高中物理模型-电磁场中的单杆模型

合集下载

高考物理复习 电磁感应杆模型

高考物理复习 电磁感应杆模型

5.最大速度vm 电容器充电量: Q0 CE
放电结束时电量: Q CU CBlvm
电容器放电电量: Q Q0 Q CE CBlvm
对杆应用动量定理:mvm BIl t BlQ
vm

m
BlCE B2l2C
题型五 电容放电式:
6.达最大速度过程中 的两个关系
v1=0时:电流最大,
Im

Blv0 R1 R2
v2=v1时:电流 I=0
3.两棒的运动情况
安培力大小:
两棒的相对速度变小,感应电 流变小,安培力变小.棒1做加 速度变小的加速运动,棒2做
加速度变小的减速运动,最 终两棒具有共同速度。
随着棒2的减速、棒1的加速,两棒 的相对速度v2-v1变小,回路中电流 也变小。
4.变化
(1)两棒都受外力作用
(2)外力提供方式变化
题型五 电容放电式:
4.最终特征:匀速运 动,但此时电容器带 电量不为零
1.电路特点 电容器放电,相当于电源;导体棒受安 培力而运动。
2.电流的特点 电容器放电时,导体棒在安培力作用下
开始运动,同时产生阻碍放电的反电动
势,导致电流减小,直至电流为零,此 时UC=Blv 3.运动特点 a渐小的加速运动,最终做匀速运动。
1.电路特点:导体棒相当于电源。
6、三个规律
2.安培力的特点:安培力为阻力, 并随速度减小而减小。
(1)能量关系:
1 2
mv02

0

Q,
QR Qr
F BIL B2l2v Rr
(2)动量关系:BIl t 0 mv0 q n Bl s

R r

电磁感应中单杆模型的特点与规律

电磁感应中单杆模型的特点与规律

电磁感应中单杆模型的特点与规律
(1)动力学观点:
单杆受到水平方向只受向左的安培力,与速度方向相反,因此安培力对杆的运动起到阻碍作用,因此叫阻尼式单杆。

算一下安培力表达式:
安==F安=BIL=BERL=BBLvRL=B2L2vR
则杆的加速度表达式为:
安a=F安m=B2L2vmR 且方向和速度方向相反
由于加速度方向与速度方向相反,所以杆的速度减小,速度减小那么加速度就减小,直到杆停下来。

因此杆做加速度减小减速运动。

(2)能量观点:
杆的动能全部转化为热能,即 Q=12mv02
(3) 动量观点:
根据动量定理,安培力的冲量等于杆动量的变化量。

即:
BI¯LΔt=0−mv0
其中 I¯Δt=q
因此,可以联立以上两个方程可以求出电荷量。

2020高三物理模型组合讲解——电磁场中的单杆模型

2020高三物理模型组合讲解——电磁场中的单杆模型

2020高三物理模型组合讲解——电磁场中的单杆模型秋飏[模型概述]在电磁场中,〝导体棒〞要紧是以〝棒生电〞或〝电动棒〞的内容显现,从组合情形看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有〝平面导轨〞、〝斜面导轨〞〝竖直导轨〞等。

[模型讲解]一、单杆在磁场中匀速运动例1. 如图1所示,R R 125==6ΩΩ,,电压表与电流表的量程分不为0~10V 和0~3A ,电表均为理想电表。

导体棒ab 与导轨电阻均不计,且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。

图1〔1〕当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并使之达到稳固速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,那么现在ab 棒的速度v 1是多少?〔2〕当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳固时,两表中恰有一表满偏,而另一表能安全使用,那么现在作用于ab 棒的水平向右的拉力F 2是多大?解析:〔1〕假设电流表指针满偏,即I =3A ,那么现在电压表的示数为U =IR 并=15V ,电压表示数超过了量程,不能正常使用,不合题意。

因此,应该是电压表正好达到满偏。

当电压表满偏时,即U 1=10V ,现在电流表示数为I U R A 112==并设a 、b 棒稳固时的速度为v 1,产生的感应电动势为E 1,那么E 1=BLv 1,且E 1=I 1(R 1+R 并)=20Va 、b 棒受到的安培力为F 1=BIL =40N解得v m s 11=/〔2〕利用假设法能够判定,现在电流表恰好满偏,即I 2=3A ,现在电压表的示数为U I R 22=并=6V 能够安全使用,符合题意。

由F =BIL 可知,稳固时棒受到的拉力与棒中的电流成正比,因此F I I F N N 2211324060===×。

二、单杠在磁场中匀变速运动例2. 如图2甲所示,一个足够长的〝U 〞形金属导轨NMPQ 固定在水平面内,MN 、PQ 两导轨间的宽为L =0.50m 。

完整版电磁感应定律单杆导轨模型含思路分析

完整版电磁感应定律单杆导轨模型含思路分析

单杆+导轨”模型1.单杆水平式(导轨光滑)注:加速度a的推导,a=F合/m (牛顿第二定律),F合=F-F安,F安=BIL ,匸E/R 整合一下即可得到答案。

v变大之后,根据上面得到的a的表达式,就能推出a变小这里要注意,虽然加速度变小,但是只要和v同向,就是加速运动,是a减小的加速运动(也就是速度增加的越来越慢,比如1s末速度是1, 2s末是5, 3s末是6, 4s末是6.1,每秒钟速度的增加量都是在变小的)2.单杆倾斜式(导轨光滑)BLv T【典例1】如图所示,足够长的金属导轨固定在水平面上,金属导轨宽度L二1.0 m,导轨上放有垂直导轨的金属杆P,金属杆质量为m= 0.1 kg,空间存在磁感应强度B= 0.5 T、竖直向下的匀强磁场。

连接在导轨左端的电阻R= 3.0約金属杆的电阻r 二1.0約其余部分电阻不计。

某时刻给金属杆一个水平向右的恒力F, 金属杆P由静止开始运动,图乙是金属杆P运动过程的v—t图象,导轨与金属杆间的动摩擦因数尸0.5。

在金属杆P运动的过程中,第一个2 s内通过金属杆P的电荷量与第二个2 s内通过P的电荷量之比为3 : 5。

g取10 m/s2。

求:(1)水平恒力F的大小;⑵前4 s内电阻R上产生的热量。

【答案】(1)0.75 N (2)1.8 J【解析】(1)由图乙可知金属杆P先做加速度减小的加速运动,2 s后做匀速直线运动当t= 2 s时,v= 4 m/s,此时感应电动势E= BLv感应电流1=吕R+ rB2I2v安培力F = BIL =R+ r根据牛顿运动定律有F —F '―卩m= 0解得 F = 0.75 N o过金JI杆p的电荷量厂"二磊^甘十);△型BLx所以尸驚qa为尸的位移)设第一个2 s內金属杆P的位移为Xi ;第二个肚内P的位移为助则二号g,又由于如:血=3 : 5麻立解得«=8mj IL=<8m前4 s内由能量守恒定律得其中 Q r : Q R = r : R = 1 : 3解得 Q R = 1.8 J o注:第二问的思路分析,要求 R 上产生的热量,就是焦耳热,首先想到的是公式Q=l2Rt ,但是在这里,前2s 的运动过程中,I 是变化的,而且也没办法求出I 的有效值来(电荷量对应的是电流的平均值,求焦耳热要用有效值,两者不一样), 所以这个思路行不通。

第87讲 电磁感应中的单杆模型(解析版)

第87讲 电磁感应中的单杆模型(解析版)

第87讲电磁感应中的单杆模型1.(2022•上海)宽L=0.75m的导轨固定,导轨间存在着垂直于纸面且磁感应强度B=0.4T的匀强磁场。

虚线框Ⅰ、Ⅱ中有定值电阻R0和最大阻值为20Ω的滑动变阻器R。

一根与导轨等宽的金属杆以恒定速率向右运动,图甲和图乙分别为变阻器全部接入和一半接入时沿abcda方向电势变化的图像。

求:(1)匀强磁场的方向;(2)分析并说明定值电阻R0在Ⅰ还是Ⅱ中,并且R0大小为多少:(3)金属杆运动时的速率;(4)滑动变阻器阻值为多少时变阻器的功率最大?并求出该最大功率P m。

【解答】解:(1)a点电势比d点电势高,说明导体棒上端为电源正极,导体棒切割磁感线产生感应电流向上,根据右手定则判断得出匀强磁场的方向垂直纸面向里(2)滑动变阻器从全部接入到一半接入电路,回路里电流变大,定值电阻R0上电压变大,图甲的U cd小于图乙的U cd,可以推理得定值电阻在Ⅰ内,滑动变阻器在Ⅱ根据欧姆定律得:甲图中回路电流I甲=1.2R=1.220A=0.06A,乙图中回路电流I乙=1.0R2=1.010A=0.1A甲图中定值电阻R0上电压φ0﹣1.2=0.06R乙图中定值电阻R0上电压φ0﹣1.0=0.1R联立解得:R=5Ω,φ0=1.5V(3)金属杆产生的感应电动势E=BLv,E=φ0联立解得v=φ0BL= 1.50.4×0.75m/s=5m/s(4)根据甲乙两图可知导体棒电阻不计,由闭合电路欧姆定律得I=E R0+R滑动变阻器上的功率p=I2R=E2R(R0+R)2= 2.2525R+R+10,当R=5Ω时,滑动变阻器有最大功率P m=0.1125W答:(1)匀强磁场的方向垂直纸面向里(2)定值电阻R0在Ⅰ中,定值电阻R0=5Ω(3)金属杆运动时的速率为5m/s(4)滑动变阻器阻值为5Ω时变阻器的功率最大,最大功率为0.1125W一.知识回顾1.力学对象和电学对象的相互关系2.能量转化及焦耳热的求法(1)能量转化其他形式的能量――→克服安培力做功电能――→电流做功焦耳热或其他形式的能量(2)求解焦耳热Q的三种方法(纯电阻电路)3.单杆模型质量为m、电阻不计的单杆ab 以一定初速度v0在光滑水平轨道上滑动,两平行导轨间距为l 轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为l轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为l,拉力F恒定轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为l,拉力F恒定导体杆做加速度越来越小的减速运动,最终杆静止当E感=E时,v最大,且v m=EBl,最后以v m匀速运动当a=0时,v最大,v m=FRB2l2,杆开始匀速运动Δt时间内流入电容器的电荷量Δq=CΔU=CBlΔv电流I=ΔqΔt=CBlΔvΔt=CBla安培力F安=IlB=CB2l2aF-F安=ma,a=Fm+B2l2C,所以杆以恒定的加速度匀加速运动电能转化为动能外力做功转化为外力做功转化为二.例题精析题型一:单杆+电阻模型之动态分析(多选)例1.如图所示,MN和PQ是两根互相平行、竖直放置的足够长的光滑金属导轨,电阻不计,匀强磁场垂直导轨平面向里。

电磁场中的单杆模型

电磁场中的单杆模型

二、单杆在磁场中匀变速运动
例2.如图甲所示,一个足够长的“U”形金属导 轨NMPQ固定在水平面内,MN、PQ两导轨间 的宽为L=0.50m。一根质量为m=0.50kg的 均匀金属导体棒ab静止在导轨上且接触良好, abMP恰好围成一个正方形。 该轨道平面处在磁感应强度 大小可以调节的竖直向上的 匀强磁场中。ab棒的电阻为 R=0.10Ω,其它各部分电阻 均不计。开始时,磁感应强 度B0=0.50T。
F<0 方向与x轴相同 ⑦ O

v0 B x
➢ (08全国卷2)24.(19分)如图,一直导体棒质 量为m、长为l、电阻为r,其两端放在位于水平面内 间距也为l的光滑平行导轨上,并与之密接;棒左侧 两导轨之间连接一可控制的负载电阻(图中未画 出);导轨置于匀强磁场中,磁场的磁感应强度大 小为B,方向垂直于导轨所在平面。开始时,给导 体棒一个平行于导轨的初速度v0。在棒的运动速度 由v0减小至v1的过程中,通过控制负载电阻的阻值 使棒中的电流强度I保持恒定。
(1)若保持磁感应强度B0的大小不变,从 t=0 时刻开始,给ab棒施加一个水平向右 的拉力,使它做匀加速直线运动。此拉力F 的大小随时间t变化关系如图乙所示。求ab 棒做匀加速运动的加速度及ab棒与导轨间 的滑动摩擦力。
➢(2)若从t=0开始,使磁感应强度的
大小从B0开始以
B t
=0.20T/s的变化
➢C.沿运动方向作用在导体棒ab上的外力
的功率之比为1:2
➢D.流过任一横截面的电量之比为1:2
a
a
AB R
v Bl
R
EI
b
b
x
一般方法
→判断产生电磁感应现象的那一部分 导体(电源)
→利用 E N 或E=BLv求感应电动 势的大小 t

高中物理电磁感应单杆模型

高中物理电磁感应单杆模型电磁感应单杆模型是一种简单的物理模型,用来模拟电磁感应的过程。

电磁感应单杆模型由一根铁杆、一根线圈和一个电流源组成。

当电流源通过线圈时,线圈内产生磁场,并使铁杆上的电流流动。

电磁感应单杆模型可以用来解释许多电磁现象,比如变压器的工作原理、电动机的原理等。

在高中物理课程中,学生需要掌握电磁感应单杆模型的基本原理,并能够使用这个模型解决实际问题。

例如,学生可以使用电磁感应单杆模型来解释电动机的工作原理,也可以使用它来分析变压器的输入输出电压、电流的变化情况。

总之,电磁感应单杆模型是一个简单而有效的物理模型。

高考物理二轮专题复习 模型讲解 电磁场中的单杆模型

2013年高考二轮专题复习之模型讲解电磁场中的单杆模型[模型概述]在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。

[模型讲解]一、单杆在磁场中匀速运动例1.如图1所示,R R 125==6ΩΩ,,电压表与电流表的量程分别为0~10V 和0~3A ,电表均为理想电表。

导体棒ab 与导轨电阻均不计,且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。

图1(1)当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并使之达到稳定速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab 棒的速度v 1是多少?(2)当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳定时,两表中恰有一表满偏,而另一表能安全使用,则此时作用于ab 棒的水平向右的拉力F 2是多大? 解析:(1)假设电流表指针满偏,即I =3A ,那么此时电压表的示数为U =IR 并=15V ,电压表示数超过了量程,不能正常使用,不合题意。

因此,应该是电压表正好达到满偏。

当电压表满偏时,即U 1=10V ,此时电流表示数为I U R A 112==并设a 、b 棒稳定时的速度为v 1,产生的感应电动势为E 1,则E 1=BLv 1,且E 1=I 1(R 1+R 并)=20Va 、b 棒受到的安培力为F 1=BIL =40N解得v m s 11=/(2)利用假设法可以判断,此时电流表恰好满偏,即I 2=3A ,此时电压表的示数为U I R 22=并=6V 可以安全使用,符合题意。

由F =BIL 可知,稳定时棒受到的拉力与棒中的电流成正比,所以F I I F N N 2211324060===×。

二、单杠在磁场中匀变速运动例2.如图2甲所示,一个足够长的“U ”形金属导轨NMPQ 固定在水平面内,MN 、PQ 两导轨间的宽为L =0.50m 。

电磁场中的单杆模型

电磁场中的单杆模型在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。

一、单杆在磁场中匀速运动例1、如图1所示,,电压表与电流表的量程分别为0~10V和0~3A,电表均为理想电表。

导体棒ab与导轨电阻均不计,且导轨光滑,导轨平面水平,ab棒处于匀强磁场中。

图1(1)当变阻器R接入电路的阻值调到30,且用=40N的水平拉力向右拉ab棒并使之达到稳定速度时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab棒的速度是多少?(2)当变阻器R接入电路的阻值调到,且仍使ab棒的速度达到稳定时,两表中恰有一表满偏,而另一表能安全使用,则此时作用于ab棒的水平向右的拉力F2是多大?解析:(1)假设电流表指针满偏,即I=3A,那么此时电压表的示数为U==15V,电压表示数超过了量程,不能正常使用,不合题意。

因此,应该是电压表正好达到满偏。

当电压表满偏时,即U1=10V,此时电流表示数为设a、b棒稳定时的速度为,产生的感应电动势为E1,则E1=BLv1,且E1=I1(R1+R并)=20Va、b棒受到的安培力为F1=BIL=40N解得(2)利用假设法可以判断,此时电流表恰好满偏,即I2=3A,此时电压表的示数为=6V可以安全使用,符合题意。

由F=BIL可知,稳定时棒受到的拉力与棒中的电流成正比,所以。

二、单杠在磁场中匀变速运动例2、如图2甲所示,一个足够长的“U”形金属导轨NMPQ固定在水平面内,MN、PQ两导轨间的宽为L=0.50m。

一根质量为m=0.50kg的均匀金属导体棒ab静止在导轨上且接触良好,abMP恰好围成一个正方形。

该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中。

ab棒的电阻为R=0.10Ω,其他各部分电阻均不计。

开始时,磁感应强度。

图2(1)若保持磁感应强度的大小不变,从t=0时刻开始,给ab棒施加一个水平向右的拉力,使它做匀加速直线运动。

高中物理模型-电磁场中的单杆模型

模型组合讲解——电磁场中的单杆模型[模型概述]在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。

[模型讲解]一、单杆在磁场中匀速运动例1. ( 河南省实验中学预测题)如图1所示,R R 125==6ΩΩ,,电压表与电流表的量程分别为0~10V 和0~3A ,电表均为理想电表。

导体棒ab 与导轨电阻均不计,且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。

图1(1)当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并使之达到稳定速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab 棒的速度v 1是多少?(2)当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳定时,两表中恰有一表满偏,而另一表能安全使用,则此时作用于ab 棒的水平向右的拉力F 2是多大? 解析:(1)假设电流表指针满偏,即I =3A ,那么此时电压表的示数为U =IR 并=15V ,电压表示数超过了量程,不能正常使用,不合题意。

因此,应该是电压表正好达到满偏。

当电压表满偏时,即U 1=10V ,此时电流表示数为I U R A 112==并设a 、b 棒稳定时的速度为v 1,产生的感应电动势为E 1,则E 1=BLv 1,且E 1=I 1(R 1+R 并)=20Va 、b 棒受到的安培力为F 1=BIL =40N解得v m s 11=/(2)利用假设法可以判断,此时电流表恰好满偏,即I 2=3A ,此时电压表的示数为U I R 22=并=6V 可以安全使用,符合题意。

由F =BIL 可知,稳定时棒受到的拉力与棒中的电流成正比,所以F I I F N N 2211324060===×。

二、单杠在磁场中匀变速运动例2. ( 南京市金陵中学质量检测)如图2甲所示,一个足够长的“U ”形金属导轨NMPQ 固定在水平面内,MN 、PQ 两导轨间的宽为L =0.50m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模型组合讲解——电磁场中的单杆模型秋飏[模型概述]在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。

[模型讲解]一、单杆在磁场中匀速运动例1. (2005年河南省实验中学预测题)如图1所示,R R 125==6ΩΩ,,电压表与电流表的量程分别为0~10V 和0~3A 且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。

图1(1)当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并使之达到稳定速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab 棒的速度v 1是多少?(2)当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳定时,两表中恰ab 棒的水平向右的拉力F 2是多大? 解析:(1)假设电流表指针满偏,即I =3A ,那么此时电压表的示数为U =IR 并=15V , 当电压表满偏时,即U 1=10V ,此时电流表示数为I U R A 112==并设a 、b 棒稳定时的速度为v 1,产生的感应电动势为E 1,则E 1=BLv 1,且E 1=I 1(R 1+R 并)=20Va 、b 棒受到的安培力为F 1=BIL =40N解得v m s 11=/(2)利用假设法可以判断,此时电流表恰好满偏,即I 2=3A ,此时电压表的示数为U I R 22=并=6V 可以安全使用,符合题意。

由F =BIL 可知,稳定时棒受到的拉力与棒中的电流成正比,所以F I I F N N 2211324060===×。

二、单杠在磁场中匀变速运动例2. (2005年南京市金陵中学质量检测)如图2甲所示,一个足够长的“U ”形金属导轨NMPQ 固定在水平面内,MN 、PQ 两导轨间的宽为L =0.50m 。

一根质量为m =0.50kg 的均匀金属导体棒ab 静止在导轨上且接触良好,abMP 恰好围成一个正方形。

该轨道平面ab 棒的电阻为R =0.10Ω,其他各部分电阻均不计。

开始时,磁感应强度B T 0050=.。

图2(1)若保持磁感应强度B 0的大小不变,从t =0时刻开始,给ab 棒施加一个水平向右F 的大小随时间t 变化关系如图2乙所示。

求匀加速运动的加速度及ab 棒与导轨间的滑动摩擦力。

(2)若从t =0开始,使磁感应强度的大小从B 0开始使其以∆∆B t=0.20T/s 的变化率均匀增加。

求经过多长时间ab 棒开始滑动?此时通过ab ab 棒与导轨间的最大静摩擦力和滑动摩擦力相等)解析:(1)当t =0时,F N F F ma f 113=-=,当t =2s 时,F 2=8NF F B B Lat RL ma f 200--= 联立以上式得:a F F R B L tm s F F ma N f =-==-=()/210222141, (2)当F F f 安=时,为导体棒刚滑动的临界条件,则有:B Bt L RL F f ∆∆2= 则B T B B B tt t s ==+=41750,,∆∆.三、单杆在磁场中变速运动例3. (2005年上海高考)如图3行金属导轨相距1m ,导轨平面与水平面成θ=37°角,下端连接阻值为R 的电阻。

匀速磁场方向与导轨平面垂直。

质量为0.2kg 保持良好接触,它们之间的动摩擦因数为0.25。

图3(1)求金属棒沿导轨由静止开始下滑时的加速度大小;(2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8W ,求该速度的大小;(3=2Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向。

(g =10m/s 2,sin37°=0.6,cos37°=0.8)解析:(1)金属棒开始下滑的初速为零,根据牛顿第二定律mg mg ma sin cos θμθ-= ①由①式解得 a m s =42/ ②(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F ,棒在沿导轨方向受力平衡: mg mg F sin cos θμθ--=0 ③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率Fv P = ④由③、④两式解得:v m s =10/ ⑤(3)设电路中电流为I ,两导轨间金属棒的长为l ,磁场的磁感应强度为BI vBl R= ⑥ P I R =2 ⑦由⑥、⑦两式解得 B PR vlT ==04. ⑧ 磁场方向垂直导轨平面向上。

四、变杆问题例4. (2005年肇庆市模拟)如图4所示,边长为L =ABCD 和一金属棒MN 由粗细相同的同种材料制成,每米长电阻为R 0=1Ω/m ,以导线框两条对角线交点O 为圆心,半径r =0.5m 的匀强磁场区域的磁感应强度为B =0.5T ,方向垂直纸面向里且垂直于导线框所在平面,金属棒MN 与导线框接触良好且与对角线AC 平行放置于导线框上。

若棒以v =4m/s 的速度沿垂直于AC 方向向右匀速运动,当运动至AC 位置时,求(计算结果保留二位有效数字):图4(1)棒MN 上通过的电流强度大小和方向;(2)棒MN 所受安培力的大小和方向。

解析:(1)棒MN 运动至AC 位置时,棒上感应电动势为E B r v =2·线路总电阻R L L R =+()20。

MN 棒上的电流I E R= 将数值代入上述式子可得:I =0.41A ,电流方向:N →M(2)棒MN 所受的安培力:F B rI N F A A ==2021.,方向垂直AC 向左。

说明:要特别注意公式E =BLv 中的L 为切割磁感线的有效长度,即在磁场中与速度方向垂直的导线长度。

[模型要点](1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。

(2)电学角度:判断产生电磁感应现象的那一部分导体(电源)→利用E N t =∆Φ∆或E BLv =求感应电动势的大小→利用右手定则或楞次定律判断电流方向→分析电路结构→(3)力能角度:电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。

[误区点拨] 正确应答导体棒相关量(速度、加速度、功率等)最大、最小等极值问题的关键是从力电角度分析导体单棒运动过程;而对于处理空间距离时很多同学总想到动能定律,但对于导体单棒问题我们还可以更多的考虑动量定理。

所以解答导体单棒问题一般是抓住力是改变物体运动状态的原因,通过分析受力,结合运动过程,知道加速度和速度的关系,结合动量定理、能量守恒就能解决。

[模型演练]1. (2005年大联考)如图5所示,足够长金属导轨MN 和PQ 与R 相连,平行地放在水平桌面上。

质量为m 的金属杆ab 可以无摩擦地沿导轨运动。

导轨与ab 杆的电阻不计,导轨宽度为L ,磁感应强度为B 的匀强磁场垂直穿过整个导轨平面。

现给金属杆ab 一个瞬时冲量I 0,使ab 杆向右滑行。

图5(1)回路最大电流是多少?(2)当滑行过程中电阻上产生的热量为Q 时,杆ab 的加速度多大?(3)杆ab 从开始运动到停下共滑行了多少距离?答案:(1)由动量定理I mv 000=-得v I m00= 由题可知金属杆作减速运动,刚开始有最大速度时有最大E BLv m =0,所以回路最大电流:I BLv R BLI mRm ==00 (2)设此时杆的速度为v ,由动能定理有: W mv mv A =-1212202而Q =-W A解之 v I m Q m =-0222 由牛顿第二定律F BIL ma A ==及闭合电路欧姆定律I BLv R =得 a B L v mR B L mRI m Q m ==-22220222 (3)对全过程应用动量定理有:-=-∑BI L t I i ·∆00而I t q i ·∆∑=所以有q I BL=0 又q I t E R t R t t R BLx R=====·∆∆∆Φ∆∆∆Φ 其中x 为杆滑行的距离所以有x I R B L =022。

2. (2005年南通调研)如图6所示,光滑平行的水平金属导轨MNPQ 相距l ,在M 点和P 点间接一个阻值为R 的电阻,在两导轨间OO O O 11''矩形区域内有垂直导轨平面竖直向下、宽为d 的匀强磁场,磁感强度为B r 的导体棒ab ,垂直搁在导轨上,与磁场左边界相距d 0。

现用一大小为F 、水平向右的恒力拉ab 棒,使它由静止开始运动,棒ab 在离开磁场前已经做匀速直线运动(棒ab 与导轨始终保持良好的接触,导轨电阻不计)。

求:图6(1)棒ab 在离开磁场右边界时的速度;(2)棒ab 通过磁场区的过程中整个回路所消耗的电能;(3)试分析讨论ab 棒在磁场中可能的运动情况。

解析:(1)ab 棒离开磁场右边界前做匀速运动,速度为v m ,则有:E Blv I E R rm ==+,对ab0(2)由能量守恒可得:(3)设棒刚进入磁场时速度为v由:棒在进入磁场前做匀加速直线运动,在磁场中运动可分三种情况讨论:,则棒做匀速直线运动;,则棒先加速后匀速;,则棒先减速后匀速。

相关文档
最新文档