的坐标为(0,23)(G点为线段OC的中点).例3 (2009年湖州中考题)若点P 为△ABC所在平面上一点,且∠APB=∠BPC=∠CP A=120°, 则点P叫做△ABC的费马点.(1)若P为锐角△ABC的费马点,且∠ABC=60°,P A=3,PC=4, 则PB的值为;(2)如图8,在锐角△ABC的外侧作等边△ACB′,连结BB′.求证:BB′过△ABC的费马点P,且BB′=P A+PB+PC.图8解:(1)利用相似三角形可求PB的值为3(2)设点P为锐角△ABC的费马点,即∠APB=∠BPC=∠CP A=120°如图8,把△ACP绕点C顺时针旋转60°到△B′CE,连结PE,则△EPC为正三角形.∵∠B′EC = ∠APC =120°,∠PEC=60°∴∠B′EC+∠PEC=180°即P、E、B′三点在同一直线上∵∠BPC=120°,∠CPE=60°,∴∠BPC +∠CPE =180°,即B、P、E 三点在同一直线上∴B、P、E、B′四点在同一直线上,即BB′过△ABC的费马点P.又PE=PC,B′E= P A,∴BB′=E B′+PB+PE=P A+PB+PC.注通过旋转变换,可以改变线段的位置,优化图形的结构.在使用这一方法解题时需注意图形旋转变换的基础,即存在相等的线段,一般地,当题目出现等腰三角形(等边三角形)、正方形条件时,可将图形作旋转60°或90°的几何变换,将不规则图形变为规则图形,或将分散的条件集中在一起,以便挖掘隐含条件,使问题得以解决.费尔马问题是个有趣的数学问题,这些问题常常可通过旋转变换来解决.。

“费马点”与中考试题

“费马点”与中考试题

“费马点”与中考试题图2图3分析:连接AC,发现点E到A、B、C三点的距离之和就是到ABC△三个顶点的距离之和,这实际是费尔马问题的变形,只是背景不同.解如图2,连接AC,把△AEC绕点C 顺时针旋转60°,得到△GFC,连接EF、BG、A G,可知△EFC、△AGC都是等边三角形,则EF=CE.又FG=AE,∴AE+BE+CE = BE+EF+FG(图4).∵点B、点G为定点(G为点A绕C点顺时针旋转60°所得).∴线段BG即为点E到A、B、C三点的距离之和的最小值,此时E、F两点都在BG上(图3).设正方形的边长为a,那么,GC, GO a.BO=CO∴BG=BO+GO =a.2∵点E到A、B、C三点的距离之和的最∴a a=2.2注本题旋转△AEB、△BEC也都可以,但都必须绕着定点旋转,读者不妨一试.例2 (2009年北京中考题)如图4,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为()B,(C,延长AC到点D, 使6,06,0A-,()CD=1AC,过点D作DE∥AB交BC的延长线于点2E.(1)求D点的坐标;(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线y kx b=+将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;(3)设G为y轴上一点,点P从直线y kx b=+与y轴的交点出发,先沿y轴到达G点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短.分析和解:(1)D 点的坐标(3,(过程略).(2) 直线BM的解析式为y =+略).图4 (3)如何确定点G 的位置是本题的难点也是关健所在.设Q 点为y 轴上一点,P 在y 轴上运动的速度为v ,则P 沿M →Q →A 运动的时间为2MQ AQ v v+,使P 点到达A 点所用的时间最短,就是12MQ +AQ 最小,或MQ +2AQ 最小. 解法1 ∵ BQ =AQ , ∴MQ +2AQ 最小就是MQ +AQ +BQ 最小,就是在直线MO 上找点G使他到A、B、M三点的距离和最小.至此,再次发现这又是一个费尔马问题的变形,注意到题目中等边三角形的信息,考虑作旋转变换.把△MQB绕点B顺时针旋转60°,得到△M′Q′B,连接QQ′、MM′(图5),可知△QQ′B、△MM′B都是等边三角形,则QQ′=BQ.又M′Q′=MQ,∴MQ+AQ+BQ= M′Q′+ QQ′+AQ.∵点A、M′为定点,所以当Q、Q′两点在线段A M′上时,MQ+AQ+BQ最小.由条件可证明Q′点总在AM′上,所以A M′与OM的交点MG.就是所要的G点(图6).可证OG=12图 5图6 图7MQ+AQ最小,过Q作解法2 考虑12BM的垂线交BM于K,由OB=6,OM=MQ.得∠BMO=30°,所以QK=12要使1MQ+AQ最小,只需使AQ+QK最2小,根据“垂线段最短”,可推出当点A、Q、K 在一条直线上时,AQ+QK最小,并且此时的QK 垂直于BM,此时的点Q即为所求的点G(图7).过A点作AH⊥BM于H,则AH与y轴的交点为所求的G点.由OB=6,OM=∠OBM=60°,∴∠BAH=30°在Rt△OAG中,OG=AO·tan∠BAH=(G点为线段OC∴G点的坐标为(0,的中点).例3 (2009年湖州中考题)若点P 为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°, 则点P叫做△ABC的费马点.(1)若P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4, 则PB的值为;(2)如图8,在锐角△ABC的外侧作等边△ACB′,连结BB′.求证:BB′过△ABC的费马点P,且BB′=PA+PB+PC.图8 解:(1)利用相似三角形可求PB的值为(2)设点P为锐角△ABC的费马点,即∠APB=∠BPC=∠CPA=120°如图8,把△ACP绕点C顺时针旋转60°到△B′CE,连结PE,则△EPC为正三角形.∵∠B′EC= ∠APC=120°,∠PEC=60°∴∠B′EC+∠PEC=180°即P、E、B′三点在同一直线上∵∠BPC=120°,∠CPE=60°,∴∠BPC +∠CPE =180°,即B、P、E 三点在同一直线上∴B、P、E、B′四点在同一直线上,即BB′过△ABC的费马点P.又PE=PC,B′E= PA,∴BB′=E B′+PB+PE=PA+PB+PC.注通过旋转变换,可以改变线段的位置,优化图形的结构.在使用这一方法解题时需注意图形旋转变换的基础,即存在相等的线段,一般地,当题目出现等腰三角形(等边三角形)、正方形条件时,可将图形作旋转60°或90°的几何变换,将不规则图形变为规则图形,或将分散的条件集中在一起,以便挖掘隐含条件,使问题得以解决.费尔马问题是个有趣的数学问题,这些问题常常可通过旋转变换来解决.11。

初中数学精品试题:费马点问题

初中数学精品试题:费马点问题

费马点问题
例1 ( 2013 年常州中考) 如图2,在Rt△ABC 中,∠C = 90°,AC = 1,BC = 3,
点O 为Rt△ABC 内一点,连接AO,BO,CO,且∠AOC = ∠COB = ∠BOA = 120°,按下列要求画图( 保留画图痕迹) :
以点B 为旋转中心,将△AOB 绕点 B 顺时针方向旋转60°,得到△A'O'B( 其中点A、O 的对应点分别为点A'、O') ,并回答下列问题:
∠ABC = ; ∠A'BC = ; OA + OB+ OC =
例 2 ( 2016 年朝阳中考) 小颖在学习“两点之间,线段最短”查阅资料时发现: △ABC 内总存在一点P 与三个顶点的连线的夹角相等,此时该点到三个顶
点的距离之和最小
例3 ( 2010 年宁德中考) 如图,四边形ABCD是正方形,△ABE 是等边三角形,M 为对角线BD( 不含 B 点) 上任意一点,将BM 绕点 B 逆时针旋转60°得到BN,连接EN、AM、CM.
( 1) 求证: △AMB ≌△ENB;
( 2) ① 当M 点在何处时,AM + CM 的值最小;
② 当M 点在何处时,AM + BM + CM 的值最小,并说明理由;
( 3) 当AM + BM + CM 的最小值为3+ 1 时,求正方形的边长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

识别“费马点”思路快突破
例1 探究问题:
(1)阅读理解:
①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的
距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.
②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA =AC·BD.此为托勒密定理.
(2)知识迁移:
①请你利用托勒密定理,解决如下问题:
如图(C),已知点P为等边△ABC外接圆的BC上任意一点.求证:PB+PC=PA.
②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:
第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在BC上任取一点P′,连结P′A、P′B、P′C、P′D.易知P′A+P′B +P′C=P′A+(P′B+P′C)=P′A+;
第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离.
(3)知识应用:
2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.
已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.
(1)平面内一点P到△ABC三顶点的之和为PA+PB+PC,当点P为费马点时,距离之和最小.
特殊三角形中:
(2)三内角皆小于120°的三角形,分别以 AB,BC,CA,为边,向三角
形外侧做正三角形ABC
1,ACB
1
,BCA
1
,然后连接AA
1
,BB
1
,CC
1
,则三线交于一
点P,则点P就是所求的费马点.
(3)若三角形有一内角大于或等于120度,则此钝角的顶点就是所求.
(4)当△ABC为等边三角形时,此时外心与费马点重合.
可见,永州卷这道考题对于费马点只是以课题学习为问题载体,考得比较直截了当;巧合的是
例2 如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
⑴ 求证:△AMB≌△ENB;
⑵ ①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
⑶ 当AM+BM+CM的最小值为1
3 时,求正方形的边长.
思路探求:⑴略;
⑵ ①要使AM +CM 的值最小,根据“两点之间线段最短”,需设法将AM +CM 转化为一条线段,连接AC 即可获取;
②要使AM +BM +CM 的值最小,由例3积累的知识经验:点M 应该是△ABC 的费马点.由例3中(2)的求解示范,只要连接CE 即可获得CE 为AM +BM +CM 的值最小.这样获到M 点至少帮助我们在思路获取上提高了效率.理由说明供助于第(1)问的全等获得BM=BN ,将三条线段转化到CE 上去,问题化为两点之间线段最短.
⑶根据题意,添加辅助线,构造直角三角形,过E 点作EF ⊥BC 交CB 的延长线于F . 设正方形的边长为x ,则BF =2
3x ,EF =2
x .在Rt △EFC 中,由勾股定理
得(2
x
)2+(
2
3x +x )2=(
)2
1
3+,解得即可.
简答:⑴略;
⑵①当M 点落在BD 的中点时,AM +CM 的值最小. ②如图,连接CE ,当M 点位于BD 与CE 的交点处时,
AM +BM +CM 的值最小.
理由如下:连接MN.由⑴知,△AMB
∴AM =EN .
∵∠MBN =60°,MB =NB , ∴△BMN 是等边三角形.
B
F
B
∴BM =MN .
∴AM +BM +CM =EN +MN +CM .
根据“两点之间线段最短”,得EN +MN +CM =EC 最短
∴当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小,即等于EC 的长. ⑶过E 点作EF ⊥BC 交CB 的延长线于F ,∴∠EBF =90°-60°=30°. 设正方形的边长为x ,则BF =
2
3x ,EF =2
x .
在Rt △EFC 中,∵EF 2+FC 2=EC 2,∴(2
x )2+(2
3x +x )2=(
)2
1
3+.
解得,x =
2
(舍去负值).∴正方形的边长为2
.
点评:本题中“AM +BM +CM 的值最小”如果没有费马点的知识积累,会在探究点M 的位置上花费不少时间,这对紧张的考试来说,势必造成“隐性失分”.。

相关文档
最新文档