化学实验报告——乙酸乙酯的合成
乙酸乙酯制备实验报告

乙酸乙酯制备实验报告乙酸乙酯制备实验报告引言:乙酸乙酯是一种常用的有机溶剂,广泛应用于化学、医药和食品工业等领域。
本实验旨在通过酯化反应,以乙酸和乙醇为原料,制备乙酸乙酯。
实验原理:乙酸乙酯的制备是一种酯化反应,反应方程式为:乙酸 + 乙醇⇌乙酸乙酯 + 水实验步骤:1. 准备实验器材和试剂:取一定量的乙酸和乙醇,称量精确。
2. 反应装置的搭建:将反应瓶与冷凝管连接,冷凝管的另一端通过橡皮管与收集瓶相连。
3. 加热反应:将乙酸和乙醇倒入反应瓶中,加热至沸腾,控制反应温度在70-80℃。
4. 收集产物:通过冷凝管冷却,将产生的乙酸乙酯收集至收集瓶中。
5. 分离产物:将收集的乙酸乙酯与水相分离,得到纯净的乙酸乙酯。
实验结果:经过实验,我们成功制备了乙酸乙酯。
产物呈无色液体,具有特殊的香味。
通过密度计测量,得到其密度为0.897 g/cm³。
此外,我们还进行了红外光谱分析,结果显示产物中存在乙酯的特征吸收峰。
实验讨论:1. 反应条件的选择:乙酸乙酯的制备需要适宜的反应温度和反应时间。
过高的温度可能导致产物分解,而过低的温度则会降低反应速率。
在本实验中,我们选择了70-80℃的反应温度,以保证反应的高效进行。
2. 乙酸和乙醇的摩尔比:乙酸和乙醇的摩尔比对反应的效果有一定影响。
在实验中,我们选择了适当的摩尔比,以保证反应的完全进行。
3. 分离产物的方法:乙酸乙酯与水的分离是一个重要的步骤。
常用的方法有蒸馏和萃取等。
在本实验中,我们采用了水与乙酸乙酯的密度差异来实现分离。
4. 乙酸乙酯的应用:乙酸乙酯具有良好的溶解性和挥发性,广泛应用于溶剂、涂料、香料等领域。
在医药行业中,乙酸乙酯也常被用作药物的载体。
实验结论:通过乙酸和乙醇的酯化反应,我们成功制备了乙酸乙酯。
经过分离和纯化,得到了纯净的乙酸乙酯产物。
实验结果表明,我们的实验操作和条件选择是合理的,得到了预期的实验结果。
总结:本实验通过乙酸和乙醇的酯化反应,制备了乙酸乙酯,并对产物进行了分离和纯化。
化学实验报告——乙酸乙酯的合成

乙酸乙酯的合成一、 实验目的和要求1、 通过乙酸乙酯的制备,加深对酯化反应的理解;2、 了解提高可逆反应转化率的实验方法;3、 熟练蒸馏、回流、干燥、气相色谱、液态样品折光率测定等技术。
二、 实验内容和原理本实验用乙酸与乙醇在少量浓硫酸催化下反应生成乙酸乙酯:243323252H SO CH COOH CH CH OH CH COOC H H O ++V垐垐?噲垐? 副反应:2432322322H SO CH CH OH CH CH OCH CH H O −−−→+V由于酯化反应为可逆反应,达到平衡时只有2/3的物料转变为酯。
为了提高酯的产率,通常都让某一原料过量,或采用不断将反应产物酯或水蒸出等措施,使平衡不断向右移动。
因为乙醇便宜、易得,本实验中乙醇过量。
但在工业生产中一般使乙酸过量,以便使乙醇转化完全,避免由于乙醇和水及乙酸乙酯形成二元或三元共沸物给分离带来困难,而乙酸通过洗涤、分液很容易除去。
由于反应中有水生成,而水和过量的乙醇均可与乙酸乙酯形成共沸物,如表一表示。
这些共沸物的沸点都很低,不超过72 ℃,较乙醇的沸点和乙酸的沸点都低,因此很容易被蒸馏出来。
蒸出的粗馏液可用洗涤、分液除去溶于其中的乙酸、乙醇等,然后用干燥剂去除共沸物中的水分,再进行精馏便可以得到纯的乙酸乙酯产品。
表一、乙酸乙酯共沸物的组成与沸点三、 主要物料及产物的物理常数表二、主要物料及产物的物理常数四、主要仪器设备仪器100mL三口烧瓶;滴液漏斗;蒸馏弯头;温度计;直形冷凝管;250mL分液漏斗;50mL锥形瓶3个;25mL梨形烧瓶;蒸馏头;阿贝(Abbe)折光仪;气相色谱仪。
试剂冰醋酸;无水乙醇;浓硫酸;Na2CO3饱和溶液;CaCl2饱和溶液;NaCl饱和溶液。
五、实验步骤及现象表三、实验步骤及现象实验装置图:六、 实验结果与分析由粗产品洗涤、蒸馏后得三瓶分馏产物,均为无色果香味液体,其质量如下: 1. 前馏分(温度稳定以前):号锥形瓶质量)=;2. 中馏分(温度稳定在76℃时):号锥形瓶质量)=;3. 后馏分(温度迅速下降后):号锥形瓶质量)=。
化学实验报告——乙酸乙酯的合成(详细参考)

乙酸乙酯的合成一、 实验目的和要求1、 通过乙酸乙酯的制备,加深对酯化反应的理解;2、 了解提高可逆反应转化率的实验方法;3、 熟练蒸馏、回流、干燥、气相色谱、液态样品折光率测定等技术。
二、 实验内容和原理本实验用乙酸与乙醇在少量浓硫酸催化下反应生成乙酸乙酯:243323252H SO CH COOH CH CH OHCH COOC H H O ++副反应:2432322322H SO CH CH OH CH CH OCH CH H O −−−→+由于酯化反应为可逆反应,达到平衡时只有2/3的物料转变为酯。
为了提高酯的产率,通常都让某一原料过量,或采用不断将反应产物酯或水蒸出等措施,使平衡不断向右移动。
因为乙醇便宜、易得,本实验中乙醇过量。
但在工业生产中一般使乙酸过量,以便使乙醇转化完全,避免由于乙醇和水及乙酸乙酯形成二元或三元共沸物给分离带来困难,而乙酸通过洗涤、分液很容易除去。
由于反应中有水生成,而水和过量的乙醇均可与乙酸乙酯形成共沸物,如表一表示。
这些共沸物的沸点都很低,不超过72 ℃,较乙醇的沸点和乙酸的沸点都低,因此很容易被蒸馏出来。
蒸出的粗馏液可用洗涤、分液除去溶于其中的乙酸、乙醇等,然后用干燥剂去除共沸物中的水分,再进行精馏便可以得到纯的乙酸乙酯产品。
表一、乙酸乙酯共沸物的组成与沸点三、 主要物料及产物的物理常数表二、主要物料及产物的物理常数四、主要仪器设备仪器100mL三口烧瓶;滴液漏斗;蒸馏弯头;温度计;直形冷凝管;250mL分液漏斗;50mL锥形瓶3个;25mL梨形烧瓶;蒸馏头;阿贝(Abbe)折光仪;气相色谱仪。
试剂冰醋酸;无水乙醇;浓硫酸;Na2CO3饱和溶液;CaCl2饱和溶液;NaCl饱和溶液。
五、实验步骤及现象表三、实验步骤及现象实验装置图:六、 实验结果与分析由粗产品洗涤、蒸馏后得三瓶分馏产物,均为无色果香味液体,其质量如下: 1. 前馏分(温度稳定以前):43.38g-35.15g(1号锥形瓶质量)=8.13g ;2. 中馏分(温度稳定在76℃时):39.72g-32.67g(2号锥形瓶质量)=7.05g ;3. 后馏分(温度迅速下降后):34.28g-31.25g(3号锥形瓶质量)=3.08g 。
有机化学乙酸乙酯的合成实验报告

有机化学乙酸乙酯的合成实验报告实验名称:乙酸乙酯的合成实验实验目的:通过酯化反应合成乙酸乙酯,并熟悉酯化反应的操作方法和注意事项。
实验原理:乙酸乙酯是一种常见的酯类化合物,其化学式为CH3COOC2H5,常用于日常生活中的一些溶剂和食品香精中。
乙酸乙酯的合成是通过酯化反应来实现的。
酯化反应是一种酸催化的醇和酸的反应,其反应机理如下:1.醇与酸反应生成一个酯和一分子水。
2.反应中的酸通过质子化生成了酸根离子,而质子化尺度较小的酯成为一个良好的离子型底物。
实验步骤:1.收集实验所需的试剂与设备,包括乙醇、乙酸、浓硫酸、烧瓶、冷却器等。
2.在烧瓶中加入适量的乙醇溶液(参考配置表),并逐渐加入浓硫酸。
3.加热混合物,使其沸腾2-3分钟,然后冷却。
4.将冷却后的反应液倒入水中,搅拌均匀。
5.通过分液漏斗分离乙酸乙酯与水层。
6.用无水硫酸钠干燥有机相,放入干燥瓶中。
实验结果:合成乙酸乙酯的收率可通过测量其质量来确定。
根据实验数据显示,所得乙酸乙酯的质量为xx克,实验所用的乙醇和乙酸的质量分别为xx克和xx克。
通过计算,得到乙酸乙酯的收率为xx%。
实验讨论:1.实验中使用浓硫酸作为催化剂,是因为这种酸能提供足够的质子来促使反应正常进行,并且容易分离。
2.实验操作过程中要小心添加硫酸,避免产生剧烈的反应。
同时在加热过程中也要注意火源的安全。
3.分液漏斗分离乙酸乙酯和水的操作时,要注意分液漏斗的开闭情况,以免溶液外流。
同时也要注意保持漏斗中压力均衡,避免溶液喷溅。
4.在干燥有机相的过程中,要避免碰撞和振荡,以免乙酸乙酯损失。
实验总结:通过这次实验,我们成功合成了乙酸乙酯,并得到了一定的收率。
实验过程中注意事项的遵循,保证了实验的顺利进行。
通过这次实验,我们不仅提高了实验操作和技巧,还进一步加深了对酯化反应的理解。
酯化反应是一种常见的有机合成反应,对于有机化学相关领域的研究具有重要的参考价值。
乙酸乙酯的合成实验报告

乙酸乙酯的合成实验报告
实验目的:
1. 通过酸催化反应合成乙酸乙酯。
2. 熟悉酸催化反应的原理和实验操作。
实验原理:
乙酸乙酯的合成反应是一种酯化反应,由醇和酸反应生成酯。
在本实验中,我们使用乙醇作为醇,醋酸作为酸进行反应。
酯化反应需要催化剂,通常使用硫酸作为酸催化剂。
硫酸能够促进乙醇和醋酸之间的酯化反应,加快反应速度。
实验步骤:
1. 准备实验器材和试剂:乙醇、醋酸、硫酸、分液漏斗、冷却水槽等。
2. 在一个装有适量乙醇的容器中加入少量醋酸。
3. 向容器中加入适量硫酸,注意要缓慢加入,同时要保持搅拌。
4. 将反应混合物加热并保持在适当的温度下,使反应进行。
5. 反应过程中要不断搅拌,并注意观察反应物是否充分反应。
6. 反应结束后,将反应混合物从容器中转移到分液漏斗中,分离出酯相。
7. 将酯相倒入干燥的容器中,并加入少量无水氯化钙吸取水分。
8. 过滤后得到乙酸乙酯。
实验结果:
根据实验操作,得到了乙酸乙酯作为最终产物。
实验结论:
通过酸催化反应,成功合成了乙酸乙酯。
实验操作过程中需要注意加热温度和反应时间的控制,以及反应物的比例,来保证反应的高效进行。
化学实验报告——乙酸乙酯的合成

乙酸乙酯的合成一、 实验目的和要求1、 通过乙酸乙酯的制备,加深对酯化反应的理解;2、 了解提高可逆反应转化率的实验方法;3、 熟练蒸馏、回流、干燥、气相色谱、液态样品折光率测定等技术。
二、 实验内容和原理本实验用乙酸与乙醇在少量浓硫酸催化下反应生成乙酸乙酯:243323252H SO CH COOH CH CH OHCH COOC H H O ++副反应:2432322322H SO CH CH OH CH CH OCH CH H O −−−→+由于酯化反应为可逆反应,达到平衡时只有2/3的物料转变为酯。
为了提高酯的产率,通常都让某一原料过量,或采用不断将反应产物酯或水蒸出等措施,使平衡不断向右移动。
因为乙醇便宜、易得,本实验中乙醇过量。
但在工业生产中一般使乙酸过量,以便使乙醇转化完全,避免由于乙醇和水及乙酸乙酯形成二元或三元共沸物给分离带来困难,而乙酸通过洗涤、分液很容易除去。
由于反应中有水生成,而水和过量的乙醇均可与乙酸乙酯形成共沸物,如表一表示。
这些共沸物的沸点都很低,不超过72 ℃,较乙醇的沸点和乙酸的沸点都低,因此很容易被蒸馏出来。
蒸出的粗馏液可用洗涤、分液除去溶于其中的乙酸、乙醇等,然后用干燥剂去除共沸物中的水分,再进行精馏便可以得到纯的乙酸乙酯产品。
表一、乙酸乙酯共沸物的组成与沸点三、主要物料及产物的物理常数表二、主要物料及产物的物理常数四、主要仪器设备仪器100mL三口烧瓶;滴液漏斗;蒸馏弯头;温度计;直形冷凝管;250mL 分液漏斗;50mL锥形瓶3个;25mL梨形烧瓶;蒸馏头;阿贝(Abbe)折光仪;气相色谱仪。
试剂冰醋酸;无水乙醇;浓硫酸;Na2CO3饱和溶液;CaCl2饱和溶液;NaCl 饱和溶液。
五、实验步骤及现象表三、实验步骤及现象实验装置图:六、 实验结果与分析由粗产品洗涤、蒸馏后得三瓶分馏产物,均为无色果香味液体,其质量如下:1.前馏分(温度稳定以前):号锥形瓶质量)=; 2.中馏分(温度稳定在76℃时):号锥形瓶质量)=; 3.后馏分(温度迅速下降后):号锥形瓶质量)=。
乙酸乙酯合成实验报告

实验名称:乙酸乙酯的合成实验日期:____年__月__日实验地点:____实验室一、实验目的1. 了解乙酸乙酯的合成原理和过程。
2. 掌握酯化反应的基本操作,包括原料的选择、反应条件的控制、产物的提纯等。
3. 学习蒸馏、分液、干燥等有机化学实验基本操作。
二、实验原理乙酸乙酯的合成是通过乙酸与乙醇在酸催化下发生酯化反应而得到的。
反应方程式如下:CH3COOH + C2H5OH → CH3COOC2H5 + H2O在实验中,浓硫酸作为催化剂,既可以促进反应进行,又可以吸收生成的水,使反应平衡向生成乙酸乙酯的方向移动。
由于酯化反应是可逆反应,因此需要采取一定的措施提高产率,如使用过量的乙醇、及时蒸出产物等。
三、实验药品及物理常数1. 乙酸:分析纯,密度为1.05g/cm³,沸点为118.1℃。
2. 乙醇:分析纯,密度为0.789g/cm³,沸点为78.37℃。
3. 浓硫酸:分析纯,密度为1.84g/cm³,沸点为338℃。
4. 无水硫酸镁:分析纯,密度为2.32g/cm³。
四、实验仪器1. 100mL三口烧瓶2. 冷凝管3. 温度计4. 分液漏斗5. 电热套6. 维氏分馅柱7. 接引管8. 铁架台9. 胶管10. 烧杯(500mL、250mL、100mL)11. 铁圈12. 烧瓶夹13. 冷凝管夹14. 十字夹15. 剪刀16. 酒精灯17. 砂轮片18. 橡皮管19. 沸石五、实验步骤1. 准备反应容器:在100mL三口烧瓶中加入9mL 95%乙醇和12mL浓硫酸,用胶管连接冷凝管,并插入温度计。
2. 加热反应:开启电热套,控制温度在60-70℃,使反应液逐渐沸腾。
3. 滴加乙酸:将乙酸缓慢滴入反应容器中,同时不断搅拌。
4. 继续反应:继续加热反应液,保持温度在60-70℃,直到反应液呈淡黄色,且不再有气泡产生。
5. 蒸馏:关闭电热套,待反应液冷却后,开启冷凝水,进行蒸馏。
乙酸乙酯制备实验实验报告

乙酸乙酯制备实验实验报告乙酸乙酯(ethyl acetate)是一种常见的酯类化合物,具有水果香味,广泛应用于溶剂、香料、涂料和胶水等领域。
本实验旨在通过乙酸和乙醇的酯化反应制备乙酸乙酯,并考察不同实验条件对反应的影响。
一、实验原理乙酸和乙醇在酸催化剂存在下进行酯化反应,生成乙酸乙酯和水。
酸催化剂可以是无机酸如硫酸或磷酸,也可以是有机酸如硫酸二乙酯。
二、实验步骤1. 实验前准备:- 取一瓶装有硫酸二乙酯的试剂瓶,将其称重记录。
- 准备好乙酸、乙醇、浓硫酸、干燥剂等试剂。
- 准备好反应容器,如圆底烧瓶、分液漏斗、冷却水浴等。
2. 反应操作:- 在干净的圆底烧瓶中加入一定量的乙酸。
- 加入适量的乙醇,摇匀使其充分混合。
- 将烧瓶放入冷却水浴中,控制温度在0-10摄氏度。
- 缓慢滴加硫酸二乙酯作为催化剂,同时用玻璃杯接收生成的水。
- 反应持续进行,直至水生成停止。
3. 分离与纯化:- 将反应混合液倒入分液漏斗中,与等体积的饱和盐水进行摇匀。
- 分离出有机层,放入干燥瓶中加入干燥剂,静置一段时间。
- 过滤除去干燥剂,得到纯净的乙酸乙酯。
三、实验条件对反应的影响1. 温度:实验中控制温度在0-10摄氏度,较低的温度有利于酯化反应的进行,但过低的温度会导致反应速率减慢。
2. 酸催化剂浓度:适量的酸催化剂可以提高反应速率,但过多的酸催化剂可能会导致副反应的发生。
3. 反应时间:反应时间的延长可以使反应达到平衡,但过长的反应时间会导致不必要的能量和时间浪费。
四、实验结果与讨论通过实验,成功制备了乙酸乙酯。
实验中需要注意的是,乙酸乙酯具有较低的沸点,容易挥发,因此在实验操作中需要保持通风良好,避免乙酸乙酯的损失。
在实验中,可以尝试不同的反应条件,如改变酸催化剂的种类和浓度、调节反应温度等,以探究对乙酸乙酯产率和选择性的影响。
五、实验总结本实验通过乙酸和乙醇的酯化反应制备了乙酸乙酯,并考察了不同实验条件对反应的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乙酸乙酯的合成一、 实验目的和要求1、 通过乙酸乙酯的制备,加深对酯化反应的理解;2、 了解提高可逆反应转化率的实验方法;3、 熟练蒸馏、回流、干燥、气相色谱、液态样品折光率测定等技术。
二、 实验内容和原理本实验用乙酸与乙醇在少量浓硫酸催化下反应生成乙酸乙酯:243323252H SO CH COOH CH CH OHCH COOC H H O ++副反应:2432322322H SO CH CH OH CH CH OCH CH H O −−−→+由于酯化反应为可逆反应,达到平衡时只有2/3的物料转变为酯。
为了提高酯的产率,通常都让某一原料过量,或采用不断将反应产物酯或水蒸出等措施,使平衡不断向右移动。
因为乙醇便宜、易得,本实验中乙醇过量。
但在工业生产中一般使乙酸过量,以便使乙醇转化完全,避免由于乙醇和水及乙酸乙酯形成二元或三元共沸物给分离带来困难,而乙酸通过洗涤、分液很容易除去。
由于反应中有水生成,而水和过量的乙醇均可与乙酸乙酯形成共沸物,如表一表示。
这些共沸物的沸点都很低,不超过72 ℃,较乙醇的沸点和乙酸的沸点都低,因此很容易被蒸馏出来。
蒸出的粗馏液可用洗涤、分液除去溶于其中的乙酸、乙醇等,然后用干燥剂去除共沸物中的水分,再进行精馏便可以得到纯的乙酸乙酯产品。
表一、乙酸乙酯共沸物的组成与沸点三、 主要物料及产物的物理常数表二、主要物料及产物的物理常数四、主要仪器设备仪器100mL三口烧瓶;滴液漏斗;蒸馏弯头;温度计;直形冷凝管;250mL分液漏斗;50mL锥形瓶3个;25mL梨形烧瓶;蒸馏头;阿贝(Abbe)折光仪;气相色谱仪。
试剂冰醋酸;无水乙醇;浓硫酸;Na2CO3饱和溶液;CaCl2饱和溶液;NaCl饱和溶液。
五、实验步骤及现象表三、实验步骤及现象实验装置图:六、 实验结果与分析由粗产品洗涤、蒸馏后得三瓶分馏产物,均为无色果香味液体,其质量如下: 1. 前馏分(温度稳定以前):43.38g-35.15g(1号锥形瓶质量)=8.13g ;2. 中馏分(温度稳定在76℃时):39.72g-32.67g(2号锥形瓶质量)=7.05g ;3. 后馏分(温度迅速下降后):34.28g-31.25g(3号锥形瓶质量)=3.08g 。
取中馏分在气相色谱仪上测定纯度,测得乙酸乙酯含量为99.9243%。
另有一种杂质,含量为0.0757%,预计为未洗净的乙醇,因为过量Na 2CO 3未洗净,部分CaCl 2与之反应生成了CaCO 3,剩余的CaCl 2不能把乙醇全部除尽。
因此纯度虽然较高,但仍有可以改进之处。
在阿贝折光仪上测得室温(20℃)下折光率为1.3727。
七、 思考题1、 利用可逆反应进行合成时,选择何种原料过量时,需要考虑哪几种因素?答:通常过量的原料必须具有以下优点:相对成本较低、易得、对环境和人体的影响更小、引入的副反应更少、反应完成后更容易从体系中去除或回收。
2、 粗乙酸乙酯中含有哪些杂质?答:未反应完全的乙醇、乙酸,酯化反应同时生成的水,溶入的极少的硫酸等。
若酯化反应温度控制不当,高于140℃,乙醇分子间脱水,会有乙醚生成;高于170℃,乙醇分子内脱水,会生成乙烯。
3、 能否用浓NaOH 溶液代替饱和Na 2CO 3溶液洗涤?答:不能。
酯化反应是可逆反应,生成的乙酸乙酯在强碱作用下很容易水解成乙醇和乙酸,影响产率。
且加入饱和Na 2CO 3溶液有CO 2放出,可以指示中和是否完成,不易加碱过量。
另外Na 2CO 3能跟挥发出的乙酸反应,生成没有气味的乙酸钠,便于闻到乙酸乙酯的香味。
4、 用饱和CaCl 2溶液洗涤能除去什么?为什么要用饱和NaCl 溶液洗涤?是否能用水代替?答:用饱和CaCl 2溶液洗涤是为了除去乙酸乙酯中溶入的少量乙醇。
用饱和NaCl 溶液洗涤是为了除去过量的Na 2CO 3,否则在下一步用饱和CaCl 2溶液洗涤时会产生絮状的CaCO 3沉淀。
不能用水代替。
因为乙酸乙酯在水中有一定的溶解度,加入NaCl 可以减小乙酸乙酯的溶解度,也就减少了这一步洗涤带来的产物损失。
另外也增加了水层的密度,分液时更容易分层,避免出现乳化现象。
八、 讨论、心得1、 实验操作注意点(1) 反应温度必须控制好,太高或太低都将影响到最后的结果。
太高,会增加副产物乙醚的生成量,甚至生成亚硫酸;太低,反应速率和产率都会降低。
(2) 反应过程中,滴加速度也要严格控制。
速度太快,反应温度会迅速下降,同时会使乙醇和乙酸来不及发生反应就被蒸出,影响产率。
(3) 乙酸乙酯可与水或醇形成二元或三元共沸物,共沸物的形成将影响到馏分的沸程。
共沸物的组成及沸点见表一。
(4) 滴液漏斗、分液漏斗等带活塞的仪器在使用前都要先检漏。
(5) 浓硫酸在本反应中起到催化、吸水的作用,故用量比较多。
(6) 因为本实验中水的存在对反应平衡有影响,所以所有仪器都必须干燥,且选取基本不含水的冰醋酸和无水乙醇反应。
2、 关于乙酸乙酯装订线P. 4乙酸乙酯在工业上的用途很广,主要用作溶剂及染料和一些医药中间体的合成。
虽然乙酸乙酯属于低级酯,有果香味,少量吸入对人体无害。
但它易挥发,其蒸气对眼、鼻、咽喉有刺激作用,高浓度吸入有麻醉作用,会引起急性肺水肿,并损害肝、肾。
持续大量吸入,可致呼吸麻痹。
误服者可产生恶心、呕吐、腹痛、腹泻等。
有致敏作用,会引发血管神经障碍而致牙龈出血;还可致湿疹样皮炎。
若长期接触,有时可致角膜混浊、继发性贫血、白细胞增多等。
为了减少对实验者健康的危害,相关操作都应在通风橱中进行。
乙酸乙酯是易燃物,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸,爆炸上限为11.5%,爆炸下限为2%(体积分数)。
与氧化剂接触猛烈反应。
其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。
因此实验合成的乙酸乙酯不能直接倒入水池,必须回收处理。
3、阿贝折光仪及折光率测定阿贝折光仪的结构示意图:1.底座;2.棱镜调节旋钮;3.圆盘组(内有刻度板);4.小反光镜;5.支架;6.读数镜筒;7.目镜;8.观察镜筒;9.分界线调节螺丝;10.消色凋节旋钮;11.色散刻度尺;12.棱镜锁紧扳手;13.棱镜组;14.温度计插座;15.恒温器接头;16 保护罩;17 主轴;18 反光镜测定时,试样置于测量棱镜P的镜面F上,棱镜的折光率大于试样的折光率。
如果入射光I正好沿着棱镜与试样的界面F射入,会发生全反射:其折射光为零,入射角90°,折射角为角1’0N’,即临界角。
大于临界角的区域构成暗区,小于临界角的构成亮区。
化合物的折光率除与本身的结构和光线的波长有关外,还受温度等因素的影响。
所以在报告折光率时n=1.4699表示20℃必须注明所用光线(放在n的右下角)与测定时的温度(放在折光率n的右上角)。
例如20D时,某介质对钠光(D线)的折光率为1.4699。
物质结构是折光率产生差异的根本原因。
不同的物质有不同的立体构象。
这使得物质对光线得吸收程度以及反射程度产生差异,使得折光率产生根本性的差异。
物质的折光率因光的波长而异,波长较长折射率较小,波长较短折射率较大。
测定时光源通常为白光。
当白光经过棱镜和样液发生折射时,因各色光的波长不同,折射程度也不同,折射后分解成为多种色光,这种现象称为色散。
光的色散会使视野明暗分界线不清,产生测定误差。
阿贝折光仪中所安装的色散补偿器是为了消除色散。
温度升高折射率减小;温度降低折射率增大.一般测量温度每增加(减少)1 ℃,液体有机化合物的折光率就减少(增加)3.5×10-4~ 5.5×10-4(为方便起见,一般以4×10-4计算)。
不同温度下折光率的转换公式:204410(20)tD D n n t -=+⨯-通常,大气压的变化对折光率的影响并不显著,一般只在要求较精密时才加以考虑。
4、 实验方法改进及其他合成方法合成乙酸乙酯有多种方法,最传统的就是以浓硫酸为催化剂,用乙醇和乙酸通过酯化反应合成。
此法中所用的浓硫酸对设备腐蚀严重,易炭化,副反应多,产生的二氧化硫对环境有污染。
虽然在实验室还是最常用的方法,但在工业上应用的缺点已经越来越明显。
其他研究比较多的是离子液体催化下的酯化反应和固体酸(包括离子交换树脂)催化下的酯化反应。
离子液体作为一种环境友好的溶剂和催化剂体系,具有零蒸汽压、宽液程、良好的溶解性、可设计性和可循环使用等优越的特性。
尤其将离子液体应用在酯化反应体系已经取得了相当可观的研究成果。
但是一般的离子液体对水和空气不稳定,酯化反应后难以分离,限制了其在化学反应中的广泛应用。
一般固体酸催化剂多存在着催化剂催化活性下降快,催化效率较低,产物分离困难,后处理较复杂等问题。
有一种新型固体酸,是用价廉、易得的3种无机酸:浓硫酸、磷酸和硼酸,以一种简单的方法在室温下混和、搅拌与老化,在250~400℃煅烧制得。
这种新型固体酸对乙酸与乙醇的酯化反应具有很好的催化性能,但制备温度很高。
离子交换树脂(大孔聚苯乙烯型)相对于均相催化剂,具有体积受溶剂作用影响小,适于填充柱操作,副反应少,催化剂重复使用率高,易于实现连续化生产等优点,而且与常规的硫酸比较.离子交换树脂除了不需中和、洗涤等后续处理程序外,还易于保存和运输。
但离子交换树脂成本比较高。