电磁感应定律——单杆+导轨模型(含思路分析)
电磁感应中的单杆模型

一、 单杆模型【破解策略】 单杆问题是电磁感应与电路、力学、能量综合应用的体现,因此相关问题应从以下几个角度去分析思考:(1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。
(2)电学角度:判断产生电磁感应现象的那一部分导体(电源)→利用t NE ∆∆=φ或BLv E =求感应动电动势的大小→利用右手定则或楞次定律判断电流方向→分析电路结构→画等效电路图。
(3)力能角度:电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。
00≠v 00=v示意图单杆ab 以一定初速度0v 在光滑水平轨道上滑动,质量为m ,电阻不计,杆长为L轨道水平、光滑,单杆ab 质量为m ,电阻不计,杆长为L轨道水平光滑,杆ab 质量为m ,电阻不计,杆长为L ,拉力F 恒定力 学 观 点导体杆以速度v 切割磁感线产生感应电动势BLv E =,电流R BLvR E I ==,安培力RvL B BIL F 22==,做减速运动:↓↓⇒a v ,当0=v 时,0=F ,0=a ,杆保持静止S 闭合,ab 杆受安培力R BLE F =,此时mR BLE a =,杆ab 速度↑⇒v 感应电动势↓⇒↑⇒I BLv 安培力↓⇒=BIL F 加速度↓a ,当E E =感时,v 最大,且2222L B BLIR L B FR v m ==BL E=开始时m F a =,杆ab 速度↑⇒v 感应电动势↑⇒↑⇒=I BLv E 安培力↑=BIL F 安由a F F m =-安知↓a ,当0=a 时,v 最大,22L B FR v m =图 像 观 点能 量 观 点动能全部转化为内能: 2021mv Q = 电能转化为动能 221m mv W 电 F 做的功中的一部分转化为杆的动能,一部分产热:221m F mv Q W += 1.如图12—2一l2所示,abcd 是一个固定的U 形金属框架,ab 和cd 边都很长,bc 长为l ,框架的电阻不计,ef 是放置在框架上与bc 平行的导体杆,它可在框架上自由滑动(摩擦可忽略),它的电阻为R ,现沿垂直于框架平面的方向加一恒定的匀强磁场,磁感应强度为B ,方向垂直于纸面向里,已知当以恒力F 向右拉导体杆ef 时,导体杆最后匀速滑动,求匀速滑动时的速度.2.两根光滑的足够长的直金属导轨MN 、''N M 平行置于竖直面内,导轨间距为L ,导轨上端接有阻值为R的电阻,如图1所示。
电磁感应中的“杆+导轨”类问题(3大模型)(解析版)

电磁感应中的“杆+导轨”类问题(3大模型)电磁感应“杆+导轨”模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:模型一 单杆+电阻+导轨模型[初建模型][母题] 如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。
[解析] (1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BL v ,回路中的感应电流I =ER +R杆所受的安培力F =BIL 根据牛顿第二定律有mg sin θ-B 2L 2v2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。
(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12m v m 2又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2θB 4L 4。
[答案] (1)g sin θ,方向沿导轨平面向下 2mgR sin θB 2L 2,方向沿导轨平面向下 (2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4[内化模型]单杆+电阻+导轨四种题型剖析开始时a =g sin α,B L[变式] 此题若已知金属杆与导轨之间的动摩擦因数为μ。
现用沿导轨平面向上的恒定外力F 作用在金属杆cd 上,使cd 由静止开始沿导轨向上运动,求cd 的最大加速度和最大速度。
核心素养微专题6 电磁感应中的“杆+导轨”模型

(1)若涉及变力作用下运动问题,可选用动量守恒和能量守恒的方法解决。
(2)若涉及恒力或恒定加速度,一般选用动力学的观点。若涉及运动时间
问题也可选用动量定理求解。
17
二轮 ·物理
[示例3] 如图所示,在大小为B的匀强磁场区域内跟磁场方向垂直的水 平面中有两根固定的足够长的金属平行导轨,在导轨上面平放着两根导 体棒ab和cd,两棒彼此平行,构成一矩形回路。导轨间距为l,导体棒的 质量都为m,电阻都为R,导轨部分电阻可忽略不计。设导体棒可在导 轨上无摩擦地滑行,初始时刻ab棒静止,给cd棒一个向右的初速v0,求: (1)当cd棒速度减为0.8v0时的加速度大小; (2)从开始运动到最终稳定,电路中产生的电能; (3)两棒之间距离增加量Δx的上限。
×mgsin θ=ma,解得加速度大小为 2.5 m/s2,B 正确;金属杆滑至底端
的整个过程中,整个回路中产生的焦耳热为 mgh-12mv2m,电阻 R 产生的
13
二轮 ·物理
焦耳热一定小于 mgh-21mvm2 ,C 错误;金属杆达到最大速度后,根据受 力平衡可得 mgsin θ=F 安=BIL,得 I=mgBsiLn θ=neSv-,得v-=ρgnseiBn θ, 其中 n 为单位体积的电子数,ρ 为金属杆的密度,所以杆中定向运动的 电荷沿杆长度方向的平均速度与杆的粗细无关,D 正确。 [答案] BD
8
二轮 ·物理
⑦ ⑧
二轮 ·物理
2.单杆“倾斜导轨”模型 匀强磁场与导轨垂直,磁感应强度为 B,导轨间距 L,导体棒 质量 m,电阻 R,导轨光滑,电阻不计(如图)
物理 模型
9
二轮 ·物理
棒 ab 由静止释放后下滑,此时 a=gsin α,棒 ab 速度 v↑→
热点专题系列(六) 电磁感应中的“杆和导轨”模型

热点专题系列(六) 电磁感应中的“杆和导轨”模型热点概述:电磁感应中的“杆-轨”运动模型,是导体切割磁感线运动过程中动力学与电磁学知识的综合应用,此类问题是高考命题的重点。
[热点透析]单杆模型初态v0≠0v0=0示意图质量为m、电阻不计的单杆ab以一定初速度v0在光滑水平轨道上滑动,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定续表初态v0≠0v0=0运动分析导体杆做加速度越来越小的减速运动,最终杆静止当E感=E时,v最大,且v m=EBL,最后以v m匀速运动当a=0时,v最大,v m=FRB2L2,杆开始匀速运动Δt时间内流入电容器的电荷量Δq=CΔU=CBLΔv电流I=ΔqΔt=CBLΔvΔt=CBLa安培力F安=BLI=CB2L2a F-F安=ma,a =Fm+B2L2C,所以杆以恒定的加速度匀加速运动能量分析动能转化为内能,12m v2=Q电能转化为动能和内能,E电=12m v2m+Q外力做功转化为动能和内能,W F=12m v2m+Q外力做功转化为电能和动能,W F=E电+12m v2注:若光滑导轨倾斜放置,要考虑导体杆受到重力沿导轨斜面向下的分力作用,分析方法与表格中受外力F时的情况类似,这里就不再赘述。
(2020·山东省聊城市一模)(多选)如图所示,宽为L的水平光滑金属轨道上放置一根质量为m的导体棒MN,轨道左端通过一个单刀双掷开关与一个电容器和一个阻值为R的电阻连接,匀强磁场的方向垂直于轨道平面向里,磁感应强度大小为B,电容器的电容为C,金属轨道和导体棒的电阻不计。
现将开关拨向“1”,导体棒MN在水平向右的恒力F作用下由静止开始运动,经时间t0后,将开关S拨向“2”,再经时间t,导体棒MN恰好开始匀速向右运动。
电磁感应中的“杆 导轨”类问题(3大模型)解题技巧

辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:类型一:单杆+电阻+导轨模型类【初建模型】【例题1】(2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。
【思路点拨】:【答案】:(1)g sin θ,方向沿导轨平面向下;2mgR sin θB 2L 2,方向沿导轨平面向下;(2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4【解析】:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv 回路中的感应电流I =ER +R杆所受的安培力F =BIL根据牛顿第二定律有mg sin θ-B 2L 2v2R =ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。
(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12mv m 2又Q杆=12Q总,所以Q杆=12mgx sin θ-m3g2R2sin2θB4L4。
【内化模型】单杆+电阻+导轨四种题型剖析【变式】:此题若已知金属杆与导轨之间的动摩擦因数为μ。
电磁感应中的“杆+导轨”模型

电磁感应中的“杆+导轨”模型电磁感应中的“杆+导轨”模型一、单棒模型阻尼式:在单棒模型中,导体棒相当于电源,根据洛伦兹力的公式,可以得到安培力的特点为阻力,并随速度减小而减小,加速度随速度减小而减小,最终状态为静止。
根据能量关系、动量关系和瞬时加速度,可以得到公式B2l2v R rF和q mv/Bl,其中q表示流过导体棒的电荷量。
需要注意的是,当有摩擦或者磁场方向不沿竖直方向时,模型的变化会受到影响。
举例来说,如果在电阻不计的光滑平行金属导轨固定在水平面上,间距为L、导轨左端连接一阻值为R的电阻,整个导轨平面处于竖直向下的磁感应强度大小为B的匀强磁场中,一质量为m的导体棒垂直于导轨放置,a、b之间的导体棒阻值为2R,零时刻沿导轨方向给导体棒一个初速度v,一段时间后导体棒静止,则零时刻导体棒的加速度为0,零时刻导体棒ab两端的电压为BLv,全过程中流过电阻R的电荷量为mv/Bl,全过程中导体棒上产生的焦耳热为0.二、发电式在发电式中,导体棒同样相当于电源,当速度为v时,电动势E=Blv。
根据安培力的特点,可以得到公式22Blv/l=Blv/(R+r)。
加速度随速度增大而减小,最终特征为匀速运动。
在稳定后的能量转化规律中,F-BIl-μmg=m*a,根据公式可以得到a=-(F-μmg)/m、v=0时,有最大加速度,a=0时,有最大速度。
需要注意的是,当电路中产生的焦耳热为mgh时,电阻R中产生的焦耳热也为mgh。
1.如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。
整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆cd由静止释放,下滑距离x时达到最大速度。
重力加速度为g,导轨电阻不计,杆与导轨接触良好。
求:1)杆cd下滑的最大加速度和最大速度;2)上述过程中,杆上产生的热量。
高二物理:电磁感应中的“杆+导轨”模型

转到解析
3.规律方法
解决此类问题的分析要抓住三点 (1)杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力 为零); (2)整个电路产生的电能等于克服安培力所做的功; (3)电磁感应现象遵从能量守恒定律。
(1)电阻R消耗的功率; (2)水平外力的大小。
答案
B2l2v2 (1)
B2 (2)
l2v+μmg
R
R
转到解析
【思维训练2】(2016·泰州一模)如图13甲,MN、PQ两条平行的光滑 金属轨道与水平面成θ=37°角固定,M、P之间接电阻箱R,导轨所在 空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B= 0.5 T。质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为 r。现从静止释放杆ab,测得最大速度为vm。改变电阻箱的阻值R,得 到vm与R的关系如图乙所示。已知轨距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计。求:(1)杆ab下滑过程中感应电流的方 向及R=0时最大感应电动势E的大小;
2.典例剖析
【思维训练1】(2015·海南单科,13)如图12,两平行金属导轨位于同 一水平面上,相距l,左端与一电阻R相连;整个系统置于匀强磁场中, 磁感应强度大小为B,方向竖直向下。一质量为m的导体棒置于导轨上 ,在水平外力作用下沿导轨以速率v匀速向右滑动,滑动过程中始终保 持与导轨垂直并接触良好。已知导体棒与导轨间的动摩擦因数为μ,重 力加速度大小为g,导轨和导体棒的电阻均可忽略。求
目录页
Contents Page
物理建模:电磁感应 中的“杆+导轨”模型
(完整版)高分策略之电磁感应中的杆+导轨模型

电磁感应现象中的杆4导轨模型一、单棒问题、含容式单棒问题三、无外力双棒问题竇力愣况分析动力学观点 *动量现点 运动情况伽能冒观点 牛輛定律 平衡羞件动能定理〕 幡■守恒无外力等距式1¥杆1做a渐小的加速运动杆2做a渐小的减速运动V1=V2I = 0无外力不等距式» 1杆1做a渐小的减速运动杆2做a渐小的加速运动a= 0I = 0L1V1 = L2V2四、有外力双棒问题题型一阻尼式单棒模型如图。
1 •电路特点:导体棒相当于电源。
4.运动特点:速度如图所示。
a减小的减速运动基本模型运动特点有外力等距式i厂F12杆1做a渐大的加速运动杆2做a渐小的加速运动有外力不等距式杆1做a渐小的加速运动杆2做a渐大的加速运动最终特征a i=a2, A v 恒定I恒定a i M a2, a i、a2恒定I恒定2•安培力的特点:安培力为阻力,并随速度减小而减小。
F B=BII= B+r3.加速度特点:加速度随速度减小而减小,a==5 •最终状态:静止 6.三个规律(1)能量关系:「'• ■ , -0 = Q ,=【典例1】如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为 L 的区域内,那么(【答案】B由上述二式可得' ,- •,即B 选项正确。
【典例2】如图所示,AB 杆受一冲量作用后以初速度 V 0=4m/s 沿水平面内的固定轨道运动,经一段时间后而停止. AB 的质量为m=5g 导轨宽为L=0.4m ,电阻为R=2Q ,其余的电阻不计,磁 感强度B=0.5T ,棒和导轨间的动摩擦因数为卩=0.4 ,测得杆从运动到停止的过程中通过导线的(2)动量关系:BII t 0 mv 0(3)瞬时加速度: a ==-有一个边长为a ( a<L )的正方形闭合线圈以初速V 0垂直磁场边界滑过磁场后速度变为V ( V<V 0)A. 完全进入磁场中时线圈的速度大于( v o +v ) /2B. 安全进入磁场中时线圈的速度等于( V o +V ) /2C. 完全进入磁场中时线圈的速度小于(V o +V ) /2D. 以上情况A B 均有可能,而C 是不可能的【解析】设线圈完全进入磁场中时的速度为对于线圈进入磁场的过程,据动量定理可得:对于线圈穿出磁场的过程,据动量定理可得:V x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“单杆+导轨”模型
1. 单杆水平式(导轨光滑)
注:加速度a的推导,a=F
合/m(牛顿第二定律),F
合
=F-F
安
,F
安
=BIL,I=E/R
整合一下即可得到答案。
v变大之后,根据上面得到的a的表达式,就能推出a变小
这里要注意,虽然加速度变小,但是只要和v同向,就是加速运动,是a减小的加速运动(也就是速度增加的越来越慢,比如1s末速度是1,2s末是5,3s末是6,4s末是6.1 ,每秒钟速度的增加量都是在变小的)
2.单杆倾斜式(导轨光滑)
mg
最大
【典例1】如图所示,足够长的金属导轨固定在水平面上,金属导轨宽度L =1.0 m ,导轨上放有垂直导轨的金属杆P ,金属杆质量为m =0.1 kg ,空间存在磁感应强度B =0.5 T 、竖直向下的匀强磁场。
连接在导轨左端的电阻R =3.0 Ω,金属杆的电阻r =1.0 Ω,其余部分电阻不计。
某时刻给金属杆一个水平向右的恒力F ,金属杆P 由静止开始运动,图乙是金属杆P 运动过程的v -t 图象,导轨与金属杆间的动摩擦因数μ=0.5。
在金属杆P 运动的过程中,第一个2 s 内通过金属杆P 的电荷量与第二个2 s 内通过P 的电荷量之比为3∶5。
g 取10 m/s 2。
求:
(1)水平恒力F 的大小;
(2)前4 s 内电阻R 上产生的热量。
【答案】 (1)0.75 N (2)1.8 J
【解析】 (1)由图乙可知金属杆P 先做加速度减小的加速运动,2 s 后做匀速直线运动
当t =2 s 时,v =4 m/s ,此时感应电动势E =BLv
感应电流I =
E R +r
安培力F ′=BIL =B 2L 2v R +r 根据牛顿运动定律有F -F ′-μmg =0
解得F =0.75 N 。
前4 s内由能量守恒定律得
F(x1+x2)=1
2mv
2+μmg(x
1
+x2)+Q r+Q R
其中Q r∶Q R=r∶R=1∶3
解得Q R=1.8 J。
注:第二问的思路分析,要求R上产生的热量,就是焦耳热,首先想到的是公式Q=I2Rt,但是在这里,前2s的运动过程中,I是变化的,而且也没办法求出I 的有效值来(电荷量对应的是电流的平均值,求焦耳热要用有效值,两者不一样),所以这个思路行不通。
焦耳热本身也是一种能量,直接用公式求不出来,就应该用能量转化的方式分析,也就是动能定理,能量守恒之类的,解析里用的就是能量守恒,F对这个系统做的功转化为了系统的能量,包括动能和热能,热能分焦耳热和摩擦生热,焦耳热Q就是电阻上产生的热量(电流做功),摩擦生热对应摩擦力做功。
即可列式
F(x1+x2)=1
2mv
2+μmg(x
1
+x2)+Q r+Q R
其中Q r∶Q R=r∶R=1∶3
这时候会发现位移X是不知道的,此时发现还有电荷量那个条件没有用到,肯定所有条件都是有用的,所以就写一下电荷量表达式,应该就能够推导到位移上去
q=>磁通量变化量BS=>由S=长✖宽=>位移
这就是基本的思路,基本上在这类题目里出现求焦耳热的,都是利用能量的方式,肯定就要求做功,因为功能是直接关联的嘛,而如果此时题目条件里有电荷量q 的话,就是通过转化来求位移x的,这是目前常见的考查方式,下面斜面上的题目,和这道题分析是类似的,可以练习一下。
【典例2】如图所示,MN、PQ是间距l为0.5 m的足够长的平行导轨,NQ⊥MN,导轨的电阻均不计.导轨平面与水平面间的夹角θ为37°,NQ间连接有一个R为4 Ω的电阻.有一匀强磁场垂直于导轨平面且方向向上,磁感应强度B0为1 T.将一根质量m为0.05 kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好.现由静止释放金属棒,当金属棒滑行至cd处时达到稳定速度,已知在此过程中通过金属棒截面的电荷量q为0.2 C,且金属棒的加速度a与速度v 的关系如图所示,设金属棒沿导轨向下运动过程中始终与NQ平行.求:
(1)金属棒与导轨间的动摩擦因数μ;
(2)cd离NQ的距离x;
(3)金属棒滑行至cd处的过程中,电阻R上产生的热量.(sin 37°=0.6,cos 37°=0.8.g取10 m/s2)
【答案】(1)0.5(2)2m(3)0.08J
【解析】
(1)由乙图知,当v=0时,a=2m/s2.由牛顿第二定律得:
mgsinθ﹣μmgcosθ=ma
代入数据解得:μ=0.5
稳定时金属棒做匀速运动,受力平衡,可得:mgsinθ=F A+μmgcosθ代入数据解得:r=1Ω
在此过程中通过金属棒截面的电量为:
又磁通量的变化量为:△Φ=B0L•s
代入数据解得:s=2m
(3)棒下滑的过程中重力、摩擦力与安培力做功,得:
mgh﹣μmgs•cos37°﹣W F=mv m2﹣0
=W F;
回路中产生的总焦耳热为:Q
总
电阻R上产生的热量为:Q R=Q总;
代入数据得:Q R=0.08J----1分。