2017四川高考文科数学真题及答案

合集下载

2017年全国高考卷文科数学试题及答案详细解析(选择、填空、解答全解全析) 精品

2017年全国高考卷文科数学试题及答案详细解析(选择、填空、解答全解全析)  精品

2017年普通高等学校招生全国统一考试文科数学(必修+选修I)解析版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题 (1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )Ið(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N C M N =∴=【答案】D(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【命题意图】本题主要考查反函数的求法.【解析】由0)y x =≥反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥.【答案】B(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A(B(C(D【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+= ,所以2a b +=【答案】B(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5. 【答案】C(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,只需由P a b ⇒>,且由a b >不能推出P ,可采用逐项验证的方法,对A ,由1a b +>,且1b b +>,所以a b >,但a b >时,并不能得到1a b +>,故答案为A 。

2017年四川高考文科数学试题含答案(Word版)

2017年四川高考文科数学试题含答案(Word版)

2017年普通高等学校招生全国统一考试(四川卷)数 学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。

满分150分。

考试时间120分钟。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

考试结束后,将本试题卷和答题卡一并交回。

第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

第Ⅰ卷共10小题。

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。

1、已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则AB =( )A 、{1,0}-B 、{0,1}C 、{2,1,0,1}--D 、{1,0,1,2}-2、在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。

在这个问题中,5000名居民的阅读时间的全体是( ) A 、总体 B 、个体C 、样本的容量D 、从总体中抽取的一个样本3、为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( )A 、向左平行移动1个单位长度B 、向右平行移动1个单位长度C 、向左平行移动π个单位长度D 、向右平行移动π个单位长度 4、某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高) A 、3 B 、2 C 、3 D 、1 5、若0a b >>,0c d <<,则一定有( )A 、a b d c > B 、a b d c < C 、a b c d > D 、a b c d<6、执行如图的程序框图,如果输入的,x y R ∈,那么输出的S 的最大值为( )A 、0B 、1C 、2D 、3 7、已知0b >,5log b a =,lg b c =,510d=,则下列等式一定成立的是( ) A 、d ac = B 、a cd = C 、c ad = D 、d a c =+侧视图俯视图112222118、如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是60m ,则河流的宽度BC 等于( )A、1)m B、1)mC、1)m D、1)m9、设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )A、 B、 C、 D、10、已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( ) A 、2 B 、3 C、8D第Ⅱ卷 (非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所示的答题区域内作答。

2017年全国高考文科数学试题及答案-全国卷2(最新整理)

2017年全国高考文科数学试题及答案-全国卷2(最新整理)
在直角坐标系 xOy 中,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,曲线 C1 的极坐标方程 为 cos 4 .
(1) M 为曲线 C1 上的动点,点 P 在线段 OM 上,且满足| OM | | OP | 16 ,求点 P 的轨迹 C2 的直角坐标
方程;
(2)设点
A
的极坐标为
(2,
16. ABC 的内角 A, B,C 的对边分别为 a,b, c ,若 2b cos B a cos C c cos A ,则 B
三、解答题:共 70 分。解答应写出文字说明,证明过程或演算步骤,第 17 至 21 题为必考题,每个试题考生都
必须作答。第 22、23 题为选考题,考生根据要求作答。
又过点 P 存在唯一直线垂直于 OQ ,
所以过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F .
(21)(12 分) 解:
(1) f (x) (1 2x x2 )ex
令 f (x) 0 得 x 1 2, x 1 2
当 x (, 1 2) 时, f (x) 0 ;
当 x (1 2, 1 2) 时, f (x) 0 ;
D. 3 3i
3.函数 f (x) sin(2x ) 的最小正周期为 3
A.4
B.2
C.
D.
2
4.设非零向量 a , b 满足 a+b = a-b 则
A. a ⊥ b
B. a = b
C. a ∥ b D. a b
5.若 a
1 ,则双曲线
x2 a2
y2
1的离心率的取值范围是
A.( 2,+)B.( 2,2) C.(1,2) D.(1,2)
B. 2 2

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则( )A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x 轴垂直,点A的坐标是(1,3),则△APF的面积为( )A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0B.1C.2D.38.(5分)函数y=的部分图象大致为( )A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=( )A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。

2017年(文科数学)(新课标Ⅱ)试卷真题+参考答案+详细解析

2017年(文科数学)(新课标Ⅱ)试卷真题+参考答案+详细解析

2017年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合{1,2,3}A =,{2,3,4}B =,则(A B = )A .{1,2,3,4}B .{1,2,3}C .{2,3,4}D .{1,3,4}2.(5分)(1)(2)(i i ++= ) A .1i -B .13i +C .3i +D .33i +3.(5分)函数()sin(2)3f x x π=+的最小正周期为( )A .4πB .2πC .πD .2π 4.(5分)设非零向量a ,b 满足||||a b a b +=-,则( ) A .a b ⊥B .||||a b =C .//a bD .||||a b >5.(5分)若1a >,则双曲线2221x y a-=的离心率的取值范围是( )A.)+∞B.C.D .(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π7.(5分)设x ,y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .98.(5分)函数2()(28)f x ln x x =--的单调递增区间是( ) A .(,2)-∞-B .(,1)-∞-C .(1,)+∞D .(4,)+∞9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的1a =-,则输出的(S = )A .2B .3C .4D .511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .15C .310D .2512.(5分)过抛物线2:4C y x =的焦点F ,3C 于点(M M 在x 轴上方),l 为C 的准线,点N 在l 上,且MN l ⊥,则M 到直线NF 的距离为( ) A 5B .22C .23D .33二、填空题,本题共4小题,每小题5分,共20分 13.(5分)函数()2cos sin f x x x =+的最大值为 .14.(5分)已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = . 15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 . 16.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B = .三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=. (1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .18.(12分)如图,四棱锥P ABCD-中,侧面PAD为等边三角形且垂直于底面ABCD,12AB BC AD==,90BAD ABC∠=∠=︒.(1)证明:直线//BC平面PAD;(2)若PCD∆面积为27,求四棱锥P ABCD-的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量50kg <箱产量50kg旧养殖法 新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较. 附:2()P K K0.050 0.010 0.001 K3.8416.63510.8282()()()()K a b c d a c b d =++++.20.(12分)设O为坐标原点,动点M在椭圆22:12xC y+=上,过M作x轴的垂线,垂足为N,点P满足2NP NM=.(1)求点P的轨迹方程;(2)设点Q在直线3x=-上,且1OP PQ=.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)设函数2()(1)x f x x e =-. (1)讨论()f x 的单调性;(2)当0x 时,()1f x ax +,求实数a 的取值范围.(二)选考题:共10分。

2017年全国新课标1卷高考文科数学真题及答案解析

2017年全国新课标1卷高考文科数学真题及答案解析



1 在点(1,2)处的切线方程为______________. x
【 解 析 】 设 y = f ( x) , 则 f ′( x = ) 2x −
1 , 所 以 f ′(1) = 2 − 1 = 1 . 所 以 在 (1, 2) 处 的 切 线 方 程 为 x2
y − 2 =1 ⋅ ( x − 1) ,即 y= x + 1 .
A S 0 C B
OA ⊥ SC , OB ⊥ SC .因为平面 SAC ⊥ 平面 SBC ,所以 OA ⊥ 平面 SBC .
设 OA = R, VA− SBC =
1 1 1 1 × S ∆SBC × OA = × × 2 R × R × R = R 3 = 9, 所以 R = 3 .所 3 3 2 3
y2 =1 的右焦点,P 是 C 上一点,且 PF 与 x 轴垂直,点 A 的坐标是(1,3).则△APF 3
C.
2 3
D.
3 2
【答案】D 【解析】由 c = a + b = 4 得 c = 2 ,所以 F (2, 0) ,将 x = 2 代入 x −
2 2 2 2
y2 1 ,得 y = ±3 ,所以 PF = 3 , = 3
1 4
B.
π 8
C.
1 2
D.
π 4
【答案】B
1 2 π 【解析】不妨设正方形边长为 1,则 S圆 =π ( ) = ,黑色部分的面积为圆的一半.由几何概型公式可知, 2 4
1 π ⋅ π 选 B. 2 P= 2 4 = . 1 8
5.已知 F 是双曲线 C:x2的面积为 A.
1 3 1 B. 2
2 2
2
B.x1,x2,…,xn 的标准差 D.x1,x2,…,xn 的中位数

2017年全国高考文科数学试题及参考答案-全国卷2

绝密★启用前2017年普通高等学校招生全国统一考试(全国卷2)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,效。

3.1.设集合A B =A.{12,}34,, 2.(1)(2i ++A.1i -3.函数(f x A.4π 4. A.a ⊥5.若1a >,则双曲线2221x y a-=的离心率的取值范围是A.∞)B.)C.(1D.12(,)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90πB.63πC.42πD.36π7.设,x y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。

则2z x y =+的最小值是A.-15B.-9C.1 D98.函数2()ln(28)f x x x =--的单调递增区间是A.(-∞9.位优秀,2A.C.10.A.2B.3C.4D.511.1A.110C.310D.2512.过抛物线2:4C y x =的焦点F C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l上且MN l ⊥,则M 到直线NF 的距离为A. B. C. D.二、填空题,本题共4小题,每小题5分,共20分.13.函数()2cos sin f x x x =+的最大值为.14.已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =15.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 16.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =三、解答题:共70分。

解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答。

2017年高考新课标3卷文科数学试题(解析版)

2017年普通高等学校招生全国统一考试文科数学(适用地区:云南、贵州、广西、四川第I卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分•在每小题给出的四个选项中,只有一个选项是符合题目要求的.)1 •已知集合A= {1 , 2, 3, 4} , B= {2 , 4, 6, 8},则APB中元素的个数为()[解析]由题意可得A P B={2 , 4},故选B •答案:B2 .复平面内表示复数z= i(— + i)的点位于(A •第一象限B .第二象限C.第三象限 D •第四象限[解析]由题意z=— 1 —2i,故选B •答案:B3 •某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A •月接待游客逐月增加B .年接待游客量逐年增加C •各年的月接待游客量高峰期大致在7, 8月D •各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳[解析]由折线图,7月份后月接待游客量减少,A错误,故选A •答案:A月按㈱粘審豪(力•人)4.已知sin a—COS a = 3,贝y sin2 a=(答案:A答案:A满足条件的只有D,故选D .答案:D[解析]sin2 a= 2sin a cos a=2一97 -(sin a—cos of — 17,故选A .5.设x, y满足约束条件3X+ 2y—6 <0X>0 ,y >0则z= x —y的取值范围是(C. [0,2] [0,3][解析]绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点A(0, 3)处取得最小值z =0—3= — 3 .在点B(2, 0)处取得最大值z= 2—0= 2,故选A .答案:Br”n6 .函数f(x) = sin X+ 3 + cos X—的最大值为([解析]由诱导公式可得cos X—n=cos 2—nX+ 3. n=sin X+3,则f(x)= ;sin -,. n 6 nX+ 3 +叫+ 3 = 5sin X+ 3,函数的最大值为6,故选[解析]当x = 1 时,f(1) = 1+ 1 + sin 1 = 2+ sin1>2 ,故排除A , C,当X T +*时,y T1+ x,故排除B,7 .函数y =&执行下面的程序框图,为使输出S 的值小于91,则输入的正整数 N 的最小值为(答案:B10.在正方体 ABCD — A 1B 1C 1D 1中,E 为棱CD 的中点,贝U ( )A . A 1E 丄 DC 1B . A 1E 丄 BDC . A 1E 丄 BC 1D . A 1E 丄 AC[解析]根据三垂线逆定理,平面内的线垂直平面的斜线,那么也垂直斜线在平面内的射线. 对于A ,若A 1E 丄DC 1,那么D 1E 丄DC 1,很显然不成立;[解析]若N = 2,第一次进入循环,循环,此时1 W2成立, S = 100,100 “ M 一 10 一10,i = 2 W2成立;第二次进入 S = 100 — 10= 90, M = -Z-10= 1, i = 3W2不成立,10•••输出 S = 90<91成立,•输入的正整数 的最小值是2,故选D .答案:D9 .已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为3nA . nB .—4[解析]如果,画出圆柱的轴截AC = 1, AB =;, • r = BC = 23,宁,故选B . 4C . 3D . 2C .那么圆柱的体积是 V = n 2h = n对于B ,若A I E 丄BD ,那么BD 丄AE ,显然不成立;对于D ,若A i E 丄AC ,贝U AE 丄AC ,显然不成立,故选 C . 答案:C—ay + 2ab = 0相切,则 C 的离心率为()C. ~3[解析]以线段A i A 2为直径的圆是X 2+ y 2= a 2,直线bx — ay + 2ab = 0与圆相切,二圆心到直线的距离 d e =a 辱,故选A .i2.已知函数 f(x) = x 2— 2x + a(e x —i + e—x +i)有唯一零点,贝U a =( )ii iA . — 2B . 3C . 2D . i[解析]方法一:由条件,f(x) = x 2— 2x + a(e x —i + e — x + i),得:f(2 — x) = (2 — x)2 — 2(2 — x)+ a(e 2 —x — i+ e— (2—x)+ i)=x 2— 4x + 4— 4 + 2x + a(e i x + e x i ) =x 2— 2x + a(e x_ i + e—x + i)••• f(2 — x)= f(x),即乂= i 为f(x)的对称轴,由题意,f(x)有唯一零点, f(x)的零点只能为x = 1 , 即f(1) = 12 — 2 1 + a(e i —1 + e— i +i) = o ,解得 a = 2.———————i e 2(x —1) — i方法二:x 2— 2x =— a(e^i + ^^1),设 g(x) = e^1 + ^^1, g'x) = e^ 1 — ^^i = e^1— e —! = ------------------ x —,e e当g'x)= 0时,x = 1,当x<1时,g'x)<0,函数单调递减,当x>1时,g'x)>0,函数单调递增,当x = 1时, 函数取得最小值g(1) = 2,设h(x) = x 2— 2x ,当x = 1时,函数取得最小值—1;若—a>0,函数h(x)和ag(x)没有 1交点,当一a<0时,一ag(1) = h(1)时,此时函数h(x)和ag(x)有一个交点,即一a^=— 1 a = ?,故选C .答案:C第U 卷(非选择题共90分)本试卷包括必考题和选考题两部分.第 13题〜第21题为必考题,每个试题考生都必须作答.第22题〜第24题为选考题,考生根据要求作答.对于C ,若A I E 丄BC i ,那么BC i 丄B i C ,成立,反过来BC i 丄B i C 时,也能推出 BC i 丄A i E ,「. C 成立,11.已知椭圆 C :a 2+ £= 1(a>b>0)的左、右顶点分别为A i 、A 2,且以线段 A 1A 2为直径的圆与直线 bx2= a ,整理为 a 2= 3b 2,即卩 a 2= 3(a 2— c 2) 2a 2 = 3c 2,即 C 2= 2,a 2 +b 2 a 3答案:A二、填空题(本大题共4小题,每小题5分,共20分.)13. 已知向量"a = (—2, 3), lb = (3, m),且it 丄号,则m = ________________ . [解析]由题意可得一2>3+ 3m= 0,••• m = 2.答案:2x 2y2^314. 双曲线孑一= 1(a>0)的一条渐近线方程为y= 5X,则a = _________________ .[解析]由双曲线的标准方程可得渐近线方程为y=^x,结合题意可得a= 5.a答案:515. ____________________________________________________________________________________ △ ABC 的内角A, B, C 的对边分别为a, b, c.已知 C = 60° b=/6, c= 3,贝U A= ______________________ .远史厂[解析]由题意SinB= 孟,即sinB=b Sn C= 飞彳=乎,结合b<c可得B= 45°则A= 180。

2017年全国统一高考数学试卷及答案详解(文科-新课标Ⅲ)

2017年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1 B.2 C.3 D.42.(5分)复平面内表示复数z=i(﹣2+i)的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)已知sinα﹣cosα=,则sin2α=()A.﹣ B.﹣ C.D.5.(5分)设x,y满足约束条件则z=x﹣y的取值范围是()A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3]6.(5分)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.7.(5分)函数y=1+x+的部分图象大致为()A.B.C.D.8.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.29.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB. C.D.10.(5分)在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC11.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.12.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣ B.C.D.1二、填空题13.(5分)已知向量=(﹣2,3),=(3,m),且,则m=.14.(5分)双曲线(a>0)的一条渐近线方程为y=x,则a=.15.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.16.(5分)设函数f(x)=,则满足f(x)+f(x﹣)>1的x的取值范围是.三、解答题17.(12分)设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.(12分)如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.20.(12分)在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.21.(12分)已知函数f(x)=lnx+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤﹣﹣2.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.2017年全国统一高考数学试卷(文科)(新课标Ⅲ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。

2017年高考真题全国2卷文科数学(附答案解析)


uuur uuur uuur BA= λ AC ⇔ OA=
1
uuur OB +
1+ λ
λ
uuur OC .
1+ λ
(2)向量垂直: a ⊥ b ⇔ a ⋅ b = 0 ⇔ x1x2 + y1 y2 = 0 .
(3)向量运算: a ± b = (x1 ± x2 , y1 ± y2 ), a2 = | a |2 , a ⋅ b = | a | ⋅ | b | cos a, b .
y=lnt 为增函数,
故函数 f(x)=ln( x2 − 2x − 8 )的单调递增区间是(4,+∞),
故选 D.
点睛:形如 y = f ( g ( x)) 的函数为 y = g ( x) , y = f ( x) 的复合函数, y = g ( x) 为内层函
数, y = f ( x) 为外层函数.
简称为“同增异减”. 9.A 【解析】 【分析】 根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一 分析可得出结果. 【详解】 因为甲、乙、丙、丁四位同学中有两位优秀、两位良好, 又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良 好, 又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩, 又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩. 因此,乙、丁知道自己的成绩,故选:A. 【点睛】 本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思 想进行推理,考查逻辑推理能力,属于中等题. 10.B 【解析】 【详解】
2 (1)证明:直线 BC / / 平面 PAD ; (2)若△ PCD 面积为 2 7 ,求四棱锥 P − ABCD 的体积.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017四川高考文科数学真题及答案注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={1,2,3,4},B={2,4,6,8},则A⋂B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数z=i(–2+i)的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos3αα-=,则sin2α=A.79- B.29-C.29D.795.设x,y满足约束条件3260x yxy+-≤⎧⎪≥⎨⎪≥⎩,则z=x-y的取值范围是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]6.函数f(x)=15sin(x+3π)+cos(x−6π)的最大值为A.65B.1 C.35D.157.函数y=1+x+2sin xx的部分图像大致为A.B.C.D.8.执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5 B.4 C.3 D.29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π410.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A BC D .1312.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量(2,3),(3,)a b m =-=,且a ⊥b ,则m = .14.双曲线22219x y a -=(a >0)的一条渐近线方程为35y x =,则a = .15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c 。

已知C =60°,b ,c =3,则A =_________。

16.设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是__________。

三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)设数列{}n a 满足123(21)2n a a n a n +++-=K . (1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率。

(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.学#科@网 19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比. 20.(12分)在直角坐标系xOy 中,曲线y =x 2+mx –2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.21.(12分)已知函数()f x =ln x +ax 2+(2a +1)x .(1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--. (二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)−,M 为l 3与C 的交点,求M 的极径. 学*科@网23.[选修4—5:不等式选讲](10分)已知函数()f x =│x +1│–│x –2│. (1)求不等式()f x ≥1的解集;(2)若不等式()f x ≥x 2–x +m 的解集非空,求m 的取值范围.绝密★启用前2017年普通高等学校招生全国统一考试文科数学试题正式答案一、选择题1.B2.C3.A4.A5.B6.A7.D 8.D 9.B 10.C 11.A 12.C二、填空题13. 2 14. 5 15. 75° 16. (-, )三、解答题17.解:(1)因为+3+…+(2n-1) =2n,故当n≥2时,+3+…+(-3) =2(n-1)两式相减得(2n-1)=2所以=(n≥2)又因题设可得=2.从而{} 的通项公式为 =.(2)记 {}的前n项和为,由(1)知 = = - .则= - + - +…+ - = .18.解:(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为,所以这种酸奶一天的需求量不超过300瓶的概率估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6450-4450=900;若最高气温位于区间 [20,25),则Y=6300+2(450-300)-4450=300;若最高气温低于20,则Y=6200+2(450-200)-4450= -100.所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为,因此Y大于零的概率的估计值为0.8.19.解:(1)取A C的中点O连结DO,BO.因为AD=CD,所以AC⊥DO.又由于△ABC是正三角形,所以AC⊥BO.从而AC⊥平面DOB,故AC⊥BD.(2)连结EO.由(1)及题设知∠ADC=90°,所以DO=AO.在Rt△AOB中,.又AB=BD,所以,故∠DOB=90°.由题设知△AEC为直角三角形,所以.又△ABC是正三角形,且AB=BD,所以.故E为BD的中点,从而E到平面ABC的距离为D到平面ABC的距离的,四面体ABCE的体积为四面体ABCD的体积的,即四面体ABCE与四面体ACDE的体积之比为1:1.20.解:(1)不能出现AC⊥BC的情况,理由如下:设,,则满足所以.又C的坐标为(0,1),故AC的斜率与BC的斜率之积为,所以不能出现AC⊥BC 的情况.(2)BC的中点坐标为(),可得BC的中垂线方程为.由(1)可得,所以AB的中垂线方程为.联立又,可得所以过A、B、C三点的圆的圆心坐标为(),半径故圆在y轴上截得的弦长为,即过A、B、C三点的圆在y轴上的截得的弦长为定值.21.解:(1)f(x)的定义域为(0,+),.若a≥0,则当x∈(0,+)时,,故f(x)在(0,+)单调递增.若a<0,则当x∈时,;当x∈时,.故f(x)在单调递增,在单调递减.(2)由(1)知,当a<0时,f(x)在取得最大值,最大值为.所以等价于,即设g(x)=ln x-x+1,则当x∈(0,1)时,;当x∈(1,+)时,.所以g(x)在(0,1)单调递增,在(1,+)单调递减.故当x=1时,g(x)取得最大值,最大值为g(1)=0.所以当x >0时,g(x)≤0,.从而当a<0时,,即.22.解:(1)消去参数t得的普通方程:; 消去参数m得的普通方程:+2).设P(x,y),由题设得消去k得.所以C的普通方程为.(2)C的极坐标方程为联立得故,从而, .代入得=5,所以交点M的极径为 .23.解:(1)当x<-1时,f(x)≥1无解;当时,由f(x)≥1得,2x-1≥1,解得1≤x≤2;当时,由f(x)≥1解得x>2.所以f(x)≥1的解集为{x|x≥1}.(2)由得m≤|x+1|-|x-2|-.而|x+1|-|x-2|-=≤,且当x=时,|x+1|-|x-2|-.故m的取值范围为(-].。

相关文档
最新文档