平均互信息量和各种熵关系

合集下载

信息论与编码试题集与答案(新)

信息论与编码试题集与答案(新)

1. 在无失真的信源中,信源输出由 H (X ) 来度量;在有失真的信源中,信源输出由 R (D ) 来度量。

2. 要使通信系统做到传输信息有效、可靠和保密,必须首先 信源 编码, 然后_____加密____编码,再______信道_____编码,最后送入信道。

3. 带限AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公式是log(1)C W SNR =+;当归一化信道容量C/W 趋近于零时,也即信道完全丧失了通信能力,此时E b /N 0为 -1.6 dB ,我们将它称作香农限,是一切编码方式所能达到的理论极限。

4. 保密系统的密钥量越小,密钥熵H (K )就越 小 ,其密文中含有的关于明文的信息量I (M ;C )就越 大 。

5. 已知n =7的循环码42()1g x x x x =+++,则信息位长度k 为 3 ,校验多项式 h(x)= 31x x ++ 。

6. 设输入符号表为X ={0,1},输出符号表为Y ={0,1}。

输入信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001⎡⎤⎢⎥⎣⎦;D max = 0.5 ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010⎡⎤⎢⎥⎣⎦。

7. 已知用户A 的RSA 公开密钥(e,n )=(3,55),5,11p q ==,则()φn = 40 ,他的秘密密钥(d,n )=(27,55) 。

若用户B 向用户A 发送m =2的加密消息,则该加密后的消息为 8 。

二、判断题1. 可以用克劳夫特不等式作为唯一可译码存在的判据。

(√ )2. 线性码一定包含全零码。

(√ )3. 算术编码是一种无失真的分组信源编码,其基本思想是将一定精度数值作为序列的 编码,是以另外一种形式实现的最佳统计匹配编码。

信息论举例讲解信息量熵及互信息量

信息论举例讲解信息量熵及互信息量

计算机科学领域的应用
数据压缩
计算机科学中的数据压缩技术同样基于信息论的原理,通 过去除数据中的冗余信息,实现数据的压缩存储和传输。
加密与安全
信息论在密码学和安全领域也有广泛应用,如利用信息论中的 混淆和扩散原则设计加密算法,保护信息的机密性和完整性。
机器学习
在机器学习中,信息论用于特征选择、模型评估等方面。例如 ,利用互信息来衡量特征与目标变量之间的相关性,从而进行
熵的性质
非负性
熵的值总是非负的,表示系统的不确定性或混乱程度不可能为负值。
可加性
对于相互独立的事件或系统,其熵的和等于各事件或系统熵的和, 表示不确定性或混乱程度可以叠加计算。
最大值性
当系统中各个事件发生的概率相等时,该系统的熵达到最大值,表 示此时系统的不确定性或混乱程度最高。
熵的计算举例
二进制信源熵的计算
举例1
对于离散随机变量 X 和 Y,其联合概率分布为 p(x,y)=[0.1, 0.2, 0.3, 0.4],边缘概率分布为 p(x)=[0.3, 0.7] 和 p(y)=[0.5, 0.5]。根据互信息量的定义公式,可以计算出 I(X;Y)=0.1979。
举例2
对于连续随机变量 X 和 Y,其联合概率密度函数为 f(x,y),边缘概率密度函数为 fX(x) 和 fY(y)。可以通过 数值积分的方法计算出互信息量。例如,对于正态分布 N(0,1) 和 N(0,2) 的随机变量 X 和 Y,其互信息量 为 I(X;Y)=0.5×log⁡2≈0.3466。
要点一
目的
通过举例讲解信息量、熵和互信息量的概念,使读者更好 地理解和掌握这些概念。
要点二
意义
信息量、熵和互信息量是信息论中的基本概念,对于理解 和应用信息论具有重要意义。通过本次讲解,读者可以更 加深入地了解这些概念,并能够在实际问题中加以应用。 同时,这些概念在其他领域也有广泛的应用,如计算机科 学、控制论、统计学等,因此本次讲解也有助于读者在其 他领域中更好地应用信息论的知识。

信息论举例讲解信息量熵及互信息量

信息论举例讲解信息量熵及互信息量

1/4
1/3
0
0
x1
001
1/4
1/3
0
0
X2
010
1/8
1/6
1/2
0
X3
011
1/8
1/6
1/2
1
X4
100
1/16
0
0
0
X5
101
1/16
0
0
0
X6
110
1/16
0
0
0
x7I ( x3 ;011111)
lo1g/16p(x3 0011) p(x3 )
单位为比特
lo0g
1 1
8
30
熵是信源平均不确定性的度量, 一般情况下,它并不等于信宿所获得 的平均信息量,只有在无噪情况下,二 者才相等.为此我们需要学习条件熵. 同时我们由条件熵引出平均互信息量 的概念,其可以用来衡量一个信道的 好坏.
故:
I (x) I (x | y) log p(x | y) log p( y | x) I ( y) I ( y | x)
Hale Waihona Puke p(x)p( y)
这样,用I(x;y)或I(y;x)记该差式, 称为x与y之间的互信息量,单位也为比特。
互信息量的性质
一、对称性:I(x;y)=I(y;x),其通信意 义表示发出x收到y所能提供给我们的信 息量的大小;
xi
0
1
2
P(xi) 1/3
1/6
1/2
单位:比I(特xi) log3
log6
log2
自信息量的涵义
自信息量代表两种含义: 一、事件x发生以前,I(x)表示事件x发生的不 确定性; 二、当事件x发生以后,I(x)表示事件x所提供 的信息量(在无噪情况下)。

第二章-信息论基本概念(2)(1)

第二章-信息论基本概念(2)(1)
(四) 平均互信息(平均交互信息熵/交互熵) 四 平均互信息(平均交互信息熵 交互熵) 交互熵
前面所述熵为单符号信源情况, 前面所述熵为单符号信源情况,是最简单的离散 信源。事务是普遍联系的,两个随机变量 , 之间 信源。事务是普遍联系的,两个随机变量X,Y之间 也是相互联系的,比如: 在某种程度上 也是相互联系的,比如:
1、 离散无记忆信源 扩展信源 、 离散无记忆信源(扩展信源 扩展信源) 概率空间: (1)定义:若单符号离散信源 概率空间: )定义:若单符号离散信源X概率空间
X a1 , a2 , L , ai , L , aq P( X ) = p(a ), p(a ),L , p(a ),L , p(a ) , ∑ p(ai ) = 1 i 2 i q 1
0( p )
q
X
[例] 二进制对称信道 例
1( p )
q q
q
0
Y
1
H ( X ) = H ( p) = − p log p − p log p
I(X;Y)
H (Y / X ) = H (q) = −q log q − q log q
H (Y ) = H ( pq + pq)
0
1-H(q) 0.5 I(X;Y) H(p) 1 p
5. 数据处理定理 I(X;Z) ≤ I(X;Y) I(X;Z) ≤ I(Y;Z) [意义 信息不增原理 意义] 信息不增原理 原理—— 意义 处理, 每经一次 处理,可能丢失一部分信息 X Y P(Z/;Y) = H(X) – H(X/Y) = H(Y) – H(Y/X) H(XY) = H(X) + H(Y/X) = H(Y) + H(X/Y) I(X;Y) = H(X) + H(Y)- H(XY) -

信息论与编码复习期末考试要点

信息论与编码复习期末考试要点
(1)4/5
30
1
1
2 W1
2W3
W1
Wi pij Wj
i
1 4W1
13W2
3 4
W3
15W4
W2
W3
2 3
W2
4 5
W4
W4
W1 W2 W3 W4 1
• 稳态分布概率
W 1 3 3 5 , W 2 3 6 5 , W 3 1 2 3 3 3 6 5 5 ,1 3 W 3 6 4 5 1 4 7 4 3 6 5 1 5 7 4 3 9 5
14
三、互信息
• 互信息
• 定义为 xi的后验概率与先验概率比值的对数
I(xi;yj)lo2gp(p x(ix|iy)j)
• 互信息I(xi;yj):表示接收到某消息yj后获得 的关于事件xi的信息量。
15
平均互信息
• 平均互信息定义
I ( X ; Y ) H ( X ) H ( X |Y ) H ( Y ) H ( Y |X )
I(X ; Y ) H (X ) H (Y )
38
• 2)无嗓有损信道 –多个输入变成一个输出(n>m)
p(bi | aj ) 1或0
p(ai
|
bj
)
1或0
• 噪声熵H(Y|X) = 0 • 损失熵H(X|Y) ≠ 0
I(X ; Y )H (Y )H (X )
Cm axI(X ;Y )m axH (Y ) p(a i) 39
加密
y 信道编码
k 加密 密钥
z

解密 密钥
道 z'
信宿 v
信源解码
x' 解密
y'
信道解码

信息论与编码第二章答案

信息论与编码第二章答案

第二章信息的度量2.1信源在何种分布时,熵值最大?又在何种分布时,熵值最小?答:信源在等概率分布时熵值最大;信源有一个为1,其余为0时熵值最小。

2.2平均互信息量I(X;Y)与信源概率分布q(x)有何关系?与p(y|x)又是什么关系?答:若信道给定,I(X;Y)是q(x)的上凸形函数;若信源给定,I(X;Y)是q(y|x)的下凸形函数。

2.3熵是对信源什么物理量的度量?答:平均信息量2.4设信道输入符号集为{x1,x2,……xk},则平均每个信道输入符号所能携带的最大信息量是多少?答:kk k xi q xi q X H i log 1log 1)(log )()(2.5根据平均互信息量的链规则,写出I(X;YZ)的表达式。

答:)|;();();(Y Z X I Y X I YZ X I 2.6互信息量I(x;y)有时候取负值,是由于信道存在干扰或噪声的原因,这种说法对吗?答:互信息量)()|(log );(xi q yj xi Q y x I ,若互信息量取负值,即Q(xi|yj)<q(xi),说明事件yi 的出现告知的是xi 出现的可能性更小了。

从通信角度看,视xi 为发送符号,yi 为接收符号,Q(xi|yj)<q(xi),说明收到yi 后使发送是否为xi 的不确定性更大,这是由于信道干扰所引起的。

2.7一个马尔可夫信源如图所示,求稳态下各状态的概率分布和信源熵。

答:由图示可知:43)|(41)|(32)|(31)|(41)|(43)|(222111110201s x p s x p s x p s x p s x p s x p 即:43)|(0)|(41)|(31)|(32)|(0)|(0)|(41)|(43)|(222120121110020100s s p s s p s s p s s p s s p s s p s s p s s p s s p 可得:1)()()()(43)(31)()(31)(41)()(41)(43)(210212101200s p s p s p s p s p s p s p s p s p s p s p s p得:114)(113)(114)(210s p s p s p )]|(log )|()|(log )|()[()]|(log )|()|(log )|()[()]|(log )|()|(log )|()[(222220202121211111010100000s s p s s p s s p s s p s p s s p s s p s s p s s p s p s s p s s p s s p s s p s p H 0.25(bit/符号)2.8一个马尔可夫信源,已知:0)2|2(,1)2|1(,31)1|2(,32)1|1(x x p x x p x x p x x p 试画出它的香农线图,并求出信源熵。

信息论与编码试题集与答案

信息论与编码试题集与答案1. 在⽆失真的信源中,信源输出由 H (X ) 来度量;在有失真的信源中,信源输出由 R (D ) 来度量。

2. 要使通信系统做到传输信息有效、可靠和保密,必须⾸先信源编码,然后_____加密____编码,再______信道_____编码,最后送⼊信道。

3. 带限AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的⾹农公式是log(1)C W SNR =+;当归⼀化信道容量C/W 趋近于零时,也即信道完全丧失了通信能⼒,此时E b /N 0为 -1.6 dB ,我们将它称作⾹农限,是⼀切编码⽅式所能达到的理论极限。

4. 保密系统的密钥量越⼩,密钥熵H (K )就越⼩,其密⽂中含有的关于明⽂的信息量I (M ;C )就越⼤。

5. 已知n =7的循环码42()1g x x x x =+++,则信息位长度k 为 3 ,校验多项式 h(x)= 31x x ++ 。

6. 设输⼊符号表为X ={0,1},输出符号表为Y ={0,1}。

输⼊信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001??;D max = 0.5 ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010??。

7. 已知⽤户A 的RSA 公开密钥(e,n )=(3,55),5,11p q ==,则()φn = 40 ,他的秘密密钥(d,n )=(27,55) 。

若⽤户B 向⽤户A 发送m =2的加密消息,则该加密后的消息为 8 。

⼆、判断题1. 可以⽤克劳夫特不等式作为唯⼀可译码存在的判据。

(√ )2. 线性码⼀定包含全零码。

(√ )3. 算术编码是⼀种⽆失真的分组信源编码,其基本思想是将⼀定精度数值作为序列的编码,是以另外⼀种形式实现的最佳统计匹配编码。

2信源与信息熵2

i 1 j 1 n m
• 联合自信息量
I ( xi y j ) log2 p( xi y j )
• 条件自信息量和联合自信息量同样满足非负 性和单调递减性。 • 关系
I ( xi y j ) log2 p( xi ) p( y j / xi ) I ( xi ) I ( y j / xi ) log2 p( y j ) p( xi / y j ) I ( y j ) I ( xi / y j )
信源熵与自信息量的关系1:定性
• 信源熵用以表征信源的平均不确定性:一个 信源,无论是否输出符号,由于具有特定的 概率统计特性,因此具有特定的熵值。 • 信息量则只有当信源输出的符号被接收者收 到后才有意义。平均自信息量是能够消除信 源不确定性时所需信息的量度,即收到一个 信源符号,全部解除了这个符号的不确定性。 或者说获得这样大的信息量后,信源不确定 性就被消除了。
• 平均自信息量:表示信源中发出每个符号平均所能 提供的信息量。它只与信源中各个符号出现的概率 有关,可以用来表示信源输出信息的总体量度。 • 信源X的平均不确定度:表示总体平均意义上的信 源符号的不确定度(不管是否发出)。数值上等于平 均自信息量。 • 这个平均自信息量的表达式和统计物理学中热熵的 表达式很相似。在统计物理学中,热熵是一个物理 系统杂乱性(无序性)的度量。这在概念上也有相似 之处。所以,可以把信源X的平均不确定度称为 “信源熵”。
例2-5/6
• 例2-5(P19):
• 例2-6(P19): • 由于符号间通常存在关联性,实际信息量往 往远远小于理论值。
例2-7
• 例2-7(P19):二元信源的信息熵。
• 自信息量是针对无条件概率计算的,可以在 数学上进行简单的推广:将无条件概率换为 条件概率或联合概率。

信息论复习提纲


信道传递概率可以用信道矩阵来表示:
x1 x2 P xr
y1 p( y1 | x1 ) p( y | x ) 1 2 p( y1 | xr )
y2 p( y2 | x1 )
p( y2 | x2 ) p( y2 | xr )
ys p( ys | x1 ) 1 p( ys | x2 ) p( ys | xr )
i
第四章:信道及信道容量
二、离散单符号信道及其信道容量
1.离散单符号信道的数学模型(续14)
例3:求二元删除信道的 H ( X )、H (Y )、H ( X | Y )和I ( X ;Y ) 。
已知
1 3 PX 4 4
1 1 2 2 0 P 1 2 0 3 3
3. 后验概率(后向概率): 贝叶斯公式
p ( xi | y j ) p ( xi y j ) p( y j ) p ( xi ) p ( y j | xi )
p( x ) p( y
i 1 i
r
j
| xi )
(i =1,2,…,r;j =1,2,…,s)

p ( xi | y j ) 1
Y y2
ys
i 1, 2,..., r ; j 1, 2,..., s
满足: (1)0≤ p(yj|xi) ≤ 1 (i=1,2,…,r;j=1,2,…,s) (2)
p( y j | xi ) 1
j 1
s
(i=1,2,…,r)
第四章:信道及信道容量
二、离散单符号信道及其信道容量
1.离散单符号信道的数学模型(续2)
r s
第四章:信道及信道容量

《熵和互信息量 》课件

通过熵和互信息量的结合,可以更好地理解随机变量之间的复杂关系,并进一步探 索信息几何学的深层结构。
THANKS
决策优化
互信息量可以用于决策优化,通过分析不同 决策之间的互信息量,可以找到最优的决策
方案。
机器学习与深度学习
数据表示
熵和互信息量可以用于数据表示,将数据转换为更有意 义的特征表示,从而提高机器学习模型的性能。
模型优化
熵和互信息量可以用于模型优化,通过分析模型参数的 熵和互信息量,可以找到最优的模型参数配置,提高模 型的泛化能力。
06 熵和互信息量的关系与区别
熵和互信息量的关系
01
熵是系统不确定性的度量,表示系统内部信息的平 均量。
02
互信息量用于衡量两个随机变量之间的相互依赖程 度。
03
当两个随机变量独立时,互信息量为零;当两个随 机变量完全相关时,互信息量达到最大值。
熵和互信息量的区别
01
熵是对整个系统不确定性的度 量,而互信息量是衡量两个随 机变量之间的相互依赖程度。
05 熵和互信息量的应用场景
信息压缩与编码
信息压缩
熵是衡量数据不确定性的度量,可用于信息压缩。通过去除 冗余信息,将数据压缩到更小的空间,从而提高存储和传输 效率。
数据编码
互信息量可以用于数据编码,通过对数据进行分类和编码, 降低数据的熵,从而实现更有效的数据传输和存储。
决策理论
风险评估
熵可以用于风险评估,衡量决策的不确定性 和风险。通过计算不同决策方案的熵值,可 以评估方案的优劣和风险大小。
VS
熵的单位
熵的单位是比特(bit),这是因为log2 p(x)是以2为底的对数函数,其单位是比 特。
熵的物理意义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X
由于互信息 I ( xi ; y j )是表示观测到 y j 后获得的关于 事件 xi 的信息量,即 p ( xi | y j ) I ( xi ; y j ) log p ( xi ) 故平均条件互信息量又可以表示为
I ( X ; y j ) p ( xi | y j ) log
互信息量I(xi;yj)不能从整体上作为信道中信息流 通的测度。
这种测度应该是从整体的角度出发,在平均意义上度量 每通过一个符号流经信道的平均信息量。 作为一个测度,它不能是随机量,而是一个确定的量。
3
HUST Furong WANG--- Information and Coding Theory
9
HUST Furong WANG--- Information and Coding Theory
平均互信息量的其它定义
平均互信息量I(X;Y)也可定义为
I ( X ; Y ) p ( xi y j ) log
XY def def
p ( xi | y j ) p ( xi ) p ( y j | xi ) p( y j )
平均条件互信息量
定义: 在联合集XY上,由 y j提供的关于集X的 平均条件互信息量等于由 y j 所提供的互信息量I ( xi ; y j ) 在整个X中以p( xi | y j )后验概率加权的平均值,其 定义式为 def
I ( X ; y j ) p( xi | y j ) I ( xi ; y j )
X
T Furong WANG--- Information and Coding Theory
互信息量—信道中信息流通的测度?
互信息量I(xi;yj)是定量研究信息流通问题的重要 基础。
它只能定量地描述输入随机变量发出某个具体消息xi, 输出变量出现某一具体消息yj时,流经信道的信息量。 “输入xi ,输出yj”是一个概率为p(xi yj) 的随机事件, 相应的I(xi;yj)也是随xi和yj变化而变化的随机量。
10
当xi 和y j 相互独立时,I ( xi ; y j ) 0 (i 1, 2,; j 1, 2,) 且I ( X ; Y ) 0
HUST Furong WANG--- Information and Coding Theory
平均互信息的性质
平均互信息量有以下基本性质:
13
HUST Furong WANG--- Information and Coding Theory
性质2:对称性I(X;Y)=I(Y;X)的证明
证明:按定义
I ( X ; Y ) p ( xy ) log
7
HUST Furong WANG--- Information and Coding Theory
定理
I(X;yj)≥0 的证明
p( xi | y j ) p ( xi ) 改写为 I ( X ; y j ) p( xi | y j ) log p( xi ) p ( xi | y j ) X
n m
定义:互信息量I(xi;yj)在联合概率空间P(XY)中的统计平均值
I ( X ; Y ) p( xi y j ) I ( xi ; y j ) p ( xi y j ) log
i 1 j 1 i 1 j 1
n
m
p( xi / y j ) p( xi )
称I(X;Y)是Y对X的平均互信息量,简称平均互信息,也称平均 交互信息量或交互熵。 平均互信息I(X;Y)克服了互信息量I(xi;yj)的随机性,成为一 个确定的量,因此,可以作为信道中流通信息量的整体测度。
p
i 1
n
i
1
p
j 1
m
j
1
4
HUST Furong WANG--- Information and Coding Theory
输入X、输出Y的联合空间XY
以{ XY , p ( xy )}表示二维联合概率空间 XY x1 y1 , x1 y2 , , xi y j , , xn ym p ( xy ) p ( x y ), p ( x y ), , p ( x y ), , p ( x y ) i j n m 1 2 1 1 其中, 和Y的联合空间 XY {xi y j ; xi X , yj Y , i 1, 2,..., n; j 1, 2,..., m}, X 对每组事件(积事件)xi y j XY 相应的概率二维联合概率p ( xi y j ), 且 p ( xi y j ) 1; p ( xi ) p ( xi y j ); p ( y j ) p ( xi y j );
8
HUST Furong WANG--- Information and Coding Theory
平均互信息量
定义:平均互信息量I(X;Y)是平均条件互信息量I(X;yj)在整个 集Y上的概率加权平均值。其定义式为
I ( X ; Y ) p( y j ) I ( X ; y j )
Y
5
若对于所有的i, j,事件xi 和y j ; 彼此统计独立, 且有p ( xi y j ) p ( xi ) p ( y j ) i, j 成立, 则称集X 与Y 统计独立, 否则称集X 与Y 统计相关
HUST Furong WANG--- Information and Coding Theory
X
p ( xi | y j ) p ( xi )
6
HUST Furong WANG--- Information and Coding Theory
定理
定理: 联合集XY上的平均条件互信息量有 I(X; yj ) 0 等号成立当且仅当X集中的各个 xi 都与事件 y j 相互 独立。
平均条件互信息量表示观测到yj后获得的关于集X 的平均信息量。 I(X; yj)仍然是一个随机变量,随yj的变化而变化, 因此,不能作为信道中流通信息量的整体测度。
2、非负性I(X;Y)≥0
当且仅当X与Y相互独立时,等号成立。即如果X与Y相互 独立,它们之间相互不能提供任何信息。
12
HUST Furong WANG--- Information and Coding Theory
性质1:非负性I(X;Y)≥0的证明
证明: 按照平均互信息的定义式 p ( xi ) I ( X ; Y ) p ( xi y j ) log ; p ( xi | y j ) XY 利用不等式 ln w w 1; 和关系式 log w ln w log e p ( xi ) I ( X ; Y ) p ( xi | y j ) p ( y j ) 1 log e XY p ( xi | y j ) p ( xi ) p ( y j ) p( xi | y j ) p ( y j ) log e 0 XY XY 等号成立的条件是, 对于i, j 都有p ( xi ) p ( xi | y j ), ( p( y j ) 0) 即 当且仅当X 与Y 相互独立时, I ( X ; Y ) 0 证毕
证明 : 将平均条件互信息量的表示式 I ( X ; y j ) p( xi | y j ) log
X
p( xi ) 令 w 则有 I ( X ; y j ) p( xi | y j ) log w p ( xi | y j ) X 利用不等式 ln w w 1; log w ln w log e p( xi ) 得 I ( X ; y j ) p ( xi | y j ) 1 log e p ( xi ) p ( xi | y j ) log e 0 X X p( xi | y j ) 故 I(X ; yj ) 0 当且仅当 p ( xi ) p ( xi | y j ) 时,I ( X ; y j ) 0 证毕
HUST Furong WANG--- Information and Coding Theory
第2章 信源熵
2.1 单符号离散信源
2.1.1 单符号离散信源的数学模型 2.1.2 自信息和信源熵 2.1.3 信源熵的基本性质和定理 2.1.4 加权熵的概念及基本性质 2.1.5 平均互信息量 一、平均互信息量定义 二、平均互信息量物理意义 二、平均互信息量性质 2.1.6 各种熵之间的关系
I ( X ; Y ) p ( xi ) p ( y j | xi ) log
XY
I ( X ; Y ) p ( xi y j ) I ( xi ; y j )
XY
def
其中I ( xi ; y j ) log
p ( xi | y j ) p ( xi )
log
p ( y j | xi ) p( y j )
输入X、输出Y的离散概率空间描述
以{ X , P}表示输入离散概率空间 X x1 , x2 , , xi , , xn P ( X ) p ( x ), p ( x ), , p( x ), , p( x ) 1 2 i n 其中,输入离散事件集 X {xi , i 1, 2,..., n}, 对每一个事件xi X , 相应的概率为p ( xi ),简记为pi, P { pi ,i 1, 2,..., n}, pi 0,i 1, 2,..., n; 且 以{Y , P}表示输出离散概率空间 Y y1 , y2 , , y j , , ym P (Y ) p ( y ), p ( y ), , p ( y ), , p( y ) 1 2 j m 其中,输出离散事件集 Y { y j , j 1, 2,..., m}, 对每一个事件y j Y , 相应的概率为p ( y j ),简记为p j, P { p j ,j 1, 2,..., m}, p j 0,j 1, 2,..., m; 且
相关文档
最新文档