JSCAST铸造成形工艺分析

铸造成型工艺

名词解释 1.材料成形技术:利用生产工具对各种原材料进行增值加工或处理,材料制备成具一定结构形式和形状工件的方法 2.液态成型:将液态金属浇注到与零件形状相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法 3.逐层凝固:纯金属和共晶成分的合金在凝固中不存在固液两相并存的凝固区,所以固液分界面清晰可见,一直向铸件中心移动(铸铁) 4.糊状凝固:铸件在结晶过程中,当结晶温度范围很宽且铸件界面上的温度梯度较小,则不存在固相层,固液两相共存的凝固区贯穿整个区域(铸钢) 5.同时凝固原则:铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性 6.顺序凝固原则:在铸件上可能出现缩孔的厚大部位通过安放冒口等工艺措施,使铸件远离冒口的部位先凝固,然后是靠近冒口的部位凝固,最后才是冒口本身凝固。 7.均衡凝固原则:利用铸铁件石墨的共晶膨胀消除缩松的工艺方式 8.砂型铸造:以型砂(SiO2)为铸型、在重力下充型的液态成形工艺方法 9.金属型铸造:以金属为铸型、在重力下的液态成形方法。 10.熔模铸:以蜡为模型,以若干层耐火材料为铸型材料,成形铸型后,熔去蜡模形成型腔,最终在重力下成形的液态成形方法 11.压力铸:把液态或半液态的金属在高压作用下,快速充填铸型,并在高压下凝固而获得铸型的方法 12.低压铸造:是液态金属在较小的压力(20—80Kpa)作用下,使金属液由下而上对铸型进项充型,并在此压力下凝固成型的铸造工艺 13.反重力铸造:液态金属在与重力相反方向力的作用下完成充型,凝固和补缩的铸造成型 14.离心铸造:将液态金属浇注到高速旋转的铸型中,使金属在离心力的作用下充填型腔并凝固成型的方法 15.消失模铸造:用泡沫塑料制成带有浇冒系统的模型,覆上涂料,用干砂造型,无需取模,直接浇注的铸件方法 16.浇注系统:液态金属流入型腔的通道的总称,通常由浇口杯,直浇道,直浇道窝,横浇道和内浇道组成 17.阻流界面:在浇注系统各组元中,截面积最小的部分称为阻流截面 18.集渣包:横浇道上被局部加大加高的部分 19.浇口比:直浇道,横浇道,内浇道截面积之比 20.热节:在壁的相互连接处由于壁厚增加,凝固速度最慢,最容易形成收缩类缺陷 分型面:两半铸型相互接触的表面。分为平直和曲面。作用:便于造型、下芯和起模具。 21.砂芯:为了起模方便并形成铸件的内腔、孔和铸件外形不能出砂的部位,所采用的砂块 22.芯头:伸出铸件以外不与金属液接触的砂芯部分芯头种类:垂直芯头、水平芯头、特殊结构的芯头 23.冒口:铸型内用于储存金属液的空腔,在铸件凝固过程中补给金属,起到防止缩孔,缩松,排气和集渣的作用 冒口=冒口区+轴线缩松区+末端区 24.冒口的补缩距离:冒口补缩后形成的致密冒口区和致密末端区之和 25.补贴:为实现顺序凝固和增强补缩效果,在靠近冒口的壁厚上补加倾斜的金属块 26.均衡凝固:利用铸铁件石墨的共晶膨胀消除缩松的工艺方法 27.缩孔与缩松:液态合金在冷凝过程中,若其液态收缩和凝固收缩所缩减的容积得不到补充,则在铸件最后凝固的部位形成一些孔洞。大而集中的称为锁孔,细小而分散的称为缩松 28.收缩时间分数:铸铁件表观收缩时间与铸件凝固时间的比值 29.补缩量:铸件从浇注系统,冒口抽吸的补缩液量收缩模数:均衡凝固时均衡点的模数 30.复合材料:由有机高分子,无机非金属和金属等几类不同材料人工复合而成的新型材料。它既保留原组分的主要特征,又获得了原组分不具备的优越性能 31.机械加工余量:在铸件加工表面上流出的、准备切削去的金属厚度。 32.冒口补缩通道:末端多了一个散热面,散热快—构成一个朝向冒口而递增的温度梯度;存在平行于轴线的散热表面,形成一个朝向冒口的楔形的补缩通道 33.工艺出品率:铸件质量占铸件及浇注系统(含冒口)质量的比例 34.反重力铸造:指液态金属在与重力方向相反方向力的作用下完成充型,补缩和凝固过程的铸造成型方法 35.离心铸造:指将液态金属浇入高速旋转的铸型中,使金属在离心力的作用下充填型腔并凝固成型的方法

泵盖铸造工艺设计说明书

课程设计说明书 泵盖铸造工艺设计 院系:机械工程学院 专业:材料成型及控制工程 班级: 姓名: 学号: 指导老师: 时间:

目录 1.铸造工艺分析 (1) 1.1零件介绍 (1) 1.2零件生产方式选择 (1) 1.3技术要求分析 (1) 1.4 合金铸造性能分析 (2) 2.确定铸造工艺方案 (2) 2.1确定铸造方法 (2) 2.2确定浇注位置和分型面 (2) 2.3确定型内铸件数目 (3) 2.4不铸出孔及槽的确定 (3) 2.5机械加工余量和铸造圆角的确定 (3) 2.6起模斜度和分型负数的确定 (5) 2.7砂芯的确定 (7) 2.8铸造收缩率的确定 (7) 2.9冒口的确定 (7) 2.10浇注系统的确定 (8) 3.芯盒的设计 (9) 3.1芯盒材质和分盒方式的确定 (9) 4.总结 (9) 参考资料 (10)

1.铸造工艺分析 零件简介: 1.1零件介绍: 零件名称:泵盖 零件材料:HT200 1.2零件生产方式选择: 大批量生产,零件图如下:

1.3技术要求分析 按照国家标准,对于HT200,其抗拉强度应达到200Mpa。铸件在使用时工作条件较好,但此铸件需起隔爆作用,按照技术要求,需在粗加工后进行时效处理及相应的热处理工艺。另外,铸件清砂后,焖火铲除毛刺喷砂后喷G04-6铁红过氯乙烯底漆。除此外无特殊技术要求。 注:其中φ21H7内孔为重要加工面,不允许存在气孔、夹砂等铸造缺陷。 1.4 合金铸造性能分析 灰铸铁具有良好的铸造性能: (1)流动性。灰铸铁的熔点较低,结晶温度范围较小,在适宜的浇注温度下,具有良好的流动性,容易填充形状复杂的薄壁铸件,且不易产生气孔、浇不足、冷隔等缺陷。 (2)收缩性。灰铸铁的浇注温度较低,凝固中发生共析石墨化转变,使其线收缩小,产生的铸造应力也较小,所以铸件出现翘曲变形和开裂的倾向以及形成缩孔、缩松的倾向都较小。 (3)灰铁充型能力好,强度较高,耐磨、耐热性好,减振性良好,铸造性较好,但需人工时效。 2.确定铸造工艺方案 2.1确定铸造方法 铸件材质为HT200,,其轮廓尺寸25×φ110,属中小件,联结结构合理,符合灰铸铁铸造要求,可以进行铸造工艺设计。采用湿砂型机器造型大批量生产。 采用湿砂型机器脱箱造型,热芯盒水玻璃砂射芯机制芯。 2.2确定浇注位置和分型面 浇注位置选择原则: (1)重要加工面应朝下或呈直立状态; (2)铸件的大平面应朝下; (3)应有利于铸件的补缩; (4)应保证铸件有良好的金属液导入位置,保证铸件能充满; (5)应尽量少用或不用砂芯; (6)应使合型、浇注和补缩位置一致。

铸造过程模拟仿真

铸造过程模拟仿真 1、概述 在铸造生产中,铸件凝固过程是最重要的过程之一,大部分铸造缺陷产生于这一过程。凝固过程的数值模拟对优化铸造工艺,预测和控制铸件质量和各种铸造缺陷以及提高生产效率都非常重要。 凝固过程数值模拟可以实现下述目的: 1)预知凝固时间以便预测生产率。 2)预知开箱时间。 3)预测缩孔和缩松。 4)预知铸型的表面温度以及内部的温度分布,以便预测金属型表面熔接情况,方便金属型设计。 5)控制凝固条件[1]。 为预测铸应力,微观及宏观偏析,铸件性能等提供必要的依据和分析计算的基础数据。作为铸造工艺过程计算机数值模拟的基础,温度场模拟技术的发展历程最长,技术也最成熟。温度场模拟是建立在不稳定导热偏微分方程的基础上进行的。考虑了传热过程的热传导、对流、辐射、结晶潜热等热行为。所采用的计算方法主要有:有限差分法、有限元法、边界元法等;所采用的边界条件处理方法有N方程法、温度函数法、点热流法、综合热阻法和动态边界条件法;潜热处理方法有:温度回升法、热函法和固相率法。 自丹麦Forsound于1962年第一次采用电子计算机模拟铸件凝固过程以来,为铸造工作者科学地掌握与分析铸造工艺过程提出了新的方法与思路,在全世界范围内产生了积极的影响,许多国家的专家与学者陆续开展此项研究工作。在铸造工艺过程中,铸件凝固过程温度场的数值模拟计算相对简单,因此,各国的专家与学者们均以铸件凝固过程的温度场数值模拟为研究起点。继丹麦人之后,美国在60年代中期开始进行大型铸钢件温度场的计算机数值模拟计算研究,且模拟计算的结果与实测温度场吻合良好;进入70年代后,更多的国家加入了铸件凝固过程数值模拟的研究行列中,相继开展了有关研究与应用,理论研究与实际应用各具特色。其中有代表性的研究人员有美国芝加哥大学的R.D.Pehlke教授、佐治亚工学院的J.Berry教授、日本日立研究所的新山英辅教授、大阪大学的大中逸雄教授、德国亚探工业大学的P.Sham教授和丹麦科技大学的P.N.Hansen教授等。我国的铸件凝固过程温度场数值模拟研究始于70年代末期,沈阳铸造研究所的张毅高级工程师与大连工学院的金俊泽教授在我国率先开展了铸造工艺过程的计算机数值模拟研究工作,虽然起步较晚,但研究工作注重与生产实践密切结合,取得了较好的应用效果,形成了我国在这一研究领域的研究特色[2]。 1988年5月,在美国佛罗里达州召开的第四届铸造和焊接计算机数值模拟会议上,共有来自10个研究单位的从事铸造凝固过程计算机数值模拟技术研究的专家和学者参加了会议组织的模拟斧锤型铸件凝固过程的现场比赛。由于该铸件在几何形状上属复杂类型,模拟计算有一定的难度。从比赛结果看,绝大部分的模拟结果与实际测温结果相吻合。此次比赛得出如下结论[8]: l)铸件凝固过程的计算机模拟达到了相当的水平,如三维自动刻分、三维模拟计算、三维温度场显示等,并产生了一些软件包,如日立公司的HICASS、丹麦的Geomesh、大阪大学的SOLAM及亚琛的CASTS等。 2)模拟计算的结果都接近实测,这说明有限差分、有限元和边界元这三种计算方法对温度场计算都能满足精度要求,同时也说明了铸件凝固过程温度场计算机模拟计算技术已趋成熟。

铸造工艺课程设计课程教学改革研究

铸造工艺课程设计课程教学改革研究 结合《铸造工艺课程设计》实践教学的实际教学中存在的问题,采取及时更新工艺设计题目、增设工艺设计方案验证环节、引入任务驱动型自主学习模式、强化教师实践教学能力以及改善考核方法等一系列措施,从而有效提高学生的工程实践能力和自主学习能力,以适应铸造行业对人才的需求。《铸造工艺课程设计》作为材料成型及控制工程专业的重要实践教学环节,其教学目标是能够运用所学铸造理论及工艺设计知识比较系统地学习掌握铸造工艺及工装设计方法,使学生能够制定出比较合理的铸造工艺,并设计出结构合理的工装模具;同时通过课程设计,也使学生进一步提高设计绘图能力、查阅工艺设计资料的基本技能以及分析解决铸造工程实际问题的能力,以满足铸造行业用人需求。然而在《铸造工艺课程设计》实践教学过程中还存在一些不足之处。(1)课程设计题目陈旧且数量较少现有题目陈旧,缺乏时效性,与铸造生产实际脱节,致使学生的专业素质很难达到铸造行业的需求。图纸数量较少,难以满足1人1题,甚至需要多人共用1题或每年重复使用,这就导致存在学生之间相互抄袭或抄袭往届学生作品的现象,不利于培养学生具备独立自主从事铸造工艺设计工作的能力。(2)缺乏工艺验证环节课程设计通常只包括工艺设计、工装设计以及设计说明书的撰写等内容,而不进行实际生产验证,这就导致学生无法判断工艺设计方案的合理性及可行性。(3)教师指导不足通常1名老师指导1个班级的课程设计工作,人数在40人左右,这就导致指导教师无法详细指导每位学生。(4)考核评价机制不够全

面课程考核更侧重于图纸质量以及设计说明书的规范性,而忽略了对设计过程中学生的自主性、创新性及工程实践应用能力的考核与评价。鉴于此,以《铸造工艺课程设计》核心课程建设为契机,本文归纳总结了铸造工艺课程设计实践教学中所采取的的改革与实践方法。 1.及时更新工艺设计题目 铸造工艺课程设计题目要做到推陈出新,以激发学生的设计热情。为此建立了以企业实际在生产零件为主的课程设计零件图纸库,且图纸数量要多于专业人数,且要保证每年有10%以上的题目更新,以保证课程设计与企业生产实际接轨。图纸库的建立与更新由教研室每年定期审核通过,以保证图纸的规范性及零件结构复杂程度适中。课程设计分配设计任务时,保证1人1题,且指导教师要综合考虑所带学生的设计基础差异问题,题目的选择与分配要有难度区分,并在课程设计任务分配时给出明确说明及评分标准。 2.增设工艺设计方案验证环节 本课程增设了工艺设计方案验证环节,有两种不同方式可供学生自主选择。第一种验证方法是引入Procast及AnyCasting等铸造模拟软件对铸件充型、铸造温度场以及铸造缺陷出现的位置和数量等进行模拟分析,进而优化工艺设计方案。模拟仿真环节的引入有利于学生发现和解决工艺设计中存在的问题,使铸造工艺设计更符合铸造生产实际,同时也提高了学生学习与应用软件的能力。第二种验证方法则是按照其工艺设计方案进行实际铸造生产,铸造生产可直接在校内铸造生产实训中心进行,该中心不仅有砂型铸造所需设备及原材料,且

铸造工艺设计实例

轴承座铸造工艺设计说明书 一、工艺分析 1、审阅零件图 仔细审阅零件图,熟悉零件图,而且提供的零件图必须清晰无误,有完整的尺寸和各种标记。仔细样。注意零件图的结构是否符合铸造工艺性,有两个方面:(1)审查零件结构是否符合铸造工艺 (2 )在既定的零件结构条件下,考虑铸造过程中可能出现的主要缺陷,在工艺设计中采取措施避 零件名称:轴承座 零件材料:HT150 生产批量:大批量生产 2、零件技术要求 铸件重要的工作表面,在铸造是不允许有气孔、砂眼、渣孔等缺陷。 3、选材的合理性 铸件所选材料是否合理,一般可以结合零件的使用要求、车间设备情况、技术状况和经济成本等, 用铸造合金(如铸钢、灰铸铁、球墨铸铁、可锻铸铁、蠕墨铸铁、铸造铝合金、铸造铜合金等)的 牌号、性能、工艺特点、价格和应用等,进行综合分析,判断所选的合金是否合理。 4、审查铸件结构工艺性 铸件壁厚不小于最小壁厚5-6又在临界壁厚20-25以下。 二、工艺方案的确定

1、铸造方法的确定 铸造方法包括:造型方法、造芯方法、铸造方法及铸型种类的选择 (1)造型方法、造芯方法的选择 根据手工造型和机器造型的特点,选择手工造型 (2)铸造方法的选择 根据零件的各参数,对照表格中的项目比较,选择砂型铸造。 (3)铸型种类的选择 根据铸型的特点和应用情况选用自硬砂。 2、浇注位置的确定 根据浇注位置选择的4条主要规则,选择铸件最大截面,即底面处。 3、分型面的选择 本铸件采用两箱造型,根据分型面的选择原则,分型面取最大截面,即底面。 三、工艺参数查询 1、加工余量的确定 根据造型方法、材料类型进行查询。查得加工余量等级为11~13, 取加工余量等级为12。

支座铸造工艺课程设计3

2.1 确定零件材料及牌号 零件的支座的零件图如图所示,其轮廓尺寸为Φ80×200×110,平均壁厚30,支座底部需螺栓固定,留有2个螺栓孔,尺寸Φ15,可在铸件完成后切削加工,且有一定的表面精度要求。 支架在铸造过程中,应该选用灰铸铁作为材料。灰铸铁流动性好,易浇注,且收缩率最小,并且随着含碳量的增加而减少,使铸件易于切削加工。采用砂型铸造,简单而且工艺性好。 此铸铁为200×110mm的灰铸铁件,其型号应为HT150。

2.2 铸造方案的拟定 2.2.1 铸型种类的选择 支座零件具有内腔,小孔,圆角,凸台以及锥角,形状较为复杂,表面质量无特殊要求,最大轮廓尺寸为200mm,应选用砂型铸造成形。又采用小批量生产,所以铸件类型应使用湿砂型铸造。这样灵活性大,生产率高,生产周期短,便于组织流水生产,易于实现机械化和自动化,材料成本低,节省烘干设备、燃料、电力等。模样采用金属模是合理的。 2.2.2 画出零件图 图2 零件图

2.3 分型面的确定 2.3.1分型选择原则 分型面是指两半铸型相互接触的表面。分型面的优劣在很大程度上影响铸件的尺寸精度、成本和生产率。应满足以下要求 1.应使铸件全部或大部分置于同一半型内 2.应尽量减少分型面的数目 3.分型面应尽量选用平面 4.便于下芯、合箱和检测 5.不使砂箱过高 6.受力件的分型面的选择不应削弱铸件结构强度 7.注意减轻铸件清理和机械加工量 2.3.2 几种分型方案 初步对支座进行分析,有以下四种方案Ⅰ,Ⅱ,Ⅲ,Ⅳ,如图3所示

图3 分型方案图 2.3.3 分析各个方案的优缺点 Ⅰ方案以支架的底面为分型面在分型面少而平的原则中,其分型面数量不仅少而且还平直,铸件全部放在下型,既便于型芯安放和检查,又可以使上型高度减低而便于合箱和检验壁厚,还有利于起摸及翻箱操作。 Ⅱ方案铸件没有能尽可能的位于同一半型内,这样会因为合箱对准误差使铸件产生偏错。也有可能因为合箱不严在垂直面上增加铸件尺寸。

铸造工艺分析与设计

3.6 工艺分析与设计 3.6.1浇注位置的确定 根据对合金凝固理论的研究和生产经验,确定浇注位置时应考虑以下原则: 1.铸件的重要部分应尽量置于下部。 2.重要加工面应朝下或呈直立状态。 3. 使铸件的大平面朝下,避免夹砂结疤类缺陷。 对于大的平板类铸件,可采用倾斜浇注,以便增大金属液面的上升速度,防止夹砂结疤类缺陷(见图1、2)。倾斜浇注时,依砂箱大小,H值一般控制在200~400mm范围内。 图1具有大平面的铸件正确的浇注位置图2 大平板类铸件的倾斜浇注 4.应保证铸件能充满。 对具有薄壁部分的铸件,应把薄壁部分放在下半部或置于内浇道以下,以免出现浇不到、冷却等缺陷。图3为曲轴箱的浇注位置。 5.应有利于铸件的补缩。 6. 避免用吊砂、吊芯或悬臂式砂芯,便于下芯、合箱及检验。 7. 应使合箱位置、浇注位置和铸件冷却位置相一致这样可避免变合箱后或于浇注后再次翻转铸型。 此外,应注意浇注位置、冷却位置与生产批量密切相关。 图 3 曲轴箱的浇注位置 a)不正确b)正确 3.6.2 分型面的选择 分型面是指两半铸型相互接触的表面。除了地面软床造型、明浇的小件和实型铸造法以外,都要选择分型面。 分型面一般在确定浇注位置后再选择。但分析各种分型面方案的优劣之后,可能需重新调整浇注位置。生产中,浇注位置和分型面有时是同时确定的。分型面的优劣,在很大程度上影响铸件的尺寸精度、成本和生产率。应仔细地分析、对比,慎重选择。 分型面的选择原则如下:

1. 应使铸件全部或大部分置于同一半型内; 2. 应尽量减少分型面的数目; 分型面数目少,铸件精度容易保证,且砂箱数目少。 3. 分型面尽量选用平面; 平直分型面可简化造型过程和模底版制造,易于保证铸件精度。 4. 便于下芯、合箱和检查型腔尺寸; 5. 不使砂箱过高; 分型面通常选在铸件最大截面上,以使砂箱不致过高。 6. 受力件的分型面选择不应削弱铸件结构强度; 7. 注意减轻铸件清理和机械加工量。 一个铸件应以哪几项原则为主来选择分型面,需要进行多方案的对比,根据实际生产条件,并结合经验来作出正确的判断,最后选出最佳方案。 3.6.3浇注系统设计 浇注系统是铸型中液态金属流入型腔的通道之总称。铸铁件浇注系统的典型结构如图4所示,它由浇口杯(外浇口)、直浇道、直浇道窝、横浇道和内浇道等部分组成。广义地说,浇包和浇注设备也可认为是浇注系统的组成部分,浇注设备的结构、尺寸、位置高低等,对浇注系统的设计和计算有一定影响;此外,出气孔也可看成是浇注系统的组成部分。 图4 典型浇注系统的结构 a)封闭式b)开放式 1浇口环2直浇道3直浇道窝4横浇道5末端延长段6内浇道 一、对浇注系统的基本要求 1)所确定的内浇道的位置、方向和个数应符合铸件的凝固原则或补缩方法。 2)在规定的饶注时间内充满型腔。 3)提供必要的充型压力头,保证铸件轮廓、棱角清晰。 4)使金属液流动平稳,避免严重紊流。防止卷入、吸收气体和使金属过度氧化。 5)具有良好的阻渣能力。 6)金属液进入型腔时线速度不可过高,避免飞溅、冲刷型壁或砂芯。 7)保证型内金属液面有足够的上升速度,以免形成夹砂结疤、皱皮、冷隔等缺陷。 8)不破坏冷铁和芯撑的作用。 9)浇注系统的金属消耗小,并容易清理。 10)减小砂型体积,造型简单,模样制造容易。

铸造工艺学课程设计案例

前言 铸造工艺学课程就是培养学生熟悉对零件及产品工艺设计的基本内容、原则、方法与步骤以及掌握铸造工艺与工装设计的基本技能的一门主要专业课。课程设计则就是铸造工艺学课程的实践性教学环节,同时也就是我们铸造专业迎来的第一次全面的自主进行工艺与工装设计能力的训练。在这个为期两周的过程里,我们有过紧张,有过茫然,有过喜悦,从中感受到了学习的艰辛,也收获到了学有所获的喜悦,回顾一下,我觉得进行铸造工艺学课程设计的目的有如下几点: 通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用铸造工艺学课程与其她先修课程的的理论与实际知识去分析与解决实际问题的能力。 通过制定与合理选择工艺方案,正确计算零件结构的工作能力,确定尺寸,掌握了浇冒口的作用及其原理,具有正确设计浇冒口系统的初步能力;掌握铸造工艺与工装设计的基本技能。 熟悉型砂必须具备的性能要求,原材料的基本规格及作用,并初步具备分析与解决型砂有关问题的能力。 熟悉涂料的作用、基本组成及质量的控制;了解提高铸件表面质量与尺寸精度的途径。 了解合金在铸造过程中容易产生的铸造缺陷以及采取相关的防止途径,并初步具备分析、解决这类缺陷的基本解决途径 学习进行设计基础技能的训练,例如:计算、绘图、查阅设计资料与手册等。 目录 第一章零件铸造工艺分析 (4) 1、1零件基本信息 (4) 1、2材料成分要求 (4) 1、3铸造工艺参数的确定 (4) 1、3、1铸造尺寸公差与重量公差 (5) 1、3、2机械加工余量 (5) 1、3、3铸造收缩率 (5) 1、3、4拔模斜度 (5) 1、4其她工艺参数的确定 (5) 1、4、1工艺补正量 (5) 1、4、2分型负数 (5) 1、4、3非加工壁厚的负余量 (5)

典型铸铁件铸造工艺设计与实例

典型铸铁件铸造工艺设计与实例叙述铸造生产中典型铸铁件——气缸类铸件、圆筒形铸件、环形铸件、球墨铸铁曲轴、盖类铸件、箱体及壳体类铸件、阀体及管件、轮形铸件、锅形铸件及平板类铸件的铸造实践。内容涉及材质选用、铸造工艺过程的主要设计、常见主要铸造缺陷及对策等。 第1章气缸类铸件 1.1 低速柴油机气缸体 1.1.1 一般结构及铸造工艺性分析1.1.2 主要技术要求 1.1.3 铸造工艺过程的主要设计1.1.4 常见主要铸造缺陷及对策1.1.5 铸造缺陷的修复 1.2 中速柴油机气缸体 1.2.1 一般结构及铸造工艺性分析1.2.2 主要技术要求 1.2.3 铸造工艺过程的主要设计1.3 空气压缩机气缸体 1.3.1 主要技术要求 1.3.2 铸造工艺过程的主要设计第2章圆筒形铸件 2.1 气缸套 2.1.1 一般结构及铸造工艺性分析2.1.2 工作条件 2.1.3 主要技术要求 2.1.4 铸造工艺过程的主要设计2.1.5 常见主要铸造缺陷及对策2.1.6 大型气缸套的低压铸造2.1.7 气缸套的离心铸造 2.2 冷却水套 2.2.1 一般结构及铸造工艺性分析2.2.2 主要技术要求 2.2.3 铸造工艺过程的主要设计2.2.4 常见主要铸造缺陷及对策2.3 烘缸 2.3.1 结构特点 2.3.2 主要技术要求 2.3.3 铸造工艺过程的主要设计2.4 活塞 2.4.1 结构特点 2.4.2 主要技术要求 2.4.3 铸造工艺过程的主要设计2.4.4 砂衬金属型铸造 第3章环形铸件 3.1 活塞环3.1.1 概述 3.1.2 材质 3.1.3 铸造工艺过程的主要设计 3.2 L形环 3.2.1 L形环的单体铸造 3.2.2 L形环的筒形铸造 第4章球墨铸铁曲轴 4.1 主要结构特点 4.1.1 曲臂与轴颈的连接结构 4.1.2 组合式曲轴 4.2 主要技术要求 4.2.1 材质 4.2.2 铸造缺陷 4.2.3 质量检验 4.2.4 热处理 4.3 铸造工艺过程的主要设计 4.3.1 浇注位置 4.3.2 模样 4.3.3 型砂及造型 4.3.4 浇冒口系统 4.3.5 冷却速度 4.3.6 熔炼、球化处理及浇注 4.4 热处理 4.4.1 退火处理 4.4.2 正火、回火处理 4.4.3 调质(淬火与回火)处理 4.4.4 等温淬火 4.5 常见主要铸造缺陷及对策 4.5.1 球化不良及球化衰退 4.5.2 缩孔及缩松 4.5.3 夹渣 4.5.4 石墨漂浮 4.5.5 皮下气孔 4.6 大型球墨铸铁曲轴的低压铸造 第5章盖类铸件 5.1 柴油机气缸盖 5.1.1 一般结构及铸造工艺性分析 5.1.2 主要技术要求 5.1.3 铸造工艺过程的主要设计 5.2 空气压缩机气缸盖 5.2.1 一般结构及铸造工艺性分析 5.2.2 主要技术要求 5.2.3 铸造工艺过程的主要设计 5.3 其他形式气缸盖 5.3.1 一般结构 5.3.2 主要技术要求 5.3.3 铸造工艺过程的主要设计 第6章箱体及壳体类铸件 6.1 大型链轮箱体 6.2 增压器进气涡壳体 6.3 排气阀壳体 6.4 球墨铸铁机端壳体 6.5 球墨铸铁水泵壳体 6.6 球墨铸铁分配器壳体 第7章阀体及管件 7.1 灰铸铁大型阀体 7.2 灰铸铁大型阀盖 7.3 球墨铸铁阀体 7.4 管件 7.5 球墨铸铁螺纹管件 7.6 球墨铸铁管卡箍 7.6.1 主要技术要求 7.6.2 铸造工艺过程的主要设计 7.6.3 常见主要铸造缺陷及对策 第8章轮形铸件 8.1 飞轮 8.2 调频轮 8.3 中小型轮形铸件 8.4 球墨铸铁轮盘 第9章锅形铸件 9.1 大型碱锅 9.2 中小型锅形铸件 第10章平板类铸件 10.1 大型龙门铣床落地工作台 10.2 大型立式车床工作台 10.3 大型床身中段 10.4 大型底座 中国机械工业出版社精装16开定价:299元

铸造工艺的数值模拟优化

! 收稿日期:2006-01-16;修回日期:2006-07-19 作者简介:胡红军(1976-),男,重庆工学院讲师,主要研究铸造CAD/CAE软件研究和开发。E-mail:hhj@cqit.edu.cn。 铸造工艺的数值模拟优化 胡红军,杨明波,龚喜兵,李国瑞 (重庆工学院材料科学与工程学院,重庆400050) 摘 要:为了研究和预测铸造工艺对铸件质量的影响,设置合理的军用汽车转向臂的铸造浇冒口系统和工艺参数。应用铸 造模拟软件对转向臂的三种不同工艺方案进行凝固模拟,根据凝固模拟结果显示的缺陷及内部缩松情况,提出改进工艺方案并对其进行凝固模拟,选择最佳方案应用于生产。研究表明,3#是最合理的浇冒口布置方式,最优的浇注温度825℃,浇注时间15s,采用水平分型。应用表明,铸造模拟软件能够准确地预测充型凝固过程中可能产生的缺陷,从而辅助工艺人员进行工艺优化。 关键词:凝固模拟;军用汽车转向臂;铸造工艺优化;浇冒口系统;缩孔;铸造模拟软件中图分类号:TG250.6 文献标识码:A 文章编号:1004-244X(2006)06-0051-03 Optimizationofcastingprocessesbasedoncomputernumericalsimulation HUHong-jun,YANGMing-bo,GONGXi-bing,LIGuo-rui (ChongqingInstituteofTechnology,Chongqing400050,China) Abstract:Inordertostudyandpredicttheinfluenceofcastingprocessoncastingsquality,therationalpouringsystemandprocessparametersareset.Threekindssolidificationsimulationschemehavebeenappliedwiththehelpofsimulationsoftware.Re-sultsandappearancedefectsandinnershrinkageporosityofthecastingsintrialproductionhavebeenbasedupontobringfor-warddifferenttechnologyimprovementsandselectanoptimalprojectusedinbatchproduction.Researchresultsshowthatno.3castingsstructureisreasonable,themostreasonablepouringtemperatureis825℃,pouringtimeis15s.Theapplicationshowsthatthesoftwarecanhelptechnologiststooptimizecastingprocessbyforecastingcastingdefectsduringmoldfillingandsolidi-ficationprocessesandinstructtheproductionofcasting. Keywords:solidificationsimulation;steeringarmcomponentusedinheavymilitarytruck;castingprocessoptimization;pour-ingandrisersystem;shrinkage;castingsimulationsoftware 铸造数值模拟是要通过对铸件充型凝固过程的数值计算,分析工艺参数对工艺实施结果的影响,便于技术人员对所设计的铸造工艺进行验证和优化,以及寻求工艺问题的尽快解决办法。为技术人员设计较合理的铸件结构和确定合理的工艺方案提供了有效的依据,从而避免传统的依靠经验进行结构设计和工艺制定的盲目性,节约试制成本[1-4]。 1 铸造过程充型数值模拟方法 军用汽车转向臂的几何实体造型采用UG软件建 立,在得到三维几何数据后,利用UG软件的反向出模模块,通过设定铝合金收缩率、铸件起模斜度、浇注系统的位置和分型面等,作为凝固模拟的几何模型。由于金属液充型过程数值模拟技术所涉及的控制方程多而复杂,需要根据连续性方程、动量方程及能量方程,并进 行速度场、压力场的反复迭代,计算量大而且迭代容易发散,致使其难度很大。通过不断完善数值计算方法,如有限差分法和SOLA-VOF体积函数法,开发出一些实用软件。该产品的凝固模拟就是采用MAGMA软件。作为整个模拟的核心部分,CAE的数值模拟效果最终将影响模拟的真实与否。在液态金属浇注过程中,热传导过程计算是数值模拟的主要内容。处理热传导问题采用傅里叶定律(式1),式2是根据能量守恒定律推导的方程[5-8]。 q=-λ !t !n (1)ρc!t!τ=!!x(λ!t!x)+!!y(λ!t!y)+!!z(λ!t !z)+qv (2)其中q为热流密度,λ为导热系数,t为温度(函数), n为温度传递方向上的距离,Τ 为温度,ρ为密度,c为质! 2006年11月兵器材料科学与工程 ORDNANCEMATERIALSCIENCEANDENGINEERING Vol.29No.6Nov.,2006 第29卷第6期

支座铸造工艺课程设计-2

热加工工艺课程设计支座铸造工艺设计 院系:工学院机械系 专业:机械设计制造及其自动化 班级: 姓名: 学号: 指导老师: 时间:

黄河科技学院课程设计任务书 工学院机械系机械设计制造及其自动化专业 2011级 1班 学号姓名指导教师 设计题目: 支座铸造工艺设计 课程名称:热加工工艺课程设计 课程设计时间:5 月 22 日至 6 月 6 日共 2 周 课程设计工作内容与基本要求(已知技术参数、设计要求、设计任务、工作计划、所需相关资料)(纸张不够可加页) 1、已知技术参数 图1 支座零件图 2、设计任务与要求 1)设计任务 1 选择零件的铸型种类,并选择零件的材料牌号。 2 分析零件的结构,找出几种分型方案,并分别用符号标出。 3 从保证质量和简化工艺两方面进行分析比较,选出最佳分型方案,标出浇注位 置和造型方法。 4 画出零件的铸造工艺图(图上标出最佳浇注位置与分型面位置、画出机加工余 量、起模斜度、铸造圆角、型芯及型芯头,图下注明收缩量) 5 绘制出铸件图。

2)设计要求 1设计图样一律按工程制图要求,采用手绘或机绘完成,并用三号图纸出图。 2 按所设计内容及相应顺序要求,认真编写说明书(不少于3000字)。 3、工作计划 熟悉设计题目,查阅资料,做准备工作 1天 确定铸造工艺方案 1天 工艺设计和工艺计算 2天 绘制铸件铸造工艺图 1天 确定铸件铸造工艺步骤 2天 编写设计说明书 3天 答辩 1天 4.主要参考资料 《热加工工艺基础》、《金属成形工艺设计》、《机械设计手册》 系主任审批意见: 审批人签名: 时间:2013年月日

支座铸造工艺设计 摘要 铸造是指将液态金属或合金浇注到与零件尺寸、形状相适应的铸型型腔里,待其冷却凝固后获得毛坯或零件的方法。铸造成形是机械类零件和毛坯成形的重要工艺方法之一,尤以适合于制造内腔和外形复杂的毛坯或零件。 本文主要分析了支座的结构,并根据其结构特点确定了它的砂型铸造工艺。支座是支撑其他零部件的重要承力零件,主要承受着径向压缩及轴向摩擦的作用,它具有结构稳定、形状简单、廉价实用等特点,故在机械零件的设计、加工制造中支座都起着不可替代的作用。 本文设计了支座的砂型铸造工艺,包括铸型(型芯)及造型方法的选择、分型面选择和浇注位置的确定、浇注系统及冒口的设置、落砂清理及检验等。绘制了铸件的零件图及铸造工艺图。本文还对支座的铸造质量指标(包括加工余量、拔模斜度、收缩率及变形等)进行了分析与评估,以便于工艺更好的完善。 关键词:砂型铸造,浇注,加工余量,拔模斜度,收缩率

铸造成形工艺理论基础

第一篇金属的铸造成形工艺 第一章铸造成形工艺理论基础 §1-1 概述 金属液态成形工艺——铸造、液态冲压、液态模锻等 铸造(最广泛)——将液态合金浇注到与零件的形状、尺寸相适应的铸型空腔中,使其冷却凝固,得到毛坯或零件的成形工艺(生产方法)。 一、特点 1.能制成形状复杂、特别是具有复杂内腔的毛坯: 如:阀体、泵体、叶轮、螺旋浆等 2.铸件的大小几乎不受限制,重量从几克到几百吨 3.常用的原材料来源广泛,价格低廉,成本较低,其应用及其广泛 (如:机床、内燃机中铸件70~80%,农业机械40~70%) 但铸造生产过程较复杂,废品率一般较高,易出现浇不足,缩孔,夹渣、气孔、裂纹等缺陷。 二、分类 铸造 砂型铸造——90%以上,成本低 特种铸造——熔模、金属型、压力、低压、离心 质量、生产率高,成本也高 §1-2 铸造的工艺性能 工艺性能——符合某种生产工艺要求所需要的性能 铸造性能——合金的流动性、收缩性、吸气性、偏析等 一、合金的流动性 1.概念 指液态合金本身的流动能力,它是合金主要的铸造性能,流动性愈强,愈便于浇铸出轮廓清晰、薄而复杂的铸件。 同时,有利于非金属夹杂物和气体的上浮与排除,还有利于对合金冷凝过程所产生的收缩进行补缩。 流动性不好——浇不足、冷隔 [注]:流动性的测定——“螺旋形试样”(图1-1)

流动性愈好,浇出的试样愈长 灰铸铁、硅黄铜最好,铝合金次之,铸钢最差 2.影响合金流动性的因素 ①化学成分 共晶成分合金的结晶是在恒温下进行的,此时,液态合金从表层逐层向中心凝固,由于已结晶的固体层内表面比较光滑(图1-3a)对金属液的阻力较小。同时,共晶成分合金的凝固温度最低(铁碳合金状态图)。 相对说来,合金的过热度(浇注温度与合金熔点之温差)大,推迟了合金的凝固,故共晶成分合金的流动性最好。 除纯金属外,其它成分合金是在一定温度范围的逐步凝固,即经过液、固并存的两相区。此时,结晶是在截面上的一定宽度的凝固区内同时进行的,由于初生的“树枝状”晶体,使已结晶固体层的表面粗糙(图1-3b)所以,合金的流动性变差。 共晶生铁,流动性好。 [注]:降低金属液粘度——提高流动性 如加P—铸铁凝固温度、粘度↓→流动性好 但引起冷脆性(性能要求不高的小件) S→MnS→内摩擦(粘度↑)→流动性↓ ②浇注条件 浇注温度——温度↑→粘度↓过热度↑,保持液态时间长→流动性好,但过高→收缩增大,吸气增多,氧化严重→缩孔、缩松、气孔、粘砂等 控制浇注温度:灰铸铁:1200~1380℃ 铸铜:1520~1620℃ 铝合金:680~780℃ 浇注压力——压力愈大,流动性愈好 增加直浇口高度或采用压力铸造、离心铸造 ③铸型充填条件 铸型的蓄热能力——铸型材料的导热系数和比热愈大,对液态合金的“激冷” 能力愈强,流动性差。如:金属型比砂型铸造更容易产生浇不足等缺陷。 铸型中气体——在金属液的热作用下,型腔中气体膨胀,腔中气体压力增大——流动性差(阻力大) 改善措施:使型砂具有良好的透气性,远离浇口最高部位开设气口。 二、合金的收缩性

铝合金铸件的铸造工艺分析

铝合金铸件的铸造工艺分析 摘要:随着我国汽车工业的迅猛发展,一方面对汽车用压铸件的需求量日益提升;另一方面为了应对环境污染以及资源紧张的发展现状,对汽车用压铸件的质 量要求及应用范围提出了更高的要求。本文从高压铸造的角度探讨铝合金铸件几 种关键的高圧鋳造工艺。 关键词:铝合金铸件;铸造工艺 压力铸造是近代金属加工工艺中发展较快的一种少无切削的特种铸造方法, 具有生产效率高、经济指标优良、铸件尺寸精度高和互换性好等特点,在制造业,尤其是规模化产业得到了广泛应用和迅速发展。压力铸造是铝、镁和锌等轻金属 的主要成形方法,适用于生产大型复杂薄壁壳体零件。压铸件已成为汽车、运动 器材、电子和航空航天等领域产品的重要组成部分,其中汽车行业是压铸技术应 用的主要领域,占到70%以上。随着汽车、摩托车、内燃机、电子通信、仪器仪表、家用电器、五金等行业的快速发展,压铸件的功能和应用领域不断扩大,从 而促进了压铸技术不断发展,压铸件品质不断提高。本文针对铝合金高压压铸技 术进行分析探讨。 1高性能压铸合金技术 对于新型高强韧压铸铝合金的开发,主要包括两个方面:一是针对现有传统压 铸铝合金的合金成分或添加合金元素进行优化设计;二是开发新型压铸铝合金系。而新型压铸铝合金一般要求其满足以下几点:①适用于壁厚为2-v4 mm复杂结构 压铸件的生产;②铸态下的抗拉强度和屈服强度分别可以达到300 MPa和150 MPa,且具有15%的伸长率;③具有良好的耐腐蚀性能;④可以通过工业上对变形 铝合金常用的高温喷漆过程对合金进行一定的强化;⑤可进行热处理强化处理;⑥ 可回收利用且环境友好。当前常用的高强韧压铸铝合金有Silafont-36, Magsimal-59, Aural-2及ADC-3等牌号,均为国外开发,其共同特点是Fe含量均比普通压 铸铝合金更低;另外其他杂质元素如Zn,Ti等均进行了严格控制。 对于新型压铸镁合金的开发,主要包含三个方面:超轻高强度压铸镁合金;抗高温蠕变压铸镁合金;耐蚀压铸镁合金。超轻高强度压铸镁合金的研究主要集中在 Mg-Li系合金,Li元素可提高合金的韧性,而强度则下降,通过添加第三元素, 经热处理后,合金的强度得到大幅度提高。抗高温蠕变压铸镁合金的研究主要集 中在添加合金元素,其有三方面作用:一是细晶强化,合金元素的添加有利于形成高熔点形核质点达到异质形核细化晶粒的效果;二是析出相强化并钉扎晶界,组织晶界滑移;三是固溶强化,Y等元素固液界面前沿形成强的溶质过冷层,抑制了初 生相生长而细化晶粒。而耐蚀压铸镁合金的研究同样集中在添加合金元素上,同 时还应与提高力学性能和抗高温蠕变性能相结合,以开发耐腐蚀热稳定优良的压 铸镁合金系列为目的,加强对压铸镁合金添加合金元素的研究;开展压铸镁合金后期处理的研究,例如对镁合金表面进行涂层、强化处理,阻止氧化反应和介质腐蚀。 目前国内对这部分压铸合金的规模化回收处理通常是采用直接加入火焰炉或 感应炉内重熔的方式,此种回收处理工艺所带来的主要问题是金属烧损大、重熔 能耗高、环境污染较重、人工劳动强度大、作业条件恶劣等。 2高真空压铸技术 当前,真空压铸以抽除型腔内气体的形式为主流,将真空阀装在模具上,其 最大的优点在于模具的设计和结构基本上与常规压铸相同,在分型面、推杆配合

铸造模拟

三个基本问题 1)什么是金属材料制备工艺? 通过一定的生产流程,获得可以作为工业或工程中使用的金属材料或者构件,这个过程称之为金属材料制备与加工。 2)什么是金属材料制备工艺的计算机模拟? 根据用户要求,基于一定的判据设计的制备与加工工艺过程,建立起数学物理模型,在计算机上进行造型、运算,并将得到的成千上万的数据综合在一起逼近研究对象的全貌,表达出成分工艺组织性能的演变规律,用形象的图形或者动画形式,显示出这些过程的直观画面称之为计算机模拟。 3)为什么进行金属材料制备工艺的计算机模拟? 基本的加工工艺 1)铸造,凝固成形,液固相变。 2)焊接,凝固成形,液固相变,热影响区晶粒长大。 3)压力加工,固态成形,固态相变。 4)热处理,固态相变。 5)冷成形模拟 模拟的框架1)前处理,造型,数据输入等 2)计算,算法的优化 3)后处理,模拟结果输出,判据函数 4)数据库 模拟具有实时性,模拟的准确性取决于模型的精度。 开展工艺模拟的目的 1)优化现有工艺 2)进行模具与新工艺设计 3)缩短设计、试制和生产周期,降低成本 4)工艺的可视化,工程师和模拟工作者之间能够共同分析出达到最佳工艺的判据标准 5)机理性分析 热加工过程的结果成型和改性:使材料的成分、组织、性能最后处于最佳状态 热加工工艺设计根据所要求的组织和性能,制定合理的热加工工艺,指导材料的热加工过程热加工工艺设计存在的问题 复杂的高温、动态、瞬时过程:难以直接观察,间接测试也十分困难 建立在“经验”、“技艺”基础上 解决方法 热加工工艺模拟技术:在材料热加工理论指导下,通过数值模拟和物理模拟,在实验室动态仿真材料的热加工过程,预测实际工艺条件下的材料的最后组织、性能和质量,进而实现热加工工艺的优化设计 热加工过程模拟的意义 认识过程或工艺的本质,预测并优化过程和工艺的结果(组织和性能) 与制造过程结合,实现快速设计和制造 热加工过程模拟的部分商业软件 铸造PROCAST, SIMULOR 锻压DEFORM, AUTOFORGE, SUPERFORGE 通用MARC, ABAQUS, ADINA, ANSYS 三种传热方式:热对流,热传导,热辐射。

铸造工艺流程介绍

铸造生产的工艺流程 铸造生产是一个复杂的多工序组合的工艺过程,它包括以下主要工序: 1)生产工艺准备,根据要生产的零件图、生产批量和交货期限,制定生产工艺方案和工艺文件,绘制铸造工艺图; 2)生产准备,包括准备熔化用材料、造型制芯用材料和模样、芯盒、砂箱等工艺装备; 3)造型与制芯; 4)熔化与浇注; 5)落砂清理与铸件检验等主要工序。 成形原理 铸造生产是将金属加热熔化,使其具有流动性,然后浇入到具有一定形状的铸型型腔中,在重力或外力(压力、离心力、电磁力等)的作用下充满型腔,冷却并凝固成铸件(或零件)的一种金属成形方法。 图1 铸造成形过程

铸件一般作为毛坯经切削加工成为零件。但也有许多铸件无需切削加工就能满足零件的设计精度和表面粗糙度要求,直接作为零件使用。 型砂的性能及组成 1、型砂的性能 型砂(含芯砂)的主要性能要求有强度、透气性、耐火度、退让性、流动性、紧实率和溃散性等。2、型砂的组成 型砂由原砂、粘接剂和附加物组成。铸造用原砂要求含泥量少、颗粒均匀、形状为圆形和多角形的海砂、河砂或山砂等。铸造用粘接剂有粘土(普通粘土和膨润土)、水玻璃砂、树脂、合脂油和植物油等,分别称为粘土砂,水玻璃砂、树脂砂、合脂油砂和植物油砂等。为了进一步提高型(芯)砂的某些性能,往往要在型(芯)砂中加入一些附加物,如煤份、锯末、纸浆等。型砂结构,如图2所示。 图2 型砂结构示意图 工艺特点 铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料(如各种铸铁件、有色合金铸件等)的零件毛坯,铸造几乎是唯一的加工方法。与其它加工方法相比,铸造工艺具有以下特点:1)铸件可以不受金属材料、尺寸大小和重量的限制。铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到数百吨;铸件壁厚可以从0.5毫米到1米左右;铸件长度可以从几毫米到十几米。 2)铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等。 3)铸件的形状和大小可以与零件很接近,既节约金属材料,又省切削加工工时。 4)铸件一般使用的原材料来源广、铸件成本低。 5)铸造工艺灵活,生产率高,既可以手工生产,也可以机械化生产。 铸件的手工造型 手工造型的主要方法 砂型铸造分为手工造型(制芯)和机器造型(制芯)。手工造型是指造型和制芯的主要工作均由手工完成;机器造型是指主要的造型工作,包括填砂、紧实、起模、合箱等由造型机完成。泊头铸造工量具友介绍手工造型的主要方法: 手工造型因其操作灵活、适应性强,工艺装备简单,无需造型设备等特点,被广泛应用于单件小批量生产。但手工造型生产率低,劳动强度较大。手工造型的方法很多,常用的有以下几种: 1.整模造型 对于形状简单,端部为平面且又是最大截面的铸件应采用整模造型。整模造型操作简便,造型时整个模样全部置于一个砂箱内,不会出现错箱缺陷。整模造型适用于形状简单、最大截面在端部的铸件,如齿轮坯、轴承座、罩、壳等(图2)。

相关文档
最新文档