弹性力学圆形薄板
合集下载
弹性力学:平板弯曲问题 (2) 薄板弯曲经典解法

16q0
6
Dmn
m2 a2
n2 b2
2
(m 1,3,5, ; n 1,3,5, )
代入式(10.22),即得挠度的表达式 (受均布载荷)
m x n y
w 16q0
sin sin
a
b
D 6 m1,3,5,n1,3,5,
mn
m2 a2
n2 b2
2
(10.24)
由此可以用公式(10.11)求得内力的表达式。
y
2
w
t2 4
z 2
(10.5)
其中,D称为板的抗弯刚度,其表达式为
D Et3
12(1 2 )
(10.6)
最后,次要应力分量σZ,可根据z方向的平衡方程求得。
z xz yz
z
x y
将式(10.5)代入上式得
x
z
6D t3
4
w
t2 4
z 2
积分上式得
z
6D t3
4
w
t2 4
在边界上
w n 0
D 4 w q
将式(10.18)代入式(10.8)得
D
24 m a4
16 m a2b2
24m
b4
q
解得m并代入式(10.18)得
w
q
x a
2 2
y2 b2
2 1
8D
3 a4
2 a2b2
3 b4
这就是夹支边椭圆薄板在均布载荷作用下的挠度 表达式。
有了挠度表达式,就可以求的内力。
y2 b2
2
1
(10.18)
o
a
y 图10.6 椭圆板
第三章 圆板的应力分析

且其它位移、应变和应力分量均与 无关,因而不存在扭矩。
根据中性面假设:uz0 0, r z0 z0 0 ;
直法线假设表明 rz很小,相应的变形可不计,即: rz 0 ;
互不挤压假设认为: z 0 。
因此,圆板在轴对称小挠度弯曲情况下,只有三个应力
分量 r , , rz。 r , 为弯曲应力,沿板厚线性分布, rz 与
6 t2
3
q
16
R2 r2
M
(#1)
z t 2
6 t2
3 q
16
R2
1 3 3
r
M d 2
0
图2-26 圆板的微体受力
M
M r
c 0:
dMr r
drd
M r rd
2M dr
d
2
Qr
r
dr 2
ddr
0
Mrdrd dMrrd Mdrd Qrrdrd 0
r
dM r dr
Mr
M
Qrr
或
drM
dr
r
M
Qrr
(2-56)
式(2-55、56)即为圆板轴对称弯曲问题的平衡方程,含
zz2t2t
3t6238t3216q qR2R2
131333r 2r2
M
显然,在板 中心挠度和 应力最大
wmax
wr0
5 qR4 641 D
r
zt r 0
2
zt 2 3 3
r 0
8t 2
qR4
(2-68) (2-73)
21
首页 下一页 目录 结束放映
均布载荷固支圆板
2πr
z
r
(b)
弹性力学08板的弯曲B

C2 0
C3
2(1
Mb 2
)D(a2
b2 )
Ma 2b2
Ma 2b2
C4 2(1 )D(a2 b2 ) 1 D(a2 b2 ) ln a
w(r) C1 ln r C2r 2 ln r C3r 2 C4
(3)周边简支沿内缘受均布剪力的环板
w(r) C1 ln r C2r 2 ln r C3r 2 C4
)
1
r2 a2
Mr M
M M
M
Qr 0
M
a z
例题2:周边简支圆板在外边界受均布力矩作用,在中心有链杆。
解:
w(r)
C1
ln
r
C2r
2
ln
r
C3r
2
C4
q0r 4 64D
中心无孔 C1 0
无均布载荷 q0 0
w(r) C2r 2 ln r C3r 2 C4
w r0 0 w ra 0
2w x 2
2w y 2
My
D
2w x 2
2w y 2
M xy
M
yx
D1
2w
xy
Qx
D
x
2w
Qy
D
y
2w
x
r
Mr
y
Mr
z
M Q Qr
x r, y
2w 2w x2 r 2
2w y 2
1 r
w r
1 r2
2w
2
2w 1 w
xy r r
❖薄板横截面上的内力:
Mr
D
2w r 2
q0r 4 64D
中心无孔 C1 0, C2 0
弹性力学圆形薄板

xz
Qx
t Ez 2 2 2 t 2 可得 Qx w t z dz 2 1 x 4 2
z d zx
Et 3 2 w 12 (1 ) x
t 2 t 2
x
Q
同样可得Qy,
记 可得
Et 2 D 12 (1 2 )
x z 0
0, 0
y z 0 xy z 0
0,
也就是说,中面的任意一部分,虽然弯曲成 弹性曲面的一部分,但它在xy面上投影的形 状却保持不变。
二、弹性曲面的基本公式
1、弹性曲面的微分方程。 薄板的小挠度问题是按位移求解的,其基 本未知函数是薄板的挠度ω 。因此把其它 所有物理量都用ω 来表示,即可得弹性曲 面的微分方程。
z t 2
3、边界条件
边界上的应力边界条件,一般难于精确满足, 一般只要求满足边界内力条件。 情况一:以矩形薄板为例,说明各种边界处 的边界条件。假设OA边是固支边界, 则边界处的 挠度和曲面的法向斜率等于零。即
x 0
0,
0 x x 0
情况二:OC具有简支边界。则边界处的挠度 和弯矩等于零。即:
y xz yx z x y
即
z Ez t2 2 z 4 w z 2(1 2 ) 4 Ez z3 4 t2 z z w F3 ( x, y ) 2 2(1 ) 4 3
积分得
根据薄板下面内的边界条件:
圆形薄板轴对称 弯曲问题
主要内容:
一、有关概念及假定
二、弹性曲面的基本公式 三、圆形薄板轴对称弯曲问题的求解
圆板的应力分析

8
首页 下一页 目录 结束放映
2.平衡方程
设圆板承受轴对称横向分布载荷 q(r )。通常薄板弯曲的
平衡方程以内力表示,因此可沿坐标(r,θ)截取中面上的微
小面积作为微元体,其受力如图2-26所示。图中弯矩以双箭
头表示,方向遵循右手螺旋法则。
M q Qr
d
Mr r
0 z
dr M
Mr dMr Qr dQr
目录 结束放映
§3.1 基本概念与假设
变形特点:双向弯曲,变形后中面常被弯成不可展曲面,存
在翘曲,且其周长也有所改变。因此,一般板中的内力除弯 矩、扭矩和剪力外还有薄膜力(沿中面的拉压力)。
挠度:中面各点沿中面法线方向的位移,常用w表示。
当中面的wmax远小于板厚 t 时,通常称为板的小挠度问 题,此时板内的薄膜力很小,可略去不计,认为中面无伸缩; 当wmax与 t 为同一量级时,则为板的大挠度问题,此时板内 的薄膜力较大,因而不能忽略。
c
r
M d 2
0
图2-26 圆板的微体受力
M
M r
c 0:
dMr r
drd
M r rd
2M
dr
d
2
Qr
r
dr 2
ddr
0
Mrdrd dMrrd Mdrd Qrrdrd 0
r dM r dr
Mr
M
Qrr 或
drMLeabharlann drrMQrr
(2-56)
式(2-55、56)即为圆板轴对称弯曲问题的平衡方程,含
t
(a)受纵向载荷的板
(b)受横向载荷的板
第一种载荷情况为弹性力学平面应力问题,第二种载荷 情况为板的弯曲问题,本节将讨论第二种情况。当两种外载 同时作用时,可通过叠加求解。
弹性薄板的小挠度弯曲课件

践指导。
06
参考文献
参考文献
总结词:详细描述了弹性力学的基本 原理,包括应力和应变的关系,以及 弹性薄板在受到外力作用时的弯曲变 形规律。
详细描述:在弹性力学中,薄板的小 挠度弯曲是指薄板在受到外力作用时 发生的弯曲变形,其弯曲变形程度较 小,可以忽略不计薄板的剪切变形和 转动惯性。这种变形情况下,薄板的 弯曲变形可以通过挠度(即变形量) 来描述。在弹性力学中,应力和应变 之间的关系由胡克定律(Hooke's Law)描述,即应力与应变成正比, 比例系数为材料的弹性模量。
详细描述
圆形薄板在受到垂直于其平面的力时,会在力的方向上发生弯曲,形成弧形。与矩形薄板类似,这种弯曲程度较 小,也称为小挠度弯曲。在圆形薄板中,各个方向的弯曲程度基本相同,因此圆心位置的应力最大。
实例三:不规则形状薄板的弯曲
总结词
不规则形状薄板在受到垂直于其平面的力时,会发生小挠度弯曲。
详细描述
不规则形状薄板在受到垂直于其平面的力时,会在力的方向上发生弯曲,形成弧形。与矩形和圆形薄 板类似,这种弯曲程度较小,也称为小挠度弯曲。不规则形状薄板的弯曲情况较为复杂,需要考虑各 个方向的弯曲程度以及应力分布。
05
结论与展望
研究结论
结论一
弹性薄板在受到小挠度弯 曲时,其弯曲行为与材料 属性、几何尺寸等因素密 切相关。
结论二
通过理论分析和数值模拟, 我们得到了弹性薄板在小 挠度弯曲下的变形规律和 应力分布。
结论三
实验结果与理论预测和数 值模拟结果基本一致,验 证了理论的正确性和数值 方法的可靠性。小的单元,对每 个单元进行弯曲分析,通过求解每个 单元的平衡方程得到整体的挠度分布。
对于某些特定形状和载荷条件的薄板, 可以通过解析方法直接求解弯曲微分 方程,得到挠度分布的精确解。
06
参考文献
参考文献
总结词:详细描述了弹性力学的基本 原理,包括应力和应变的关系,以及 弹性薄板在受到外力作用时的弯曲变 形规律。
详细描述:在弹性力学中,薄板的小 挠度弯曲是指薄板在受到外力作用时 发生的弯曲变形,其弯曲变形程度较 小,可以忽略不计薄板的剪切变形和 转动惯性。这种变形情况下,薄板的 弯曲变形可以通过挠度(即变形量) 来描述。在弹性力学中,应力和应变 之间的关系由胡克定律(Hooke's Law)描述,即应力与应变成正比, 比例系数为材料的弹性模量。
详细描述
圆形薄板在受到垂直于其平面的力时,会在力的方向上发生弯曲,形成弧形。与矩形薄板类似,这种弯曲程度较 小,也称为小挠度弯曲。在圆形薄板中,各个方向的弯曲程度基本相同,因此圆心位置的应力最大。
实例三:不规则形状薄板的弯曲
总结词
不规则形状薄板在受到垂直于其平面的力时,会发生小挠度弯曲。
详细描述
不规则形状薄板在受到垂直于其平面的力时,会在力的方向上发生弯曲,形成弧形。与矩形和圆形薄 板类似,这种弯曲程度较小,也称为小挠度弯曲。不规则形状薄板的弯曲情况较为复杂,需要考虑各 个方向的弯曲程度以及应力分布。
05
结论与展望
研究结论
结论一
弹性薄板在受到小挠度弯 曲时,其弯曲行为与材料 属性、几何尺寸等因素密 切相关。
结论二
通过理论分析和数值模拟, 我们得到了弹性薄板在小 挠度弯曲下的变形规律和 应力分布。
结论三
实验结果与理论预测和数 值模拟结果基本一致,验 证了理论的正确性和数值 方法的可靠性。小的单元,对每 个单元进行弯曲分析,通过求解每个 单元的平衡方程得到整体的挠度分布。
对于某些特定形状和载荷条件的薄板, 可以通过解析方法直接求解弯曲微分 方程,得到挠度分布的精确解。
板壳理论 弹性薄板弯曲的基本理论(精编荟萃)

(2)全部非零的应力分量为9个(x,y,z,xy= yx,xz=zx,yz=zy),应变分量为3个( ex,ey, gxy)。
(3)注意计算中的错误。
精编荟萃
24
第一章 弹性薄板弯曲的基本理论
§1.5 四边简支矩形板的一般解
薄板横向弯曲的微分方程是
D 2 2 w
4w
D
(1.3.5)
精编荟萃
4
第一章 弹性薄板弯曲的基本理论
在薄板弯曲的近似理论中,可以将(1.3.5)中的 后两个条件合并为一个。
图1.5 边精界编荟上萃的扭矩
5
第一章 弹性薄板弯曲的基本理论
考虑任一边界(不一定是自由边界)上所受的扭矩Myx。 在微段CD上:
内力Myxdx
在微段DE上:
解:(1)薄板的微分方程
D 2 2 w
(2)边界条件
4w
D
x
4
2
4w x 2y 2
4w
y 4
q
设四边简支矩形薄板在角点B处发生了相对于基准
面的沉陷,沉陷大小为x,则BC边和AB边的挠度是
x
x
w y, w x
xa b
yb a
(1.4.7)
在这两个边界上还有薄板弯矩的边界条件
M x xa M y yb 0
在OA边和OC边,边界条件是
(1.4.8)
w x0 0 , M x x0 0 w y0 0 , M精y 编y荟0萃 0
(1.4.9) 19
第一章 弹性薄板弯曲的基本理论
(3)取满足边界条件挠度函数
取薄板的挠度曲线函数为
w x xy
(3)注意计算中的错误。
精编荟萃
24
第一章 弹性薄板弯曲的基本理论
§1.5 四边简支矩形板的一般解
薄板横向弯曲的微分方程是
D 2 2 w
4w
D
(1.3.5)
精编荟萃
4
第一章 弹性薄板弯曲的基本理论
在薄板弯曲的近似理论中,可以将(1.3.5)中的 后两个条件合并为一个。
图1.5 边精界编荟上萃的扭矩
5
第一章 弹性薄板弯曲的基本理论
考虑任一边界(不一定是自由边界)上所受的扭矩Myx。 在微段CD上:
内力Myxdx
在微段DE上:
解:(1)薄板的微分方程
D 2 2 w
(2)边界条件
4w
D
x
4
2
4w x 2y 2
4w
y 4
q
设四边简支矩形薄板在角点B处发生了相对于基准
面的沉陷,沉陷大小为x,则BC边和AB边的挠度是
x
x
w y, w x
xa b
yb a
(1.4.7)
在这两个边界上还有薄板弯矩的边界条件
M x xa M y yb 0
在OA边和OC边,边界条件是
(1.4.8)
w x0 0 , M x x0 0 w y0 0 , M精y 编y荟0萃 0
(1.4.9) 19
第一章 弹性薄板弯曲的基本理论
(3)取满足边界条件挠度函数
取薄板的挠度曲线函数为
w x xy
弹性力学及有限单元法邵国建薄板弯曲问题

第九章 薄板弯曲问题
⑵ 薄板弯曲问题的物理方程(b)与平面
应力问题的物理方程相同。但沿板厚方向,
对于
平x面,应y ,力 问xy ,题的应力为均匀
分布,合成轴力
Nx , N y , Nxy;
而薄板弯曲问题的应力为线性分布,在中
面为0,合成弯矩 M x ,M和y扭矩 。M xy
第九章 薄板弯曲问题
因此,中面在变形后,其线段和面积在 xy 面上的投影形状保持不变。
第九章 薄板弯曲问题
类似于梁的弯曲理论,在薄板弯曲问题 中提出了上述3个计算假定,并应用这3个 计算假定,简化空间问题的基本方程,建立 了小挠度薄板弯曲理论。
实践证明,只要是小挠度的薄板,薄板 的弯曲理论就可以应用,并具有足够的精 度。
zx 0, zy 0 .
(a)
并在空间问题的物理方程中,略去 σ z引起
的形变项。因此,当略去 z , xz和 zy 后,
薄板弯曲问题的物理方程为
x
1 E
(σx
σy ),
y
1 E
(σ y
σx ),
xy
2(1 E
) xy.
(b)
第九章 薄板弯曲问题
说明: (1) 在薄板弯曲问题中,略去了次要应 力引起的形变; 但在平衡条件中,仍考虑它 们的作用。
第九章 薄板弯曲问题
具体推导如下:
1. 取挠度 w w(为x基, y本) 未知函数。应用几
何方程及计算假定1,
εz
w z
0, w
w( x,
y).
第九章 薄板弯曲问题
2. 将 u, 用v 表w示。
应用几何方程及计算假定2, zx 0, zy 0,