费马点与中考试题
初三数学费马点练习题

初三数学费马点练习题费马点(Fermat Point)是指在一个三角形中,距离三个顶点的距离之和最小的点。
它被称为费马点,是为了纪念法国数学家皮埃尔·费马(Pierre de Fermat)。
在本文中,将提供一些初三数学费马点练习题,通过这些题目的解答,读者将更好地理解费马点的概念和特性。
题目一:已知△ABC中,∠ABC = 60°,AD为边BC上的高,点E为三角形内部一点,满足∠BAE = ∠CAE = 30°。
证明:点E为△ABC的费马点。
解答一:我们需要证明点E到三个顶点A、B、C的距离之和最小。
首先,连接AE、BE、CE,构造△BAE和△CAE。
由已知条件可知,∠BAE = ∠CAE = 30°,而∠ABC = 60°。
观察三角形△BAE,角度和为180°,因此∠AEB = 180° - 30° - 30°= 120°。
同理,在三角形△CAE中,∠AEC = 180° - 30° - 30° = 120°。
现在我们可以继续分析三角形△ABC,∠ABC = 60°,∠BAC = 180°- 60° - 30° - 30° = 60°。
接下来,我们来考虑三角形△BAE和△CAE的外角。
对于△BAE,∠BEA = 180° - 120° = 60°;对于△CAE,∠CEA = 180° - 120° = 60°。
现在,我们可以观察到三角形△BAE、△CAE和△ABC中都有一个60°的角,并且对应的外角也是60°。
根据确定费马点的性质,可知点E为△ABC的费马点。
题目二:已知△ABC中,∠BAC = 90°,点D为边BC上的一点,满足BD = DC。
费马 点定理,在中考题中应用

费马点
“费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点。
若给定一个三角形△ABC的话,从这个三角形的费马点P到三角形的三个顶点A、B、C的距离之和比从其它点算起的都要小。
如图,在△ABC中,P为其中任意一点。
连接AP,BP,得到△ABP。
合并图册
合并图册(2张)
以点B为旋转中心,将△ABP逆时针旋转60°,得到△EBD
∵旋转60°,且BD=BP,
∴△DBP 为一个等边三角形
∴PB=PD
因此,PA+PB+PC=DE+PD+PC
由此可知当E、D、P、C 四点共线时,为PA+PB+PC最小
若E、D、P共线时,
∵等边△DBP
∴∠EDB=120°
同理,若D、P、C共线时,则∠CPB=120°
∴P点为满足∠APB=∠BPC=∠APC=120°的点。
历史背景。
费马点与中考试题

费马点与中考试题LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】识别“费马点”思路快突破解题的成功取决于多种因素,其中最基本的有:解题的知识因素、解题的能力因素、解题的经验因素和解题的非智力因素,这也就是我们常说的解题基本功.可见解题的知识因素是第一位的,足以说明它的重要性.下面我们从解题的知识因素上关注两道中考题的思路获取.例1 (2010湖南永州)探究问题:(1)阅读理解:①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA=AC·BD.此为托勒密定理.(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C),已知点P为等边△ABC外接圆的BC上任意一点.求证:PB+PC=PA.②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在BC上任取一点P′,连结P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+;第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.思路探求:(2)知识迁移①问,只需按照题意套用托勒密定理,再利用等边三角形三边相等,将所得等式两边都除以等边三角形的边长,即可获证. ②问,借用①问中对于费马点的定义结论容易获解. (3)知识应用,模仿(2)的图形,先构造正三角形,由(2)中的结论,再计算AD即为最小距离.简解:(2)①证明:由托勒密定理可知PB·AC+PC·AB=PA·BC∵△ABC是等边三角形∴AB=AC=BC∴PB+PC=PA②P′D AD(3)解:如图,以BC为边长在△ABC的外部作等边△BCD,连接AD,则知线段AD的长即为△ABC的费马距离.∵△BCD为等边三角形,BC=4,∴∠CBD=60°,BD=BC=4.∵∠ABC=30°,∴∠ABD=90°.在Rt△ABD中,∵AB=3,BD=4∴AD22+=5(km)34AB BD+22∴从水井P到三村庄A、B、C所铺设的输水管总长度的最小值为5km.点评:此题集阅读理解、创新探究、实际应用于一体,题型新颖别致,综合考查自主探究、创新应用能力,是一道不可多得的好题.命题者设置成递进式问题,后续问题的思路获取、求解都靠对上一结论的解读、利用,这也是近年“课题学习”考查的一大风向,值得重视.如果说例1只是以“费马点”为课题学习的素材进行了考查,为了帮助同学们更好的理解三角形的费马点,我们补充几点:(1)平面内一点P 到△ABC 三顶点的之和为PA+PB+PC ,当点P 为费马点时,距离之和最小.特殊三角形中:(2)三内角皆小于120°的三角形,分别以 AB ,BC ,CA ,为边,向三角形外侧做正三角形ABC 1,ACB 1,BCA 1,然后连接AA 1,BB 1,CC 1,则三线交于一点P ,则点P 就是所求的费马点.(3)若三角形有一内角大于或等于120度,则此钝角的顶点就是所求. (4)当△ABC 为等边三角形时,此时外心与费马点重合.可见,永州卷这道考题对于费马点只是以课题学习为问题载体,考得比较直截了当;巧合的是2010年福建宁德一道考题对这个知识考查显得隐蔽了,请看:例2 (2010福建宁德)如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .⑴ 求证:△AMB ≌△ENB ;⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; ⑶ 当AM +BM +CM 的最小值为13 时,求正方形的边长.思路探求:⑴略;A DB C⑵ ①要使AM +CM 的值最小,根据“两点之间线段最短”,需设法将AM +CM 转化为一条线段,连接AC 即可获取;②要使AM +BM +CM 的值最小,由例3积累的知识经验:点M 应该是△ABC 的费马点.由例3中(2)的求解示范,只要连接CE 即可获得CE 为AM +BM +CM 的值最小.这样获到M 点至少帮助我们在思路获取上提高了效率.理由说明供助于第(1)问的全等获得BM=BN ,将三条线段转化到CE 上去,问题化为两点之间线段最短.⑶根据题意,添加辅助线,构造直角三角形,过E 点作EF ⊥BC 交CB 的延长线于F . 设正方形的边长为x ,则BF =23x ,EF =2x .在Rt △EFC 中,由勾股定理得(2x )2+(23x +x )2=()213+,解得即可.简答:⑴略;⑵①当M 点落在BD 的中点时,AM +CM 的值最小. ②如图,连接CE ,当M 点位于BD 与CE 的交点处时, AM +BM +CM 的值最小.理由如下:连接MN.由⑴知,△AMB∴AM =EN .∵∠MBN =60°,MB =NB , ∴△BMN 是等边三角形. ∴BM =MN .∴AM +BM +CM =EN +MN +CM .根据“两点之间线段最短”,得EN +MN +CM =EC 最短∴当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小,即等于EC 的长. ⑶过E 点作EF ⊥BC 交CB 的延长线于F ,∴∠EBF =90°-60°=30°.F A DB C设正方形的边长为x ,则BF =23x ,EF =2x . 在Rt △EFC 中,∵EF 2+FC 2=EC 2,∴(2x)2+(23x +x )2=()213+.解得,x =2(舍去负值).∴正方形的边长为2.点评:本题中“AM +BM +CM 的值最小”如果没有费马点的知识积累,会在探究点M 的位置上花费不少时间,这对紧张的考试来说,势必造成“隐性失分”.。
费马点最值问题(中考备考宝典)

费马点最值问题例题精讲例1:如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则AM+BM+CM的最小值为.例2:如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)若点P是等边三角形三条中线的交点,点P(填是或不是)该三角形的费马点.(2)如果点P为锐角△ABC的费马点,且∠ABC=60°.求证:△ABP∽△BCP;(3)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.强化练习1、在Rt △ABC 中,∠ACB=90°,AC=1,BC= ,点O 为Rt △ABC 内一点,连接AO 、BO 、CO ,且∠AOC=∠COB=∠BOA=120°,则OA+OB+OC= .2、如图,在四边形ABCD 中,60B ο∠=,AB=BC=3,AD=4,90BAD ο∠=,点P 是形内一点,则PA+PB+PD 的最小值为________第1题图 第2题图3、如图,点P 是矩形ABCD 对角线BD 上的一个动点,已知,,则的最小值是_______4、如图,菱形ABCD 的对角线AC 上有一动点P ,BC =6,∠ABC =150°,则线段 AP +BP +PD 的最小值为________第3题图 第4题图PDCA5、(1)如图①,△ABD 和△ACE 均为等边三角形,BE 、CE 交于F ,连AF , 求证:AF +BF +CF =CD ;(2)在△ABC 中,∠ABC =30°,AB =6,BC =8,∠A ,∠C 均小于120°,求作一点P ,使PA +PB +PC 的值最小,试求出最小值并说明理由.图①D图②CA6、如图,ABC ∆为正三角形,做ABC ∆的外接圆(1)D 为劣弧AB 上一点,则ADB ∠=(2)若三角形的3个内角均小于120°,三角形存在一点P ,使得PA 、PB 、PC 的夹角均为120°,我们称点P 为ABC ∆的费马点。
中考费马点例题

2022年春北师大版九年级数学中考二轮复习《费马点模型》专题突破训练(附答案)1.如图,等边△ABC中有一点P,且PA=3,PB=4,PC=5,则∠APB的度数的为()A.150°B.135°C.120°D.165°2.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC 外作△BQC≌△BPA,连接PQ,则以下结论错误的是()A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°3.如图,点D是等边△ABC内一点,AD=3,BD=3,CD=,△ACE是由△ABD绕点A逆时针旋转得到的,则∠ADC的度数是()A.40°B.45°C.105°D.55°4.如图,点P是等边△ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转60°后得到△CQB,则∠APB的度数为()A.150°B.145°C.135°D.120°5.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,将△ABP绕点B顺时针旋转60°到△CBQ位置.连接PQ,则以下结论错误的是()A.∠QPB=60°B.∠PQC=90°C.∠APB=150°D.∠APC=135°6.已知,P为等边三角形ABC内一点,PA=3,PB=4,PC=5,则S△ABC=.7.点P是等边三角形ABC内部一点,PA=3,PB=4,PC=5,则三角形ACP的面积是.8.如图,点P是等边△ABC内的一点,PA=6,PB=8,PC=10.若点P′是△ABC外的一点,且△P′AB≌△PAC,则∠APB的度数为.9.如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数.10.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°,得到线段AQ,连接BQ,若PA=3,PB=4,PC=5,则四边形APBQ的面积为11.如图,点P为等边△ABC内一点,若PC=3,PB=4,PA=5,则∠BPC的度数是.12.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC 外作△BQC≌△BPA,连接PQ,则以下结论中正确有(填序号)①△BPQ是等边三角形②△PCQ是直角三角形③∠APB=150°④∠APC=120°13.如图,已点P是△ABC的重心(三边中线的交点),且PA=3,PB=4,PC=5,求S△ABC.14.如图,点P是等边△ABC外一点,PA=3,PB=4,PC=5(1)将△APC绕点A逆时针旋转60°得到△P1AC1,画出旋转后的图形;(2)在(1)的图形中,求∠APB的度数.15.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A 逆时针旋转后,得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的度数.16.数学探究课上老师处这样一道题:“如图,等边△ABC中有一点P,且PA=3,PB=4,PC=5,试求∠APB的度数.”小明和小军探讨时发现了一种求∠APB度数的方法,下面是这种方法的一部分思路,请按照下列思路要求画图或判断(1)在图中画出△APC绕点A顺时针旋转60°后的△AP1B;(2)试判断△AP1P的形状,并说明理由;(3)试判断△BP1P的形状,并说明理由;(4)由(2)、(3)两问可知:∠APB=.17.(原题初探)(1)小明在数学作业本中看到有这样一道作业题:如图1,P是正方形ABCD 内一点,连结PA,PB,PC现将△PAB绕点B顺时针旋转90°得到的△P′CB,连接PP ′.若PA=,PB=3,∠APB=135°,则PC的长为,正方形ABCD的边长为.(变式猜想)(2)如图2,若点P是等边△ABC内的一点,且PA=3,PB=4,PC=5,请猜想∠APB的度数,并说明理由.(拓展应用)(3)聪明的小明经过上述两小题的训练后,善于反思的他又提出了如下的问题:如图3,在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD 的长度为.18.问题:如图1,在等边△ABC内部有一点P,已知PA=3,PB=4,PC=5,求∠APB 的度数?(1)请写出常见四组勾股数:、、、.(2)解决方法:通过观察发现PA,PB,PC的长度符合勾股数,但由于PA,PB,PC不在一个三角形中,想法将这些条件集中在一个三角形,于是可将△ABP绕A逆时针旋转60°到△AP′C,此时△ABP≌△ACP',这样利用等边三角形和全等三角形知识,便可求出∠APB=.请写出解题过程.(3)应用:请你利用(2)题的思路,解答下面的问题:如图2,在△ABC中,∠CAB=90°,AB=AC,E,F为BC的点,且∠EAF=45°,若BE=m,FC=n,请求出线段EF的长度(用m、n的代数式表示).19.下面是一道例题及其解答过程,请补充完整.(1)如图1,在等边三角形ABC内部有一点P,PA=3,PB=4,PC=5,求∠APB度数.解:将△APC绕点A逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形.∵PP′=PA=3,PB=4,P′B=PC=5,∴P′P2+PB2=P′B2.∴△BPP′为三角形.∴∠APB的度数为.(2)类比延伸如图2,在正方形ABCD内部有一点P,若∠APD=135°,试判断线段PA、PB、PD之间的数量关系,并说明理由.20.(1)如图1,点P是等边△ABC内一点,已知PA=3,PB=4,PC=5,求∠APB的度数.分析:要直接求∠APB的度数显然很困难,注意到条件中的三边长恰好是一组勾股数,因此考虑借助旋转把这三边集中到一个三角形内.解:如图2,作∠PAD=60°使AD=AP,连接PD,CD,则△PAD是等边三角形.∴=AD=AP=3,∠ADP=∠PAD=60°∵△ABC是等边三角形∴AC=AB,∠BAC=60°∴∠BAP=∴△ABP≌△ACD∴BP=CD=4,=∠ADC∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2=PC2∴∠PDC=°∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°(2)如图3,在△ABC中,AB=BC,∠ABC=90°,点P是△ABC内一点,PA=1,PB =2,PC=3,求∠APB的度数.(3)拓展应用.如图(4),△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为.21.(1)如图1,点P是等边△ABC内一点,已知PA=3,PB=4,PC=5,求∠APB的度数.要直接求∠A的度数显然很困难,注意到条件中的三边长恰好是一组勾股数,因此考虑借助旋转把这三边集中到一个三角形内,如图2,作∠PAD=60°使AD=AP,连接PD,CD,则△PAD是等边三角形.∴=AD=AP=3,∠ADP=∠PAD=60°∵△ABC是等边三角形∴AC=AB,∠BAC=60°∴∠BAP=∴△ABP≌△ACD∴BP=CD=4,=∠ADC∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2=PC2∴∠PDC=°∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°(2)如图3,在△ABC中,AB=BC,∠ABC=90°,点P是△ABC内一点,PA=1,PB =2,PC=3,求∠APB的度数.22.【方法呈现】:(1)已知,点P是正方形ABCD内的一点,连PA、PB、PC.将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1),设AB的长为a,PB的长为b(b<a),求△PAB 旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;【实际运用】:(2)如图2,点P是等腰Rt△ABC内一点,AB=BC,连接PA,PB,PC.若PA=2,PB=4,PC=6,求∠APB的大小;【拓展延伸】:(3)如图3,点P是等边△ABC内一点,PA=3,PB=4,PC=5,则△APC的面积是(直接填答案)23.阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC =5,求∠APB的度数;小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.(1)请你回答:图1中∠APB的度数等于.(直接写答案)参考小伟同学思考问题的方法,解决下列问题:如图3,在正方形ABCD内有一点P,且PA=2,PB=1,PD=.(2)求∠APB的度数;(3)求正方形的边长.24.(1)在一次数学探究活动中,陈老师给出了一道题.如图1,已知△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PA=3,PB =1,PC=2,求∠BPC的度数.小强在解决此题时,是将△APC绕C旋转到△CBE的位置(即过C作CE⊥CP,且使CE=CP,连接EP、EB).你知道小强是怎么解决的吗?(2)请根据(1)的思想解决以下问题:如图2所示,设P是等边△ABC内一点,PA=3,PB=4,PC=5,求∠APB的度数.25.阅读下面材料:小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC =5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).请回答:图1中∠APB的度数等于,图2中∠PP′C的度数等于.参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A坐标为(﹣,1),连接AO.如果点B是x 轴上的一动点,以AB为边作等边三角形ABC.当C(x,y)在第一象限内时,求y与x 之间的函数表达式.参考答案1.解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.故选:A.2.解:∵△ABC是等边三角形,∴∠ABC=60°,∵△BQC≌△BPA,∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,∴△BPQ是等边三角形,∴PQ=BP=4,∵PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,即△PQC是直角三角形,∵△BPQ是等边三角形,∴∠BOQ=∠BQP=60°,∴∠BPA=∠BQC=60°+90°=150°,∴∠APC=360°﹣150°﹣60°﹣∠QPC=150°﹣∠QPC,∵∠PQC=90°,PQ≠QC,∴∠QPC≠45°,即∠APC≠135°,∴选项A、B、C正确,选项D错误.故选:D.3.解:连接DE,由旋转可知,△ACE≌△ABD,∴AE=AD=3,CE=BD=3,CD=,∠BAD=∠CAE,∵△ABC是等边三角形,∴∠BAC=60°,∴∠BAD+∠DAC=60°,∴∠CAE+∠DAC=60°,即∠DAE=60°,∴△DAE是等边三角形,∴DE=AD=3,∵32+32=(3)2,∴DE2+CE2=CD2,∴△DEC是直角三角形,且∠DEC=90°,∴DE=CE,∠EDC=45°,∴∠ADC=∠ADE+∠CDE=105°,故选:C.4.解:如图,连接PQ,∵将△APB绕着点B逆时针旋转60°后得到△CQB,∴△ABP≌△CBQ,∴BP=BQ,∠PBQ=60°,∠APB=∠BQC,AP=QC=3,∴△BPQ是等边三角形,∴BP=BQ=PQ=4,∠BQP=60°,∵PC2=25,PQ2+QC2=9+16=25,∴PQ2+QC2=PC2,∴∠PQC=90°,∴∠BQC=150°,∴∠APB=150°,故选:A.5.解:∵△ABC是等边三角形,∴∠ABC=60°,∵将△ABP绕点B顺时针旋转60°到△CBQ位置,∴△BQC≌△BPA,∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,∴△BPQ是等边三角形,∴PQ=BP=4,∵PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,即△PQC是直角三角形,故B正确,∵△BPQ是等边三角形,∴∠QPB=∠PBQ=∠BQP=60°,故A正确,∴∠BPA=∠BQC=60°+90°=150°,故C正确,若∠APC=135°,则∠QPC=360°﹣135°﹣150°﹣60°=15°,与PA=3,PB=4,PC=5不符,故选项D错误.故选:D.6.解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.∴△ABC的面积=AB2=(25+12)=;故答案为:.7.解:如图,把△ABP绕点A逆时针旋转60°得到△ACD,则AD=PA=3,CD=PB=4,∴△APD是等边三角形,∴PD=PA=3,∵PD2+CD2=32+42=25,PC2=52=25,∴PD2+CD2=PC2,由勾股定理逆定理得,△PCD是直角三角形,∴∠ADC=150°,S四边形APCD=S△APD+S△PCD=×3×(3×)+×3×4=+6,过点C作CE⊥AD交AD的延长线于E,则∠CDE=180°﹣∠ADC=180°﹣150°=30°,∴CE=CD=×4=2,=AD•CE=×3×2=3,∴S△ACD=S四边形APCD﹣S△ACD=+6﹣3=+3.∴S△ACP故答案为:+3.8.解:连接PP′,由旋转可知,△PAC≌△P′AB,∴PA=P′A,∠P′AB=∠PAC,∴∠P′AP=∠BAC=60°,∴△APP′为等边三角形,∴PP′=AP=AP′=6;∵PP′2+BP2=BP′2,∴△BPP′为直角三角形,且∠BPP′=90°,∴∠APB=90°+60°=150°.故答案为:150°.9.解:连接PQ,由题意可知△ABP≌△CBQ 则QB=PB=4,PA=QC=3,∠ABP=∠CBQ,∵△ABC是等边三角形,∴∠ABC=∠ABP+∠PBC=60°,∴∠PBQ=∠CBQ+∠PBC=60°,∴△BPQ为等边三角形,∴PQ=PB=BQ=4,又∵PQ=4,PC=5,QC=3,∴PQ2+QC2=PC2,∴∠PQC=90°,∵△BPQ为等边三角形,∴∠BQP=60°,∴∠BQC=∠BQP+∠PQC=150°∴∠APB=∠BQC=150°10.解:连接PQ,如图,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=AQ=3,∠PAQ=60°,∴△APQ为等边三角形,∴PQ=AP=3,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,且AC=AB,AP=AQ∴△APC≌△ABQ(SAS),∴PC=QB=5,在△BPQ中,∵PB2=42=16,PQ2=32=9,BQ2=52=25,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∠BPQ=90°,=S△BPQ+S△APQ=BP×PQ+×PQ2=6+∴S四边形APBQ故答案为:6+11.解:如图,将△BPC绕点B逆时针旋转60°得到△ABD,由旋转的性质得,BD=PB=4,AD=PC=3,∠BPC=∠ADB,所以,△BDP是等边三角形,所以,PD=PB=4,∠BDP=60°,∵AD2+DP2=32+42=25,PA2=52=25,∴AD2+DP2=PA2,∴△ADP是直角三角形,∠ADP=90°,∴∠ADB=60°+90°=150°,∴∠BPC=150°.故答案为:150°.12.解:①∵△ABC是等边三角形,∴∠ABC=60°,∵△BQC≌△BPA,∴∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,∴△BPQ是等边三角形,所以①正确;②PQ=PB=4,PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,∴△PCQ是直角三角形,所以②正确;③∵△BPQ是等边三角形,∴∠PQB=∠BPQ=60°,∴∠APB=∠BQC=∠BQP+∠PQC=60°+90°=150°,所以③正确;④∠APC=360°﹣150°﹣60°﹣∠QPC=150°﹣∠QPC,∵∠PQC=90°,PC≠2QC,∴∠QPC≠30°,∴∠APC≠120°.所以④错误.所以正确的有①②③.13.解:如图,延长PC′到P′使C′P′=PC′,连AP′,∵AC′=BC′,∠AC′P′=∠BC′P,C′P′=PC′,∴△AC′P′≌△BC′P,则在△PAP′中:PP′=CP=5,AP′=PB=4,而AP=3,∴AP′2+AP2=PP′2,∴△APP′是直角三角形,∴PA⊥AP′,∴AC′=0.5PP′=2.5,∴AB=5,∴△PAB是直角三角形,∴AP⊥BP,=0.5×3×4=6,∴S△P AB∴S ABC=3S△P AB=18.14.解:(1)将△APC绕点A逆时针旋转60°得到△P1AC1,如图所示,(2)∵△AP1C1是由△APC旋转所得,∴△AP1C1≌△APC,∴P1C1=PC=5,AP=AP1=3,∠PAP1=60°,∴△APP1是等边三角形,∴PP1=AP=3,∠APP1=60°,∵PB=4,P1B=5,PP1=3,∴PB2+PP12=P1B2,∴∠P1PB=90°∴∠APB=∠BPP1﹣∠APP1=30°.15.解:(1)连接PP′,由题意可知BP′=PC=10,AP′=AP,∠PAC=∠P′AB,而∠PAC+∠BAP=60°,所以∠PAP′=60度.故△APP′为等边三角形,所以PP′=AP=AP′=6;(2)利用勾股定理的逆定理可知:PP′2+BP2=BP′2,所以△BPP′为直角三角形,且∠BPP′=90°可求∠APB=90°+60°=150°.16.解:(1)如图,△AP1B为所作;(2)连接PP1,如图,△AP1P为等边三角形.理由如下:∵△APC绕点A顺时针旋转60°后的△AP1B,∴AP1=AP,∠PAP1=60°,∴△AP1P为等边三角形;(3)△BP1P为直角三角形.理由如下:∵△APC绕点A顺时针旋转60°后的△AP1B,∴BP1=PC=5,∵△AP1P为等边三角形,∴PP1=AP=3,∵PP12+PB2=BP12,∴△BP1P为直角三角形,∠BPP1=90°;(3)∵△AP1P为等边三角形,∴∠APP1=60°,而∠BPP1=90°;∴∠AP1B=90°+60°=150°,∵△APC绕点A顺时针旋转60°后的△AP1B,∴∠BPC=∠AP1B=150°.故答案为150°.17.解:(1)∵△PAB绕点B顺时针旋转90°得到的△P′CB,∴BP=BP′=3,P′C=PA=,∠PBP′=90°,∠BP′C=∠APB=135°,∴△BPP′为等腰直角三角形,∴∠BP′P=45°,PP′=PB=3,∴∠PP′C=135°﹣45°=90°,在Rt△PP′C中,由勾股定理得:PC===2,过点A作AE⊥BP交BP的延长线于E,如图1所示:∵∠APB=135°,∴∠APE=180°﹣135°=45°,∴△AEP是等腰直角三角形,∴AE=PE=PA=×=1,∴BE=PB+PE=3+1=4,在Rt△AEB中,由勾股定理得:AB===,故答案为:2,;(2)∠APB的度数为150°,理由如下:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,将△BPC绕点B逆时针旋转60°,得到△BP′A,连接PP′,如图2所示:则△BPP′是等边三角形,∴PP′=BP=4,∠BPP′=60°,∵AP=3,AP′=PC=5,∴P'P2+AP2=AP'2,∴△APP′为直角三角形,∴∠APP′=90°,∴∠APB=∠APP′+∠BPP′=90°+60°=150°;(3)∵∠ABC=∠ACB=∠ADC=45°,∴△BAC是等腰直角三角形,∴∠BAC=90°,AB=AC,将△ABD绕点A顺时针旋转90°,得到△ACK,连接DK,如图3所示:由旋转的性质得:AK=AD=3,CK=BD,∠KAD=90°,∴△DAK是等腰直角三角形,∴DK=AD=3,∠ADK=45°,∴∠CDK=∠ADC+∠ADK=45°+45°=90°,∴△CDK是直角三角形,∴CK===,∴BD=,故答案为:.18.解:(1)勾股数:3,4,5;5,12,13,7,24,25;6,8,10;故答案为:3,4,5;5,12,13,7,24,25;6,8,10;(2)如图1,将△ABP绕顶点A逆时针旋转60°到△ACP′处,则△ACP′≌△ABP,∵三角形ABC是等边三角形,∴AB=AC,∠BAC=60°,∴PA=P′A=3,PB=P′C=4,∠BAP=∠CAP′,∴∠P′AP=∠PAC+∠CAP′=∠PAC+∠BAP=∠BAC=60°,∴△PAP′是等边三角形,∴PP′=P′A=3,在△PP′C中,PP'2+P′C2=9+16=25=PC2,∴△PP′C是直角三角形,∴∠PP′C=90°,∴∠APB=∠AP′C=60°+90°=150°.故答案为150°.(3)如图2中,将△ABE绕顶点A逆时针旋转90°到△ACE′处,则△ACE′≌△ABE,∴AE=AE′,BE=CE′,∠E′AC=∠BAE,∵∠BAC=90°,∠EAF=45°,∴∠BAE+∠CAF=45°,∠FAE′=∠E′AC+∠FAC=∠BAE+∠FAC=45°=∠EAF,在△AEF和△AE′F中,,∴△AEF≌△AE′F(SAS),∴FE=FE′,∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∴∠E′CA=∠B=45°,∴∠E′CF=45°+45°=90°,在Rt△E′FC中,E′C2+FC2=E′F2,∴EF2=BE2+CF2=m2+n2,∴EF=.19.解:(1)如图1,将△APC绕点A逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形.∵PP′=PA=3,PB=4,P′B=PC=5,∴P′P2+PB2=P′B2.∴△BPP′为直角三角形.∴∠APB的度数为90°+60°=150°.故答案为:直角;150°;(2)2PA2+PD2=PB2.理由如下:如图2,把△ADP绕点A顺时针旋转90°得到△ABP′,连接PP′.则P′B=PD,P′A=PA,∠PAP′=90°,∴△APP′是等腰直角三角形,∴PP′2=PA2+P′A2=2PA2,∠PP′A=45°,∵∠APD=135°,∴∠AP′B=∠APD=135°,∴∠PP′B=135°﹣45°=90°,在Rt△PP′B中,由勾股定理得,PP′2+P′B2=PB2,∴2PA2+PD2=PB2.20.解:(1)如图2,作∠PAD=60°使AD=AP,连接PD,CD,则△PAD是等边三角形.∴PD=AD=AP=3,∠ADP=∠PAD=60°∵△ABC是等边三角形∴AC=AB,∠BAC=60°,∴∠BAP=∠CAD,∴△ABP≌△ACD(SAS)∴BP=CD=4,∠APB=∠ADC∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2=PC2∴∠PDC=90°∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°故答案为:PD,∠CAD,∠APB,90.(2)解:∵∠ABC=90°,BC=AB,∴把△PBC绕B点逆时针旋转90°得到△DBA,如图,∴AD=PC=3,BD=BP=2,∵∠PBD=90°∴DP=PB=2,∠DPB=45°,在△APD中,AD=3,PD=2,PA=1,∵12+(2)2=32,∴AP2+PD2=BD2,∴△APD为直角三角形,∴∠APD=90°,∴∠APB=∠APD+∠DPB=90°+45°=135°.(3)解:如图4中,将△ABP绕着点B逆时针旋转60°,得到△DBE,连接EP,CD,∴△ABP≌△DBE∴∠ABP=∠DBE,BD=AB=4,∠PBE=60°,BE=PE,AP=DE,∴△BPE是等边三角形∴EP=BP∴AP+BP+PC=PC+EP+DE∴当点D,点E,点P,点C共线时,PA+PB+PC有最小值CD∵∠ABC=30°=∠ABP+∠PBC∴∠DBE+∠PBC=30°∴∠DBC=90°∴CD===,故答案为.21.解:(1)如图2,作∠PAD=60°使AD=AP,连接PD,CD,则△PAD是等边三角形.∴PD=AD=AP=3,∠ADP=∠PAD=60°,∵△ABC是等边三角形,∴AC=AB,∠BAC=60°,∴∠BAP=∠CAD,∴△ABP≌△ACD(SAS),∴BP=CD=4,∠APB=∠ADC∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2=PC2∴∠PDC=90°∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°故答案为:PD,∠CAD,∠APB,90.(2)解:∵∠ABC=90°,BC=AB,∴把△PAC绕A点逆时针旋转90°得到△DBA,如图,∴BD=PC=3,AD=AP=2,∠PAD=90°,∴△PAD为等腰直角三角形,∴DP=PA=2,∠DPA=45°,在△BPD中,PB=2,PD=2,DB=3,∵12+(2)2=32,∴AP2+PD2=BD2,∴△BPD为直角三角形,∴∠BPD=90°,∴∠APB=∠APD+∠DPB=90°+45°=135°.22.解:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,=S△P'CB,∴S△P ABS阴影=S扇形BAC﹣S扇形BPP′=(a2﹣b2);(2)如图2,连接PP′.∵将△PAB绕B点顺时针旋转90°,与△P′CB重合,∴△PAB≌△P′CB,∠PBP′=90°,∴BP=BP′,∠APB=∠CP′B,AP=CP′=2,∴△PBP′是等腰直角三角形,∴PP′=PB=4,∠BP′P=45°.在△CPP′中,∵PP′=4,CP′=2,PC=6,∴PP′2+CP′2=PC2,∴△CP′P是直角三角形,∠CP′P=90°,∴∠CP′B=∠BP′P+∠CP′P=45°+90°=135°;(3)如图3①,将△PAB绕A点逆时针旋转60°得到△P1AC,连接PP1,∴△APB≌△AP1C,∴AP=AP1,∠PAP1=60°,CP1=BP=4,∴△PAP1是等边三角形,∴PP1=AP=3,∵CP=5,CP1=4,PP1=3,∴PP12+CP12=CP2,∴△CP1P是直角三角形,∠CP1P=90°,=×3×=,S△PP1C=×3×4=6,∴S△APP1=S△APP1+S△PP1C=+6;∴S四边形APCP1∵△APB≌△AP1C,+S△APC=S四边形APCP1=+6;∴S△ABP如图3②,同理可求:△ABP和△BPC的面积的和=×4×+×3×4=4+6,△APC和△BPC的面积的和=×5×+×3×4=+6,∴△ABC的面积=(+6+4+6++6)=+9,∴△APC的面积=△ABC的面积﹣△APB与△BPC的面积的和=(+9)﹣(4+6)=+3.故答案为+3.23.解:(1)如图2,把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,∠APB=∠AP′C,∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;故答案为:150°.(2)如图3,把△APB绕点A逆时针旋转90°得到△ADP′,由旋转的性质,P′A=PA=2,P′D=PB=1,∠PAP′=90°,∴△APP′是等腰直角三角形,∴PP′=PA=4,∠AP′P=45°,∵PP′2+P′D2=42+12=17,PD2=()2=17,∴PP′2+P′D2=PD2,∴∠PP′D=90°,∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,故∠APB=∠AP′D=135°,(3)∵∠APB+∠APP′=135°+45°=180°,∴点P′、P、B三点共线,过点A作AE⊥PP′于E,则AE=PE=PP′=×4=2,∴BE=PE+PB=2+1=3,在Rt△ABE中,AB===.24.解:(1)如图1,由题意得:∠PCE=90°PC=EC=2;BE=PA=3;由勾股定理得:PE2=22+22=8;∵PB2=1,BE2=9,∴BE2=PE2+PB2,∴∠BPE=90°,∵∠CPE=45°,∴∠BPC=135°.(2)如图2,将△ABP绕点A逆时针旋转60°到△ACQ的位置,连接PQ;则AP=AQ,∠PAQ=60°,QC=PB=4;∴△APQ为等边三角形,∠AQP=60°,PQ=PA=3;∵PQ2+CQ2=32+42=25,PC2=52=25,∴PQ2+CQ2=PC2,∴∠PQC=90°,∠AQC=60°+90°=150°,∴∠APB=∠AQC=150°.25.解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;故答案为:150°;90°;如图3,在y轴上截取OD=2,作CF⊥y轴于F,AE⊥x轴于E,连接AD和CD,∵点A的坐标为(﹣,1),∴tan∠AOE=,∴AO=OD=2,∠AOE=30°,∴∠AOD=60°.∴△AOD是等边三角形,又∵△ABC是等边三角形,∴AB=AC,∠CAB=∠OAD=60°,∴∠CAD=∠OAB,∴△ADC≌△AOB.∴∠ADC=∠AOB=150°,又∵∠ADF=120°,∴∠CDF=30°.∴DF=CF.∵C(x,y)且点C在第一象限内,∴y﹣2=x,∴y=x+2(x>0).。
费马点与中考试题

识别“费马点”思路快突破解题的成功取决于多种因素,其中最基本的有:解题的知识因素、解题的能力因素、解题的经验因素和解题的非智力因素,这也就是我们常说的解题基本功.可见解题的知识因素是第一位的,足以说明它的重要性.下面我们从解题的知识因素上关注两道中考题的思路获取.例1 (2010湖南永州)探究问题:(1)阅读理解:①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时P A+PB+PC的值为△ABC的费马距离.②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA=AC·BD.此为托勒密定理.(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C),已知点P为等边△ABC外接圆的»BC上任意一点.求证:PB+PC=P A.②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在»BC上任取一点P′,连结P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+;第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.思路探求:(2)知识迁移①问,只需按照题意套用托勒密定理,再利用等边三角形三边相等,将所得等式两边都除以等边三角形的边长,即可获证. ②问,借用①问中对于费马点的定义结论容易获解. (3)知识应用,模仿(2)的图形,先构造正三角形,由(2)中的结论,再计算AD即为最小距离.简解:(2)①证明:由托勒密定理可知PB·AC+PC·AB=P A·BC∵△ABC是等边三角形∴AB=AC=BC∴PB+PC=P A②P′D AD(3)解:如图,以BC为边长在△ABC的外部作等边△BCD,连接AD,则知线段AD的长即为△ABC的费马距离.∵△BCD 为等边三角形,BC =4,∴∠CBD =60°,BD =BC =4.∵∠ABC =30°, ∴∠ABD =90°.在Rt △ABD 中,∵AB =3,BD =4∴AD 22AB BD +2234+=5(km )∴从水井P 到三村庄A 、B 、C 所铺设的输水管总长度的最小值为5km.点评:此题集阅读理解、创新探究、实际应用于一体,题型新颖别致,综合考查自主探究、创新应用能力,是一道不可多得的好题.命题者设置成递进式问题,后续问题的思路获取、求解都靠对上一结论的解读、利用,这也是近年“课题学习”考查的一大风向,值得重视.如果说例1只是以“费马点”为课题学习的素材进行了考查,为了帮助同学们更好的理解三角形的费马点,我们补充几点:(1)平面内一点P 到△ABC 三顶点的之和为PA+PB+PC ,当点P 为费马点时,距离之和最小.特殊三角形中:(2)三内角皆小于120°的三角形,分别以 AB ,BC ,CA ,为边,向三角形外侧做正三角形ABC 1,ACB 1,BCA 1,然后连接AA 1,BB 1,CC 1,则三线交于一点P ,则点P 就是所求的费马点.(3)若三角形有一内角大于或等于120度,则此钝角的顶点就是所求.(4)当△ABC 为等边三角形时,此时外心与费马点重合.可见,永州卷这道考题对于费马点只是以课题学习为问题载体,考得比较直截了当;巧合的是2010年福建宁德一道考题对这个知识考查显得隐蔽了,请看:例2 (2010福建宁德)如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .⑴ 求证:△AMB ≌△ENB ;⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;⑶ 当AM +BM +CM 的最小值为13+时,求正方形的边长.思路探求:⑴略;⑵ ①要使AM +CM 的值最小,根据“两点之间线段最短”,需设法将AM +CM 转化为一条线段,连接AC 即可获取;②要使AM +BM +CM 的值最小,由例3积累的知识经验:点M 应该是△ABC 的费马点.由例3中(2)的求解示范,只要连接CE 即可获得CE 为AM +BM +CM 的值最小.这样获到M 点至少帮助我们在思路获取上提高了效率.理由说明供助于第(1)问的全等获得BM=BN ,将三条线段转化到CE 上去,问题化为两点之间线段最短.⑶根据题意,添加辅助线,构造直角三角形,过E 点作EF ⊥BC 交CB 的延长线于F . 设正方形的边长为x ,则BF =23x ,EF =2x .在Rt △EFC 中,由勾股定理得(2x )2+(23x +x )2=()213+,解得即可.简答:⑴略;⑵①当M 点落在BD 的中点时,AM +CM 的值最小.②如图,连接CE ,当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小.理由如下:连接MN.由⑴知,△AMB ≌△ENB∴AM =EN .∵∠MBN =60°,MB =NB ,∴△BMN 是等边三角形.∴BM =MN .∴AM +BM +CM =EN +MN +CM .根据“两点之间线段最短”,得EN +MN +CM =EC 最短∴当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小,即等于EC 的长.⑶过E 点作EF ⊥BC 交CB 的延长线于F ,∴∠EBF =90°-60°=30°.设正方形的边长为x ,则BF =23x ,EF =2x . 在Rt △EFC 中,∵EF 2+FC 2=EC 2,∴(2x )2+(23x +x )2=()213+. 解得,x =2(舍去负值).∴正方形的边长为2.点评:本题中“AM +BM +CM 的值最小”如果没有费马点的知识积累,会在探究点M 的位置A DB C F A D B C上花费不少时间,这对紧张的考试来说,势必造成“隐性失分”.。
费马点与中考试题

费马点与中考试题文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]识别“费马点”思路快突破解题的成功取决于多种因素,其中最基本的有:解题的知识因素、解题的能力因素、解题的经验因素和解题的非智力因素,这也就是我们常说的解题基本功.可见解题的知识因素是第一位的,足以说明它的重要性.下面我们从解题的知识因素上关注两道中考题的思路获取.例1 (2010湖南永州)探究问题:(1)阅读理解:①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA=AC·BD.此为托勒密定理.(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C),已知点P为等边△ABC外接圆的BC上任意一点.求证:PB+PC =PA.②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在BC上任取一点P′,连结P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+;第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.思路探求:(2)知识迁移①问,只需按照题意套用托勒密定理,再利用等边三角形三边相等,将所得等式两边都除以等边三角形的边长,即可获证.②问,借用①问中对于费马点的定义结论容易获解. (3)知识应用,模仿(2)的图形,先构造正三角形,由(2)中的结论,再计算AD即为最小距离.简解:(2)①证明:由托勒密定理可知PB·AC+PC·AB=PA·BC∵△ABC是等边三角形∴ AB=AC=BC∴PB+PC=PA②P′D AD(3)解:如图,以BC为边长在△ABC的外部作等边△BCD,连接AD,则知线段AD的长即为△ABC的费马距离.∵△BCD为等边三角形,BC=4,∴∠CBD=60°,BD=BC=4.∵∠ABC=30°,∴∠ABD=90°.在Rt△ABD中,∵AB=3,BD=4∴AD=5(km)∴从水井P到三村庄A、B、C所铺设的输水管总长度的最小值为5km.点评:此题集阅读理解、创新探究、实际应用于一体,题型新颖别致,综合考查自主探究、创新应用能力,是一道不可多得的好题.命题者设置成递进式问题,后续问题的思路获取、求解都靠对上一结论的解读、利用,这也是近年“课题学习”考查的一大风向,值得重视.如果说例1只是以“费马点”为课题学习的素材进行了考查,为了帮助同学们更好的理解三角形的费马点,我们补充几点:(1)平面内一点P到△ABC三顶点的之和为PA+PB+PC,当点P为费马点时,距离之和最小.特殊三角形中:(2)三内角皆小于120°的三角形,分别以 AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点.(3)若三角形有一内角大于或等于120度,则此钝角的顶点就是所求.(4)当△ABC为等边三角形时,此时外心与费马点重合.可见,永州卷这道考题对于费马点只是以课题学习为问题载体,考得比较直截了当;巧合的是2010年福建宁德一道考题对这个知识考查显得隐蔽了,请看:例2 (2010福建宁德)如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .⑴ 求证:△AMB ≌△ENB ;⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; ⑶ 当AM +BM +CM 的最小值为13 时,求正方形的边长.思路探求:⑴略;⑵ ①要使AM +CM 的值最小,根据“两点之间线段最短”,需设法将AM +CM 转化为一条线段,连接AC 即可获取;②要使AM +BM +CM 的值最小,由例3积累的知识经验:点M 应该是△ABC 的费马点.由例3中(2)的求解示范,只要连接CE 即可获得CE 为AM +BM +CM 的值最小.这样获到M 点至少帮助我们在思路获取上提高了效率.理由说明供助于第(1)问的全等获得BM=BN ,将三条线段转化到CE 上去,问题化为两点之间线段最短.B⑶根据题意,添加辅助线,构造直角三角形,过E 点作EF ⊥BC 交CB 的延长线于F . 设正方形的边长为x ,则BF =23x ,EF =2x .在Rt △EFC 中,由勾股定理得(2x )2+(23x +x )2=()213+,解得即可.简答:⑴略;⑵①当M 点落在BD 的中点时,AM +CM 的值最小. ②如图,连接CE ,当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小.理由如下:连接MN.由⑴知,△AMB∴AM =EN .∵∠MBN =60°,MB =NB , ∴△BMN 是等边三角形. ∴BM =MN .∴AM +BM +CM =EN +MN +CM .根据“两点之间线段最短”,得EN +MN +CM =EC 最短∴当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小,即等于EC 的长.⑶过E 点作EF ⊥BC 交CB 的延长线于F ,∴∠EBF =90°-60°=30°. 设正方形的边长为x ,则BF =23x ,EF =2x .在Rt △EFC 中,∵EF 2+FC 2=EC 2,∴(2x )2+(23x +x )2=()213+.解得,x =2(舍去负值).∴正方形的边长为2.FB点评:本题中“AM+BM+CM的值最小”如果没有费马点的知识积累,会在探究点M的位置上花费不少时间,这对紧张的考试来说,势必造成“隐性失分”.。
费马点与中考试题

“费马点”与中考试题费尔马,法国业余数学家,拥有业余数学之王的称号,他是解析几何的发明者之一.费马点——就是到三角形的三个顶点的距离之和最小的点.费尔马的结论:对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点.△三个顶点的距离之和P A+PB+PC最小?这就下面简单说明如何找点P使它到ABC是所谓的费尔马问题.图1解析:如图1,把△APC绕A点逆时针旋转60°得到△AP′C′,连接PP′.则△APP′为等边三角形,AP= PP′,P′C′=PC,所以P A+PB+PC= PP′+ PB+ P′C′.点C′可看成是线段AC绕A点逆时针旋转60°而得的定点,BC′为定长,所以当B、P、P′、C′四点在同一直线上时,P A+PB+PC最小.这时∠BP A=180°-∠APP′=180°-60°=120°,∠APC=∠A P′C′=180°-∠AP′P=180°-60°=120°,∠BPC=360°-∠BP A-∠APC=360°-120°-120°=120°△的每一个内角都小于120°时,所求的点P对三角形每边的张角都是因此,当ABC120°,可在AB、BC边上分别作120°的弓形弧,两弧在三角形内的交点就是P点;当有一内角大于或等于120°时,所求的P点就是钝角的顶点.费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.本文列举近年“费马点”走进中考试卷的实例,供同学们学习参考.例1 (2008年广东中考题)已知正方形ABCD内一动点E到A、B、C三点的距离26图2 图3 分析:连接AC ,发现点E 到A 、B 、C 三点的距离之和就是到ABC △三个顶点的距离之和,这实际是费尔马问题的变形,只是背景不同.解 如图2,连接AC ,把△AEC 绕点C 顺时针旋转60°,得到△GFC ,连接EF 、BG 、A G ,可知△EFC 、△AGC 都是等边三角形,则EF =CE .又FG =AE ,∴AE +BE +CE = BE +EF +FG (图4).∵ 点B 、点G 为定点(G 为点A 绕C 点顺时针旋转60°所得).∴ 线段BG 即为点E 到A 、B 、C 三点的距离之和的最小值,此时E 、F 两点都在BG 上(图3).设正方形的边长为a ,那么BO =CO 2,GC 2a , GO 6. ∴ BG=BO +GO =22+62a . ∵ 点E 到A 、B 、C 26∴ 22a 6a 26a =2. 注 本题旋转△AEB 、△BEC 也都可以,但都必须绕着定点旋转,读者不妨一试. 例2 (2009年北京中考题) 如图4,在平面直角坐标系xOy 中,△ABC 三个顶点的坐标分别为()6,0A -,()6,0B ,(0,43C ,延长AC 到点D , 使CD =12AC ,过点D 作DE ∥AB 交BC 的延长线于点E .(1)求D 点的坐标;(2)作C 点关于直线DE 的对称点F ,分别连结DF 、EF ,若过B 点的直线y kx b =+将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;(3)设G 为y 轴上一点,点P 从直线y kx b =+与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短.分析和解:(1)D 点的坐标(3,(过程略).(2) 直线BM的解析式为y =+.图4(3)如何确定点G 的位置是本题的难点也是关健所在.设Q 点为y 轴上一点,P 在y 轴上运动的速度为v ,则P 沿M →Q →A 运动的时间为2MQ AQ v v +,使P 点到达A 点所用的时间最短,就是12MQ +AQ 最小,或MQ +2AQ 最小. 解法1 ∵ BQ =AQ , ∴MQ +2AQ 最小就是MQ +AQ +BQ 最小,就是在直线MO 上找点G 使他到A 、B 、M 三点的距离和最小.至此,再次发现这又是一个费尔马问题的变形,注意到题目中等边三角形的信息,考虑作旋转变换.把△MQB 绕点B 顺时针旋转60°,得到△M ′Q ′B ,连接QQ ′、MM ′(图5),可知△QQ ′B 、△MM ′B 都是等边三角形,则QQ ′=BQ .又M ′Q ′=MQ ,∴MQ +AQ +BQ = M ′Q ′+ QQ ′+AQ .∵点A 、M ′为定点,所以当Q 、Q ′两点在线段A M ′上时,MQ +AQ +BQ 最小.由条件可证明Q ′点总在AM ′上,所以A M ′与OM 的交点就是所要的G 点(图6).可证OG =12MG .图5 图6 图7解法2 考虑12MQ+AQ最小,过Q作BM的垂线交BM于K,由OB=6,OM=63,可得∠BMO=30°,所以QK=12 MQ.要使12MQ+AQ最小,只需使AQ+QK最小,根据“垂线段最短”,可推出当点A、Q、K在一条直线上时,AQ+QK最小,并且此时的QK垂直于BM,此时的点Q即为所求的点G(图7).过A点作AH⊥BM于H,则AH与y轴的交点为所求的G点.由OB=6,OM=63,可得∠OBM=60°,∴∠BAH=30°在Rt△OAG中,OG=AO·tan∠BAH=23∴G点的坐标为(0,23)(G点为线段OC的中点).例3 (2009年湖州中考题)若点P 为△ABC所在平面上一点,且∠APB=∠BPC=∠CP A=120°, 则点P叫做△ABC的费马点.(1)若P为锐角△ABC的费马点,且∠ABC=60°,P A=3,PC=4, 则PB的值为;(2)如图8,在锐角△ABC的外侧作等边△ACB′,连结BB′.求证:BB′过△ABC的费马点P,且BB′=P A+PB+PC.图8解:(1)利用相似三角形可求PB的值为3(2)设点P为锐角△ABC的费马点,即∠APB=∠BPC=∠CP A=120°如图8,把△ACP绕点C顺时针旋转60°到△B′CE,连结PE,则△EPC为正三角形.∵∠B′EC = ∠APC =120°,∠PEC=60°∴∠B′EC+∠PEC=180°即P、E、B′三点在同一直线上∵∠BPC=120°,∠CPE=60°,∴∠BPC +∠CPE =180°,即B、P、E 三点在同一直线上∴B、P、E、B′四点在同一直线上,即BB′过△ABC的费马点P.又PE=PC,B′E= P A,∴BB′=E B′+PB+PE=P A+PB+PC.注通过旋转变换,可以改变线段的位置,优化图形的结构.在使用这一方法解题时需注意图形旋转变换的基础,即存在相等的线段,一般地,当题目出现等腰三角形(等边三角形)、正方形条件时,可将图形作旋转60°或90°的几何变换,将不规则图形变为规则图形,或将分散的条件集中在一起,以便挖掘隐含条件,使问题得以解决.费尔马问题是个有趣的数学问题,这些问题常常可通过旋转变换来解决.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
识别“费马点”思路快突破
例1 探究问题:
(1)阅读理解:
①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,
则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.
②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA=AC·BD.此为托勒密定理
.
(2)知识迁移:
①请你利用托勒密定理,解决如下问题:
如图(C),已知点P为等边△ABC外接圆的上任意一点.求证:PB+PC=PA.
A BC
②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:
第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;
第二步:在上任取一点P′,连结P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)
A BC
=P′A+;
第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离
.
(3)知识应用:
2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.
已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.
简解:(2)①证明:由托勒密定理可知PB ·AC +PC ·AB =PA ·BC ∵△ABC 是等边三角形 ∴ AB =AC =BC ∴PB +PC =PA ②P ′D AD
(3)解:如图,以BC 为边长在△ABC 的外部作等边△BCD ,连接AD ,则知线段AD 的长即为△ABC 的费马距离.
∵△BCD 为等边三角形,BC =4,
∴∠CBD =60°,BD =BC =4. ∵∠ABC =30°, ∴∠ABD =90°. 在Rt △ABD 中,∵AB =3,BD =4
∴AD =5(km )
∴从水井P 到三村庄A 、B 、C 所铺设的输水管总长度的最小值为5km.
点评:此题集阅读理解、创新探究、实际应用于一体,题型新颖别致,综合考查自主探究、创新应用能力,是一道不可多得的好题.命题者设置成递进式问题,后续问题的思路获取、求解都靠对上一结论的解读、利用,这也是近年“课题学习”考查的一大风向,值得重视.
如果说例1只是以“费马点”为课题学习的素材进行了考查,为了帮助同学们更好的理解三角形的费马点,我们补充几点:
(1)平面内一点P 到△ABC 三顶点的之和为PA+PB+PC ,当点P 为费马点时,距离之和最小.
特殊三角形中:
(2)三内角皆小于120°的三角形,分别以 AB ,BC ,CA ,为边,向三角形外侧做正三角形ABC 1,ACB 1,BCA 1,然后连接AA 1,BB 1,CC 1,则三线交于一点P ,则点P 就是所求
的费马点.
(3)若三角形有一内角大于或等于120度,则此钝角的顶点就是所求. (4)当△ABC 为等边三角形时,此时外心与费马点重合.
可见,永州卷这道考题对于费马点只是以课题学习为问题载体,考得比较直截了当;巧合的是
2010年福建宁德一道考题对这个知识考查显得隐蔽了,请看:
例2 如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .
⑴ 求证:△AMB ≌△ENB ;
⑵ ①当M 点在何处时,AM +CM 的值最小;
②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;⑶ 当AM +BM +CM 的最小值为时,求正方形的边长.
13
A
D
B
C
思路探求:⑴略;
⑵ ①要使AM +CM 的值最小,根据“两点之间线段最短”,需设法将AM +CM 转化为一条线段,连接AC 即可获取;
②要使AM +BM +CM 的值最小,由例3积累的知识经验:点M 应该是△ABC 的费马点.由例3中(2)的求解示范,只要连接CE 即可获得CE 为AM +BM +CM 的值最小.这样获到M 点至少帮助我们在思路获取上提高了效率.理由说明供助于第(1)问的全等获得BM=BN ,将三条线段转化到CE 上去,问题化为两点之间线段最短.
⑶根据题意,添加辅助线,构造直角三角形,过E 点作EF ⊥BC 交CB 的延长线于F . 设正方形
的边长为x ,则BF =
x ,EF =.在Rt △EFC 中,由勾股定理得()2+(x +x )2=
232
x 2x 23
,解得即可.
()2
13+简答:⑴略;
⑵①当M 点落在BD 的中点时,AM +CM 的值最小.
②如图,连接CE ,当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小.
理由如下:连接MN.由⑴知,△AMB ≌△ENB ,∴AM =EN .
∵∠MBN =60°,MB =NB ,∴△BMN 是等边三角形.∴BM =MN .
∴AM +BM +CM =EN +MN +CM .
根据“两点之间线段最短”,得EN +MN +CM =EC 最短
∴当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小,即等于EC 的长. ⑶过E 点作EF ⊥BC 交CB 的延长线于F ,∴∠EBF =90°-60°=30°.设正方形的边长为x ,则BF =
x ,EF =.23
2
x 在Rt △EFC 中,∵EF 2+FC 2=EC 2,∴(
)2+(x +x )2=.
2x 2
3
()2
13+解得,x =(舍去负值).∴正方形的边长为.
22点评:本题中“AM +BM +CM 的值最小”如果没有费马点的知识积累,会在探究点M 的位置上花费不少时间,这对紧张的考试来说,势必造成“隐性失分”.
F A D B
C。