南邮概率论习题册答案

合集下载

概率论与数理统计课后习题答案1-8章-习题解答

概率论与数理统计课后习题答案1-8章-习题解答

第一章 思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A (5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC (7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB (9)“三人均未中靶”: ;C B A (10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A 3 .设,A B 是两随机事件,化简事件 (1)()()AB A B (2) ()()A B A B解:(1)()()AB A B AB AB B B ==,(2) ()()AB AB ()A BA B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率.解:51050.302410P P ==.5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。

概率论与数理统计习题答案1-19章

概率论与数理统计习题答案1-19章

1 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。

设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品;(4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A2 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P 设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P 故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率.解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则(1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃= 75.04341313131==-++=3 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==A PB P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多 一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=4 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+= 328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++= 6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P 设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P)()(3213213211A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则 )9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+ 0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.5 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X即四、电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.0000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------=16308.0≈六、设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=6 随机变量的分布函数·连续随机变量的概率密度一、函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-).解:(1)设211)(x x F +=,则1)(0<<x F因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x 因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π. 解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度. (3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A ==即)( ,arctan 121)(+∞<<-∞+=x x πx F .(2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P(3) X 的概率密度为)1(1)()(2x x F x f +='=π. 五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Aex f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Ae xx ,解得21=A ,即有).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰21102121)()(x e x e dx e dx x f x F x xx xx.7 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,1)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上 的概率.解:(1)因为)(~λe X ,所以R x ∈∀,有xe x F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x 设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X XY -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f y yY π.8 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布. 解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan(),(y C x B A y x F ++=. 求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度.解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π(3)X 及Y 的边缘分布函数分别为xx x X x dx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan 1)4(2),()(2ππ 2arctan 121xπ+=yx y Y y dy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan 1)9(3),()(2ππ 3arctan 121yπ+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ )4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx x y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f 求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它0,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰0030006),()(3032y y e x x dx e e dx y x f y f y y x Y(4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰Cx x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x . 9 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥.解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx e dy e dx dxdy y x f X Y P x xy xy xy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e ex二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jj n Y in i i n X ====--证明它们的和Y X Z +=也服从二项分布.证明: 设j i k +=, 则ik n i k i k n ki i n i i n k i Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()( ∑=-+=ki kn n k i n in q p C C2121)( 由knm ki ik n k m C C C +=-=∑, 有kn n ki in i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p C k P kn n k i n n Z +==-++ 由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是z y x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z z z z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i个并联组才停止工作,所以有)3,2,1(),max(21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ 设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ 故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ10 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为X1 2 3 …… n ……p q p q q p q p iqp ipqEX i i i i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2Xpp p p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=-进一步有pp p p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx x x dx xx dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)11 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY 72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf . 弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRRd R4sin 4cos 4202===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0, 0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元, 调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x进而有 41)1(1)1(-=<-=≥e X P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---ee e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni i n i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0 于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-= 即停车次数的数学期望为748.8.12 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X .解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰22022220223]11)1ln([1)1(211rr dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f 求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么? 解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-1210322),(dx x dy xdx dxdy y x xf EX x x0),(10===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f y y因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==n p q D ξ 于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以 )3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ. 查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n 答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.13 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ (2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---= .0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯=故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z =2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++=212222212221μσμσσσ++=.14 二维正态分布·正态随机变量线性函数的分布·中心极限定理四、 设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,53),cov(),(===y x Y X Y X r σσ.从而2516)53(1122=-=-r ,5412=-r .进一步按公式])())((2)([)1(21222121),(yy y x y x x x y y x r x r y x ery x f σμσσμμσμσπσ-+-------=,可得),(Y X 的联合概率密度为)2550316((322522321),(y xy x ey x f +--=π.二、设随机变量X 与Y 独立,并且)1,0(~N X ,)2,1(~2N Y .求随机变量32+-=Y X Z 的概率密度. 解:由题设,有0)(=X E ,1)(=X D ,1)(=Y E ,4)(=Y D .又根据关于数学期望的定理和方差的定理以及独立正态随机变量线性组合的分布,我们有2)3()()(2)32()(=+-=+-=E Y E X E Y X E Z E . 8)3()()(4)32()(=++=+-=D Y D X D Y X D Z D .且)8,2())(,)((~N Z D Z E N Z =,故随机变量32+-=Y X Z 的概率密度为16)2(82)2(2241821)(--⨯--==z z Z eez f ππ )(+∞<<-∞z .三、 台机床分别加工生产轴与轴衬.设随机变量X (mm)表示轴的直径,随机变量Y (mm)表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴衬的内径与轴的直径之差在3~1(mm)之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率. 解:由题设,知随机变量X 与Y 是独立的,且)3.0,50(~2N X ,)4.0,52(~2N Y .设X Y Z -=根据独立正态随机变量线性组合的分布,我们有)5.0,2()3.0)1(4.0,50)1(52(~2222N N Z =⨯-+⨯-+.根据题目假设,我们知道当31≤-=≤X Y Z 时,轴与轴衬可以配套使用.于是所求概率为1)2(2)2()2()25.022()5.0235.025.021()31(-Φ=-Φ-Φ=≤-≤-=-≤-≤-=≤≤Z P Z P Z P9544.019772.02=-⨯=.四、100台车床彼此独立地工作着,每台车床的实际工作时间占全部工作时间的80%,求: (1) 任一时刻有70至86台车床在工作的概率;。

南邮概率论习题册答案

南邮概率论习题册答案

南邮概率论习题册答案答案部分:第一章:概率基本概念和性质1. 试验、样本空间和事件概念解释:试验是指具有明确结果的随机现象,样本空间是所有可能结果的集合,而事件是样本空间中的一个子集。

答案:1) 试验:抛一枚硬币。

2) 样本空间:{正面, 反面}。

3) 事件A:出现正面。

4) 事件B:出现反面。

2. 概率的定义和性质概念解释:概率是描述事件发生可能性的数值,它满足非负性、规范性和可列可加性。

答案:1) 非负性:对于任何事件A,P(A) ≥ 0。

2) 规范性:对于样本空间S,P(S) = 1。

3) 可列可加性:对于互斥事件序列A1, A2, A3...,P(A1 ∪ A2 ∪A3...) = P(A1) + P(A2) + P(A3...)。

3. 随机变量的概念和分类概念解释:随机变量是根据试验结果的不同值赋予的数值,它可以分为离散随机变量和连续随机变量。

答案:1) 离散随机变量:抛一枚骰子,出现的点数为随机变量X,取值为{1, 2, 3, 4, 5, 6}。

2) 连续随机变量:测量一批产品的重量,随机变量X表示产品的重量,取值范围在区间[0, ∞)内。

第二章:概率的基本运算法则和条件概率4. 事件的互斥和独立概念解释:互斥事件是指事件之间不可能同时发生的事件,独立事件是指事件之间相互不影响的事件。

答案:1) 互斥事件:掷一枚骰子,事件A是出现奇数点数,事件B是出现偶数点数,事件A和事件B是互斥事件。

2) 独立事件:从一副扑克牌中取出一张牌,事件A是取到黑桃,事件B是取到红桃,事件A和事件B是独立事件。

5. 概率的加法与乘法法则概念解释:加法法则用于计算事件之间的并集概率,乘法法则用于计算事件之间的联合概率。

答案:1) 加法法则:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)。

2) 乘法法则:P(A ∩ B) = P(A) × P(B|A)。

6. 条件概率和独立性概念解释:条件概率是指在已知事件A发生的条件下,事件B发生的概率,独立性是指两个事件相互独立的概率性质。

南邮《高等数学下》同步练习册答案——完整版

南邮《高等数学下》同步练习册答案——完整版

参考答案与提示第7章 多元函数微分学及其应用7.1 多元函数的概念1、(1) }1,),{(22y x x y y x -≤> (2)}0,),,({22222≠+≥+y x z y x z y x (3)不存在 (4)连续3、(1) 0 (2) 0 7.2 偏导数与全微分 1、(1))sin(xy y - (2)y x xyy x x +++)ln((3))cos()sin(xy yexy(4) 223y x x + (5))2(2x y x exy--(6) dy xe dx xey y----2)232((7) dx 2 (8) 0.25e 2、(1) 11+-=z y x y x f 1ln -+=z y z y y zy x x y x f y y x f z y z ln =(2)xy y xy z yx++=1)1(2]1)1[l n ()1(xyxyxy xy z yy ++++=3、023=∂∂∂y x z2231y y x z -=∂∂∂7.3 多元复合函数求导法1、(1) z x yxyf 2)(2或 (2)122xyyf xe f ''- (3) 12+'ϕx(4) t t t 232423-+(5) x x e x x e 221)1(++(6)dy xy x dx y xy )2()2(22-+- 2、(1) 321f yz f y f u x '+'+'=32f xz f x u y '+'=3f xy u z '=(2) 223221111f yxf y f xy f ''-'-''+' (3)f x f ''+'242 f xy ''4 (4) 212333133sin (cos )(cos )x y x y x y y xf e f e f xf f e +++''''-+'''''+++ 7.4 隐函数求导法1、2)cos()cos(2x xy x xy y xy --2、z x2sin 2sin - zy 2s i n 2s i n - 3、3232)1(22---z x z z z4、)(211F F z F x '+'' )(212F F z F y '+''5、(1) )31(2)61(z y z x ++-z x 31+(2))21)(1()12(21122112g yv f x g f g yv f u g f '-'--''-''+'')21)(1()1(2112111g yv f x g f f u f x g '-'--'''-'-' 7.5 多元函数微分学的几何应用1、(1) 213141-=-=-z y x(2) 422+=++πz y x(3) 223(4) 12124433-=-=-z y x 2、2164±=++z y x3、46281272-=-=+z y x4、2,5-=-=b a7.6 方向导数与梯度1、(1) 32(2) 21(3) 5 (4) }2,2,1{92-2、)(2122b a ab+ 3、34、}1,4,2{211-217.7 多元函数极值及其求法1、极小值:2)21,41(21--=--ef2、最大值4)1,2(=z , 最小值64)2,4(-=z 。

概率论与数理统计习题解答全稿(1-7)

概率论与数理统计习题解答全稿(1-7)

习题一1.设C B A ,,为随机试验的三个随机事件,试将下列事件用C B A ,,表示出来.(1)仅仅A 发生;(2)所有三个事件都发生;(3)A 与B 均发生,C 不发生;(4)至少有一个事件发生;(5)至少有两个事件发生;(6)恰有一个事件发生;(7)恰有两个事件发生;(8)没有一个事件发生;(9)不多于两个事件发生.解:(1)C B A ;(2)ABC ;(3)C AB ;(4)C B A ;(5)AC BC AB ;(6)C B A C B A C B A ;(7)C AB C B A BC A ;(8)C B A ;(9)ABC .2.写出下列随机试验的样本空间(1)同时掷三颗骰子,记录三颗骰子的点数之和;(2)将一枚硬币抛三次,观察出现正反面的各种可能结果;(3)对一目标进行射击,且到击中5次为止,记录射击的次数;(4)将一单位长的线段分为三段,观察各段的长度;(5)从分别标有号码1,2, ,10的10个球中任意取两球,记录球的号码.解:(1){3,4,5, ,18};(2){}TTT THT TTH THH HTT HTH HHT HHH ,,,,,,,;(3) {5,6,7, };(4) }{1,0,0,0:),,(=++>>>z y x z y x z y x ;(5)}{n m n m n m ≠≤≤≤≤,101,101:),(.3.将12个球随机地放入20个盒子,试求每个盒子中的球不多于1个的概率.解:设)(A P 表式所求的概率,则:12122020!12.)(C A P =≈0.01473. 4.将10本书任意地放在书架上,其中有一套4卷成套的书,求下列事件的概率:(1)成套的书放在一起;(2)成套的书按卷次顺序排好放在一起.解: (1)设)(A P 表示所求的概率,则:)(A P =301!10!4!7=⋅. (2)设)(B P 表示所求的概率,则:)(B P =7201!10!7=. 5.一辆公共汽车出发前载有5名乘客,每一位乘客独立的在七个站中的任一个站离开,试求下列事件的概率:(1)第七站恰好有两位乘客离去;(2)没有两位及两位以上乘客在同一站离去. 解:5名乘客在七个站中的任意一个站离开的结果总数57=n .(1)第七站恰好有两位乘客离去,其方法数3256⋅=C m ,故设)(A P 为所求概率,则:1285.076)(5325=⋅=C A P . (2)设=B {没有两位及两位以上乘客在同一站离去},则:1499.07!5)(557=⋅=C B P . 6.有一个随机数发生器,每一次等可能的产生9,,2,1,0 十个数字,由这些数字随机编成的n 位数码(各数字允许重复),从全部n 位数码中任意选取一个,其最大数字不超过k (9≤k )的概率.解:设)(A P 表式所求的概率,则由全部n 位数码的总数为n10,得:n nk A P 10)1()(+=. 7.一元件盒中有50个元件,期中25件一等品,15件二等品,10件次品,从中任取10件,求:(1)恰有两件一等品,两件二等品的概率;(2)恰有两件一等品的概率;(3)没有次品的概率.解:(1)设)(A P 为所求概率,则:41050610215225104397.6)(-⨯=⋅⋅=C C C C A P . (2)设)(B P 为所求概率,则:03158.0)(1050825225=⋅=C C C B P . (3)设)(C P 为所求概率,则:0825.0)(10501040==C C C P . 8.有10个人分别佩戴者标号从1号到10号的纪念章,任意选出3人,记下其纪念章的号码,试求:(1)最小的号码为5的概率;(2)最大的号码为5的概率.解:从10人中任意选3人纪念章号码的总数为310C n =,(1)最小号码为5,则余下2个在6—10中选,即25C m =,设)(A P 为所求概率,则: 083.0)(31025==C C A P . (2)同理设)(B P 为所求概率,则:05.0)(31024==C C A P . 9.设事件B A ,及B A 的概率分别为q p ,和r ,试求:)(),(),(),(B A P B A P B A P AB P . 解:r q p B A P B P A P AB P -+=-+=)()()()( ;p r A P A B P A B P B A P -=-=-=)()()()( (单调性); q r B P B A P B A P B A P -=-=-=)()()()( (单调性);r B A P B A P B A P -=-==1)(1)()( .10.一批产品共100件,其中5件不合格.若抽检的5件产品中有产品不合格,则认为整批产品不合格,试问该批产品被拒绝接收的概率是多少?解:(法一)设i A ={抽检的5件产品中第i 件不合格},i =1,2,3,4,5则所求概率为:∑===5151)()(i i i i A P A P )()()()()(54321A P A P A P A P A P ++++= 2304.0510055510019545510029535510039525510049515≈++++=C C C C C C C C C C C C C C . (法二) 2304.01)(1)(5100595051≈-=-==C C A P A P i i . 11.设A 和B 是试验E 的两个事件,且21)(,31)(==B P A P ,在下述各种情况下计算概率)(A B P :(1)B A ⊂;(2)A 和B 互不相容;(3)81)(=AB P . 解:(1)613121)()()()(=-=-=-=A P B P A B P A B P .(2)21)()(==B P A B P . (3)838121)()()()(=-=-=-=AB P B P A B P A B P . 12.现有两种报警系统A 与B ,每种系统单独使用时,系统A 有效的概率为0.92,系统有效的概率为0.93 .装置在一起后,至少有一个系统有效的概率则为0.988,试求装置后:(1)两个系统均有效的概率;(2)两个系统中仅有一个有效的概率.解:(1)所求概率为)(AB P ,得:)()()()(B A P B P A P AB P -+=862.0988.093.092.0=-+=;(2)所求概率为)(B A B A P ,得:)(B A B A P )()(B A P B A P +=)()()()(AB P B P AB P A P -+-=126.0862.0293.092.0=⨯-+=.13.10把钥匙上有3把能打开门,今任取2把,求能打开门的概率.解:(法一)从10把钥匙中任取2把的试验结果总数45210==C n ,能打开门意味着取到的二两把钥匙至少有一把能打开门,其取法数24171323=+=C C C m ,故设)(A P 为所求概率,则:158)(210231713=+=C C C C A P .(法二)记A 为“能打开门”,则=A “两把钥匙皆开不了门”,于是158452111)(1)(21027=-=-=-=C C A P A P . 14.一个盒子中有24个灯泡,其中有4个次品,若甲从盒中随机取走10个,乙取走余下的14个,求4个次品灯泡被一人全部取走的概率.解:设=A {次品灯泡全部被甲取走},=B {次品灯泡全部被乙取走},则B A ,互不相容,所求概率为:)()()(B P A P B A P += 1140.0424414424410=+=C C C C . 15.设将5个球随意地放入3个盒子中,求每个盒子内至少有一个球的概率.解:5个球随意地放入3个盒子中事件总数53=n ,3个盒子中一个或两个盒子中有球数为332533153p C p C m ++=,设所求概率为)(A P ,则:8150331)(533253315=++-=p C p C A P . 16.已知1A 和2A 同时发生,则A 必发生,证明:1)()()(21-+≥A P A P A P . 证明:由已知,A A A ⊂21,再由单调性,)()(21A P A A P ≤,则)()()()()(212121A A P A P A P A A P A P -+=≥,1)(021≤≤A A P .1)()()()()()()(21212121-+≥-+=≥∴A P A P A A P A P A P A A P A P .17.掷一枚均匀硬币直到出现三次正面才停止,问正好在第六次停止的情况下,第五次也是正面的概率是多少?解:设=A {第五次出现正面},=B {第六次停止},则:52)21()21()()()|(256146===C C B P AB P B A P . 18.证明:0)()|(>>A P B A P ,则)()|(B P A B P >. 证明:)()|()()()()|(B P B A P AB P A P AB P A B P =>=,即证. 19.设事件B A ,互不相容,且0)(>B P ,试证:)(1)()|(B P A P B A P -=. 证明:)(1)()()()|(B P A P B P B A P B A P -=互不相容. 20.将两颗均匀骰子同时掷一次,已知两个骰子的点数之和是奇数,求两个骰子的点数之和小于8的概率.解:此事件的样本空间由36个样本点组成,设=A {两个骰子的点数之和小于8},=B {两个骰子的点数之和是奇数},则3618)(=B P ,3612)(=AB P ,于是: 322131)()()|(===B P AB P B A P . 21.设10件产品中有4件是次品,从中任取两件,试求在所取得的产品中发现有一件是次品后,另一件也是次品的概率.解:设=A {所取得两件中至少有一件是次品},=B {所取得两件产品都是次品},B AB A B =∴⊂, .而321)(1)(21026=-=-=C C A P A P ,152)(21024==C C B P ,所求概率为:5132152)()()()()|(====A P B P A P AB P A B P . 22. 10件产品有6件是正品,4件次品,对它们逐一进行检查,问下列事件的概率是多少?(1)最先两次抽到的都是正品;(2)第一、三次抽到正品,第二、四次抽到次品;(3)在第五次检查时发现最后一个次品.解:设i A ={第i 次抽到的是正品},i =1,2,3,4,5,6.则 (1)3195106)|()()(12121=⋅=⋅=A A P A P A A P ; (2) )(4321A A A A P )|()|()|()(3214213121A A A A P A A A P A A P A P =141738594106=⋅⋅⋅=; (3) 设=B {第五次检查时发现最后一个次品},则2104)(151********=*=C C C C C B P . 23.某人忘记电话号码的最后一个数字,他仅记得最末一位数字是偶数.现在他试着拨最后一个号码,求他拨号不超过三次而接通电话的概率.解:设=A {接通电话},=i B {拨号i 次},i =1,2,3.i B 构成样本空间的一个划分,由全概率公式:)|()()|()()|()()(332211B A P B P B A P B P B A P B P A P ++=532110321522121=⨯+⨯+⨯=. 24.某型号的显像管主要由三个厂家供货,甲、乙、丙三个厂家的产品分别占总产品和的25%、50%、25%,甲、乙、丙三个厂的产品在规定时间内能正常工作的概率分别是0.1、0.2、0.4,求一个随机选取的显像管能在规定时间内正常工作的概率.解:设A ={能在规定时间内正常工作},i B ={选取第i 个厂家的产品},i =1,2,3.则由全概率公式:)|()()|()()|()()(332211B A P B P B A P B P B A P B P A P ++=225.04.025.02.05.01.025.0=⨯+⨯+⨯=.25.两批同类产品各自有12件和10件,在每一批产品中有一件次品,无意中将第一批的一件产品混入第二批,现从第二批中取出一件,求第二批中取出次品的概率.解:设=B {第二批中取出次品},=A {第一批的次品混入第二批},A A ,构成样本空间的一个有限划分,由全概率公式:0985.01111211112121)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P . 26.在一个盒子中装有15个乒乓球,其中有9个新球,在第一次比赛时任意取出三个球,比赛后仍放回原盒中,第二次比赛时,同样任意的取出三个球,求第二次取出三个新球的概率.解:设B={第二次取出3个新球}.可以看出,直接确定B 的概率)(B P 是困难的,原因是,第一次比赛之后,12个乒乓球中的新、旧球的分布情况不清楚,而一旦新旧球的分布情况明确了,那么相应的概率也容易求得.为此,设i A ={第一次取到的3个球中有i 个新球}, i =0,1,2,3.容易判断3210,,,A A A A 构成一个划分.由于3,2,1,0,)(315369==-i C C C A P i i i ,又3,2,1,0,)|(31539==-i C C A B P i i . 由全概率公式,得:)|()()(30i i i A B P A P B P ∑==∑=--=3023*******)(i i i i C C C C 0893.02070251680756075601680≈+++=. 27.仓库中存有从甲厂购进的产品30箱,从乙厂购进的同类产品25箱,甲厂的每箱装12个,废品率为0.04,乙厂的每箱装10个,废品率0.05,求:(1)任取一箱,从此箱中任取一个为废品的概率;(2)将所有产品开箱后混放,任取一个为废品的概率.解:(1)设=B {取出的是废品},=A {从甲厂取出},A A ,构成一个划分,则)|()()|()()(A B P A P A B P A P B P +=0441.005.010251230102504.0102512301230=⨯⨯+⨯⨯+⨯⨯+⨯⨯=(2) 0441.010********.0102504.01230=⨯+⨯⨯⨯+⨯⨯ 28.已知一批产品中96%是合格品,用某种检验方法辨认出合格品为合格品的概率是0.98,而误认废品是合格品的概率是0.05,求检查合格的一件产品确系合格的概率.解: 设A ={检查合格产品},B ={确系合格}.由已知,05.0)|(,98.0)|(,96.0)(===B A P B A P B P , 由贝叶斯公式:)()|()()|(A P B A P B P A B P =)|()()|()()|()(B A P B P B A P B P B A P B P += 9979.005.004.098.096.098.096.0≈⨯+⨯⨯=. 29.已知5%的男人和0.25%的女人是色盲者,现随机挑选一人,此人恰为色盲者,问此人 是男人的概率为多少(假设男人女人各占总人数的一半).解:设=A {色盲者},=B {男人}, B B ,构成样本空间的一个划分,且05.0)|(=B A P , 0025.0)|(=B A P ,由贝叶斯公式:)()|()()|(A P B A P B P A B P = )|()()|()()|()(B A P B P B A P B P B A P B P +=9524.00025.02105.02105.021=⨯+⨯⨯=. 30.设某种病菌在人口中的带菌率为0.03,由于检验手段不完善,带菌者呈阳性反应的概 率为0.99,而不带菌者呈阳性反应的概率为0.05,若某人检查结果是呈阳性反应,他是带菌者的概率是多少?解:设=A {结果呈阳性},=B {是带菌者},则B B ,构成样本空间的一个划分,且 99.0)|(=B A P ,05.0)|(=B A P ,由贝叶斯公式:)()|()()|(A P B A P B P A B P =)|()()|()()|()(B A P B P B A P B P B A P B P += 3798.005.097.099.003.099.003.0=⨯+⨯⨯=. 31.证明:如果)|()|(B A P B A P =,则事件A 和B 相互独立. 证明:由已知和条件概率公式,有)()()()(B P B A P B P AB P =,即)()()()(AB P B P B A P B P =, 即)())(1()()(AB P B P AB A P B P -=-,又A AB ⊂,上式得:)()](1[)]()()[(AB P B P AB P A P B P -=-,有)()()(B P A P AB P =,即A 和B 相互独立.32.设一个n 位二进制数是由n 各“0”或“1”数字组成,每一位出现错误数字的概率是p ,各位数字出现错误与否是独立的,问组成一个不正确的这类二进制数的概率是多少? 解:每一位出现正确数字的概率是p -1,由已知,各位数字出现正确与否也是独立的,于是所求概率nP A P )1(1)(--=.33.设事件C B A ,,相互独立,且21)(,31)(,41)(===C P B P A P ,试求: (1)三个事件都不发生的概率;(2)三个事件中至少有一个事件发生的概率;(3)三个事件中恰有一个事件发生的概率;(4)至多有两个事件发生的概率.解:(1)41)211)(311)(411()()()()(=---==C P B P A P C B A P ; (2)43411)(1)(=-=-=C B A P C B A P ; (3))(C B A C B A C B A P )()()(C B A P C B A P C B A P ++=2411213243213143213241=⋅⋅+⋅⋅+⋅⋅=; (4))()()(1)(1C P B P A P ABC P -=-24232131411=⋅⋅-=. 34.甲袋中有3只白球,7只红球,15只黑球;乙袋中有10只白球,6只红球,9只黑球.从两袋中各取一球,试求两球颜色相同的概率.解:设C B A ,,表示两球同为白色、红色和黑色,C B A ,,互不相容,则所求概率为:)()()()(C P B P A P C B A P ++= 3312.025925152562572510253=⨯+⨯+⨯=. 35.两部机床独立的工作,每部机床不需要工人照管的概率分别为0.9和0.85,试求:(1)两部均不需照管的概率; (2)恰有一部需要照管的概率;(3)两部同时需要照管的概率.解:设=A {甲机床不需要工人照管},=B {乙机床不需要工人照管},则9.0)(=A P ,85.0)(=B P ,(1)765.085.09.0)()()(=⨯==B P A P AB P (2))()()()()()()(B P A P B P A P B A P B A P B A B A P +=+=22.085.01.015.09.0=⨯+⨯= (3) 015.015.01.0)()()(=⨯==B P A P B A P .36.求下列系统(图1.6)能正常工作的概率,其框图的字母代表组件,字母相同,下标不同的均为同一类组件,知识装配在不同的位置,A 类组件正常工作的概率为a γ,B 类组件正常工作的概率为b γ,C 类为c γ.解:(1)所求概率为)]()()()[()()()]([BC P C P B P A P C B P A P C B A P -+==c b a c a b a γγγγγγγ-+=.(2)所求概率为)()()()()(5421635241635241A A A A P A A P A A P A A P A A A A A A P -++= )()()(65432165326431A A A A A A P A A A A P A A A A P +--,又654321,,,,,A A A A A A 相互独立,则)33(33)(422642635241a a a a a a A A A A A A P γγγγγγ+-=+-= .(3)所求概率为 )()()()]())([(22112211n n n n B A P B A P B A P B A B A B A P =)]()()([)]()()()][()()([22221111n n n n B A P B P A P B A P B P A P B A P B P A P -+-+-+= n b a b a )(γγγγ-+=.习题二1、一批晶体管中有9个合格品和3个不合格品,从中任取一个安装在电子设备上,如果取出不合格品不再放回,求在取得合格品以前已取出的不合格品数的概率.解:设在取得合格品以前已取出的不合格品数为随机变量X ,则X 的所有可能取值为:0,1,2,3。

完整版概率论与数理统计习题集及答案文档良心出品

完整版概率论与数理统计习题集及答案文档良心出品

《概率论与数理统计》作业集及答案第1章概率论的基本概念§ 1 .1随机试验及随机事件1.(1) 一枚硬币连丢3次,观察正面H、反面T出现的情形.样本空间是:S= __________________________(2)—枚硬币连丢3次,观察出现正面的次数.样本空间是:S= _____________________________________ ;2.(1)丢一颗骰子.A :出现奇数点,贝U A= _________________ ; B:数点大于2,则B=(2)一枚硬币连丢2次, A :第一次出现正面,则A= _________________ ;B:两次出现同一面,则 = ________________ ; C :至少有一次出现正面,则C= § 1 .2随机事件的运算1•设A、B C为三事件,用A B C的运算关系表示下列各事件:(1)A、B、C都不发生表示为: __________ .(2)A 与B都发生,而C不发生表示为:(3)A与B都不发生,而C发生表示为:.(4)A 、B C中最多二个发生表示为:(5)A、B、C中至少二个发生表示为:.(6)A 、B C中不多于一个发生表示为:2.设S = {x : 0 _ x _ 5}, A = {x :1 :: x _ 3}, B = {x : 2 _ :: 4}:贝y(1) A 一 B = , (2) AB = , (3) AB = _______________ ,(4) A B = __________________ , (5) AB = ________________________ 。

§ 1 .3概率的定义和性质1.已知P(A B)二0.8, P( A)二0.5, P(B)二0.6,贝U(1) P(AB) = , (2)( P( A B) )= , (3) P(A B)= .2.已知P(A) =0.7, P(AB) =0.3,则P(AB)= .§ 1 .4古典概型1.某班有30个同学,其中8个女同学,随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3)至少有2个女同学的概率.2.将3个不同的球随机地投入到 4个盒子中,求有三个盒子各一球的概率.§ 1 .5条件概率与乘法公式1 •丢甲、乙两颗均匀的骰子,已知点数之和为7,则其中一颗为1的概率是 ____________________ 。

南京邮电大学概率论与随机过程答案

南京邮电大学概率论与随机过程答案

南京邮电大学概率论与随机过程答案1、已知2x=8,2y=4,则2x+y=()[单选题] *A 、32(正确答案)B 、33C、16D、42、4.已知第二象限的点P(-4,1),那么点P到x轴的距离为( ) [单选题] * A.1(正确答案)B.4C.-3D.33、若39?27?=321,则m的值是()[单选题] *A. 3B. 4(正确答案)C. 5D. 64、若(x+m)(x2-3x+n)展开式中不含x2和x项,则m,n的值分别为( ) [单选题] *A. m=3,n=1B. m=3,n=-9C. m=3,n=9(正确答案)D. m=-3,n=95、若a=-3 ?2,b=-3?2,c=(-)?2,d=(-)?,则( ) [单选题] *A. a<d<c<bB. b<a<d<cC. a<d<c<bD. a<b<d<c(正确答案)6、已知二次函数f(x)=2x2-x+2,那么f(1)的值为()。

[单选题] *12283(正确答案)7、?方程x2?+2X-3=0的根是(? ? ? ??)[单选题] *A、X1=-3, X2=1(正确答案)B、X1=3 ,X2=-1C、X1=3, X2=1D. X1=-3, X2=-18、13.在数轴上,下列四个数中离原点最近的数是()[单选题] *A.﹣4(正确答案)B.3C.﹣2D.69、29.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()[单选题] * A.ab=cB.a+b=c(正确答案)C.a:b:c=1:2:10D.a2b2=c210、9.下列说法中正确的是()[单选题] *A.正分数和负分数统称为分数(正确答案)B.正整数、负整数统称为整数C.零既可以是正整数,也可以是负整数D.一个有理数不是正数就是负数11、手表倒拨1小时20分,分针旋转了多少度?[单选题] *-480°120°480°(正确答案)-120°12、6.若x是- 3的相反数,|y| = 5,则x + y的值为()[单选题] *A.2B.8C. - 8或2D.8或- 2(正确答案)13、2.(2020·新高考Ⅱ,1,5分)设集合A={2,3,5,7},B={1,2,3,5,8},则A∩B=( ) [单选题] * A.{1,8}B.{2,5}C.{2,3,5}(正确答案)D.{1,2,3,5,7,8}14、下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是()[单选题] *A. ①②(正确答案)B. ①③C. ②③D. ②④15、二次函数y=3x2-4x+5的常数项是()。

大学概率论与数理统计习题及参考答案

大学概率论与数理统计习题及参考答案

十一、两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个 邮筒内只有一封信的概率. 解: 设事件 A 表示“前两个邮筒内没有信”,设事件 B 表示“及第一个邮筒 内只有一封信”,则
22 P ( A) 2 0.25; 4 1 1 C2 C3 P( B) 0.375. 2 4

P A B P( A) P( B) P( AB)
P A B P( A) P( B)
AB A ( A B)
P ( AB ) P ( A) P ( A B)
P ( AB ) P ( A) P ( A B) P ( A) P ( B)
3 2 1 C3 C3 C9 27 1 ; 则 P B 0 3 P B1 ; 3 220 C 12 220 C 12 1 2 3 C3 C9 C9 108 84 P B 2 ; P B . 3 3 3 220 C 12 C 12 220
设 A 表示事件“第二次取到的都是新球”,
解: 设事件 A 表示“最强的两队被分在不同的组内”,则
10 基本事件总数为: C 20 9 1 事件 A 含基本事件数为: C 18 C2
9 1 C 18 C2 P A 0.5263. 10 C 20

P A 1 P A

8 2C 18 C 22 1 10 C 20
解法1设事件a表示报警系统a有效事件b表示报警系统b有效由已知0862093092006808508006893从而所求概率为解法20012015080988001211三为防止意外在矿内同时设有两种报警系统a与b每种系统单独使用时效的概率系统a为092系统b为093在a失灵的条件下b有效的概率为0851发生意外时这两个报警系统至少有一个有效的概率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 1 1 P ( AB ) P ( A) P ( AB) 3 8 24
(2)A、B互不相容
AB
P ( AB) 0
P ( AB ) P ( A) P ( AB)
(3)A、B有包含关系
P ( A) P ( B )
1 1 0 3 3
A B
P ( AB ) P ( A) P ( AB) P ( A) P ( A) 0
2 C5 1 P ( A) 3 C10 12
(2)求最大号码为5的概率 解:以B表示事件“最大号码为5”
2 C4 1 P( B) 3 C10 20
7
3.某油漆公司发出17桶油漆,其中白漆10桶,黑漆4 桶,红漆3桶,在搬运中所有标签脱落,交货人随 意将这些发给顾客。问一个订货白漆10桶,黑漆3 桶,红漆2桶的顾客,能按所订颜色如数得到订货 的概率是多少? 解:以A表示事件“白漆10桶,黑漆3桶,红漆2桶”
P( A B C ) P ( A) P ( B ) P (C ) P ( AB ) P ( AC ) P ( BC ) P ( ABC )
1 1 1 1 1 1 0 0 4 4 4 8 8 2
P ( A BC ) P ( A B C )
(6) A、B、C 中至多有两个发生
A B C
(7) A、B、C 中至少有两个发生
2
AB BC AC
3.设A、B、C为三个事件,且
P( A) P( B) P, (C ) 1 4 P( AB) P( AC ) 1 8 P ( BC ) 0
求A,B,C都不发生的概率。 由 P ( BC ) 0知 0 P ( ABC ) P ( BC ) 0
4
5.设A、B、C是三个事件 P ( A) 0.7, P ( B) 0.3, P ( A B) 0.5 求 P ( A B ),P ( AB ) 。
P ( AB) P ( A) P ( A B ) 0.7 0.5 0.2 P ( A B ) P ( A) P ( B ) P ( AB)
0 .2 1 1 0.3 0.5 1 0.3 1 0.4 0.5 0.8 4 (2)已知 P ( A) 1 , P ( B | A) 1 , P ( A | B ) 1 ,求 P ( A B ) 。 4 3 2
11
P ( AB) P ( A) P ( B | A) P( A | B) 1 1 P ( A) P ( B | A) 1 4 3 1 1 1 P ( A) P ( A) P ( B | A) 1 P( A | B) 4 4 3 3 2
14
5.设根据以往记录的数据分析,某船只运输的某种物品损坏的情 A2 ),损 况有三种:损坏2%,(这一事件记为 A1 ),损坏10 %(事件 坏90%(事件 A3 )。且知 P ( A1 ) 0.8, P ( A2 ) 0.15, P ( A3 ) 0.05 现在 从已被运输的物品中随机地取3件,发现这3件都是好的(这一事件 记为B)。试求条件概率 P ( A1 | B), P ( A2 | B), P ( A3 | B), (这里设物品数 量很多,取出一件后不影响后一件是否为好品的概率。)
2 2
3
2 4.设A、B是两个事件且 P( A) 1 3 , P( B) 1 ,试在三 种情况下求 P ( AB )
P ( AB ) P ( A B ) P ( A) P ( AB)
(1) P ( AB) 1 8
15
练习四 1. 口袋里装有a+b枚硬币,其中b枚硬币是废品(两面 都是国徽)。从口袋中随机地取出1枚硬币,并把它独 立地抛掷n次,结果发现向上的一面全是国徽,试求 这枚硬币是废品的概率。 解:以A表示事件“n次出现都是国徽”,B表示事 b a 件“取到废品” P( B) P( B)
箱装30只,其中18只一等品,今从两箱中任选一箱,然后从该 箱中任取零件两次,每次取一只,作不放回抽样求 (1)第一次取到的零件是一等品的概率 解:以 表示事件“第i次从零件中取到一等品” 以 表示事件“取到第i箱” 2 1 10 1 6 P( A1 ) P( B1 ) P( A1 | B1 ) P( B2 ) P( A1 | B2 ) 2 50 2 10 5 (2)在第一次取到的零件是一等品的条件下,第二次取到的零件 也是一等品的概率。 P( A1 A2 ) P( B1 ) P( A1 A2 | B1 ) P( B2 ) P( A1 A2 | B2 ) 1 10 9 1 18 17 0.1943 2 50 49 2 30 29 P ( A1 A2 ) 0.1943 P ( A2 | A1 ) 0.4856 P ( A1 ) 0.4
10 3 2 C10 C4 C 3 1 4 3 3 P ( A) 15 C17 17 8 34
8
4.已知在10只晶体管中有2只是次品,在其中取两次, 每次任取一只,作不放回抽样,求下列事件的概率。 (1)两只都是正品 解:以A表示事件“两只都是正品”
8 7 28 P ( A) 10 7 45
S {02,11,20} S {0,1,2,3,} S {v | v 0}
A {11,20} A {6,7,8,9,10}
A {v | 60 v 80}
(3)记录南京市110在一小时内收到的呼叫次数。A表示“南 京市110在一小时内收到的呼叫次数在6至10间”。 (4)测量一辆汽车通过给定点的速度。A表示“汽车速度在 60至80之间”(单位:公里/小时) 1
0.5 0.05 0.5 0.0025 0.02625
(2)若此人恰好是色盲患者,问此人是女性的概率是多 少? 解: P ( B ) P ( A | B ) 0.5 0.0025 1
P ( B | A) P ( A)
0.02625
21
13
4.有两箱同类的零件,第一箱装50只,其中10只一等品,第二
0.7 0.3 0.2 0.8
P ( AB ) P ( B A) P ( B ) P ( AB)
0.3 0.2 0.1
5
练习二 1.把10本不同的书任意放在书架上,求其中指定 的3本书放在一起的概率。 解:以A表示事件“指定的3本书放在一起” 10本书任意放置的情况共有 10! 3个作整体放置的情况共 8
2.假设患肺结核的人通过透视胸部能被确诊的概率为 0.95,而未患肺结核的人通过透视胸部被误诊为病人的 概率为0.002。根据以往资料表明,某单位职工患肺结 核的概率为0.001。现在该单位有一个职工经过透视被 诊断为患肺结核,求这个人确实患肺结核的概率。
解:以A表示事件“确实患肺结核”,以B表示事件 “通过透视被确诊”。
P ( B | A) 0.95
P( A | B)
P ( B | A) 0.002
P ( A) 0.001
P ( AB ) P ( A) P ( B | A) P( B) P ( A) P ( B | A) P ( A) P ( B | A)
0.001 0.95 0.3223 0.001 0.95 (1 0.001) 0.002
2.设A、B、C 为三个事件试用A、B、C 表示下列事件 (1)A与B 不发生,而C 发生 (2)A,B,C 都不发生 (3)A、B、C 至少有一个发生 (4)A、B、C中恰有一个发生 (5)A、B、C 中恰有两个发生
ABC A BC
A B C
AB C A BC A B C ABC A BC AB C
12
3.已知男子有5%是色盲患者,女子有0.25 %是色盲患 者。今从男女人数相等的人群中随机地挑选一人,则 (1)此人是色盲患者的概率 解:以A表示事件“色盲患者”,以B表示事件“所 取为男子”。 P ( A | B ) 0.005 P ( A | B ) 0.0025
P ( A) P ( B ) P ( A | B ) P ( B ) P ( A | B )
2 C8 28 P ( A) 2 C10 45
(2)两只都是次品
解:以C表示事件“一只是正品,一只是次品” (4)第二次取出的是次品
解:以B表示事件“两只都是次品” 2 21 1 C 1 2 P( B) P( B) 2 10 9 45 C10 45 2 8 2 8 16 (3)一只是正品,一只是次品; P (C ) 10 9 45
2 8 21 1 P ( D) 10 9 5
解:以D表示事件“第二次取出的是次 9 品”
5.考虑一元二次方程 x 2 Bx C 0 ,其中B,C分别是 将一枚骰子接连抛掷两次先后出现的点数,求该方程 有重根的概率。 解:以A表示事件“该方程有重 根”。 B 2 4C 0 样本空间S中共有36个元素满足判别式的样本点只有 (2,1)和(4,4)
2 1 P ( A) 36 18
10
练习三 1. (1)已知 P ( A) 0.3, P ( B ) 0.4, P ( AB ) 0.5,求 P ( B | A B ) 。
P ( AB ) P ( B ( A B )) 解: P ( B | A B ) P ( A) P ( B ) P ( A B ) P( A B)
第一章概率论的基本概念
练习一 1. 写出下列随机试验的样本空间及各随机事件。
(1)将一颗骰子接连抛掷两次,记录两次出现的点数之和。A表 示“点数之和小于6”,B表示事件“两次出现的点数之和为 7”。 S {2,3,4,5,6,7,8,9,10,11,12} A {2,3,4,5} B {7 } (2)将a,b两个球随机地放入甲乙盒子中去,观察甲乙两个盒子 中球的个数。A表示“甲盒中至少有一个球”
相关文档
最新文档