第一章 物体的受力分析和静力平衡方程
第一章 物体受力分析和静力平衡方程

化工设备机械基础
• 力偶的等效性:在不改变力偶三要素的前提下,力偶可在其 作用面内任意移动,因此,只要力偶矩大小不变,可改变力与 力偶臂大小,而不改变力偶对刚体的效应。
M
M
d
F
F
F
d F
M
F
M
d/
F
F
d
F
(a)
(b)
(c)
(d)
精品文档
常熟理工学院
化工设备机械基础
第六节 力的平移
精品文档
化工设备机械基础
二、刚体的概念
• 受力物体-变形小-忽略变形-刚体 • 刚体-理想化的模型
精品文档
常熟理工学院
化工设备机械基础
三、平衡的概念
静力学只研究刚体,因此,只讨论物体 在力的作用下整体的平衡问题。
二力平衡公理
作用于刚体上的两个力,如果大小相等、方向 相反、且沿同一作用线,则它们的合力为零,此时, 刚体处于静止或作匀速直线运动。
❖ (2)受力分析要求画出的是受力图,不是施力图;
❖ (3)除重力、电磁力外,只有直接与研究对象接触 的物体才有力的作用;
❖ (4)约束反力的画法只取决于约束的性质,不要考 虑刚体在主动力作用下企图运动的方向;
❖ (5)画约束反力时,重要的是确定力线方位,力的 指向在无法判定时可任意假定;
❖ (6)要充分利用二力杆定理和三力平衡汇交定理来 确定力线方位。不能确定时可以用两个正交分力代 替该力。
么临时“抱佛脚”
精品文档
常熟理工学院
化工设备机械基础
课程学时分配
章节 第一章 物体的受力分析和静力 平衡方程
第二章 拉伸、压缩与剪切 第三章 扭转 第四章 弯曲 第五章 应力状态分析、强度理 论和组合变形
理论力学 期末复习知识点

第一章静力学公理与物体的受力分析§1.1 静力学公理✧公理1 二力平衡公理(条件)作用在刚体上的两个力,使刚体保持平衡的充分必要条件是:这两个力大小相等,方向相反,且在同一直线上。
✧公理2 加减平衡力系原理在已知力系上加上或减去任意的平衡力系,不改变原力系对刚体的作用。
(效应不变)✧公理3 力的平行四边形法则作用在物体上的同一点的两个力,可以合成为一个合力。
合力作用点也是该点,合力的大小和方向,由这两个力为边构成的平行四边形的对角线确定。
✧公理4 作用和反作用定律作用力与反作用力总是同时存在,两力的大小相等、方向相反、沿着同一直线,分别作用在两个相互作用的物体上。
✧公理5 刚化原理变形体在某一力系作用下处于平衡,如将此变形体刚化为刚体,其平衡状态保持不变。
✓推论1 力的可传性作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意一点,并不改变该力对刚体的作用。
✓推理2 三力平衡汇交定理作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三力必在同一平面内,且第三力的作用线通过汇交点。
§1.2 约束和约束力一、约束的概念•自由体:位移不受限制的物体。
•非自由体:位移受限制的物体。
•约束:对非自由体的某些位移起限制作用的周围物体。
二、约束反力(约束力)•约束力:约束对物体作用的力。
•在静力学中,约束力和物体受到的其它已知力(主动力)组成平衡力系,可用平衡条件求出未知的约束力。
三、工程常见约束•光滑平面约束•柔索约束•光滑铰链约束•固定铰链支座•止推轴承径向轴承•平面固定端约束§1.3 物体的受力分析和受力图受力分析:确定构件受了几个外力,每个力的作用位置和方向的分析过程。
•步骤:1.取研究对象(画分离体:按原方位画出简图)。
2.画主动力:主动力照搬。
3.画约束反力:根据约束性质确定。
第二章 平面汇交力系与平面力偶系§2–1 平面汇交力系平面汇交力系:各力的作用线都在同一平面内且汇交于一点的力系。
工程力学中的静力学平衡方程

工程力学中的静力学平衡方程工程力学是一门研究物体力学特性及其相互作用的学科,其中静力学是力学的基础。
在工程力学中,通过分析物体在平衡状态下所受到的力的平衡关系,可以推导出静力学平衡方程,进而解决工程力学中的各种问题。
一、引言静力学是力学中的一个重要分支,它主要研究物体在静止状态下的力学特性。
静力学中的平衡状态是指物体受到的力平衡,不会发生任何运动的状态。
而要确定一个物体是否处于平衡状态,就需要利用静力学平衡方程进行分析。
二、静力学平衡方程的定义静力学平衡方程是指在一个平面内,物体受到的作用力与约束力之间的关系式。
它是根据牛顿第一定律提出的,即物体在静止状态下受力平衡。
三、力的分类在工程力学中,力可以分为两个方向:竖直方向和水平方向。
竖直方向的力称为垂直力,水平方向的力称为水平力。
在处理问题时,我们需要将所有的力分解为水平力和垂直力。
四、力的合成与分解根据向量概念,我们可以通过合成和分解来处理力的问题。
合成是指将多个力合成为一个力,分解是指将一个力分解为多个力。
在分析物体受力情况时,我们可以将力进行合成与分解,从而得到更简单的问题进行求解。
五、静力学平衡方程的应用静力学平衡方程可以应用于各种各样的工程力学问题中,例如静止物体的平衡问题、斜面的稳定问题、悬挂物体的平衡问题等等。
通过建立静力学平衡方程,我们可以推导出相关的方程,进而解决实际工程中的问题。
六、实例解析为了更好地理解静力学平衡方程的应用,我们以一个实例进行解析。
假设有一根水平悬挂的杆上挂有一个重物,请问该杆的受力情况如何?为了解决这个问题,我们可以先建立杆在平衡状态下的静力学平衡方程,然后利用该方程求解出杆的受力情况。
七、结论静力学平衡方程在工程力学中起到至关重要的作用。
通过建立和求解静力学平衡方程,我们可以分析物体在平衡状态下的受力情况,解决各种各样的工程力学问题。
只有深入理解和掌握静力学平衡方程的原理和应用,才能在实际工程中取得良好的效果。
物体的受力分析和静力平衡方程

FAy A FAz
y
B
FBy
x
z FBz
y
FBx
5、固定端约束
F
A
zFF M NhomakorabeaAZAY
AZ
AX
F
(空间)
P
x
M
M
AX
y
AY
M
FAx
A
A
P
B
A (平面)
B
FAy
§1- 4 研究对象和受力图
对物体进行受力分析是静力学计算(如求解约束力)中 最重要的一步,也是动力学计算(求解物体受力与运动状态 变化间的关系)中的重要环节。 受力分析方法:将物体从约束中隔离出来,将约束对 它的作用代以相应的约束力,即取隔离体,画受力图。
画受力图的步骤
(1) 明确(选择)研究对象,并将研究对象从它周围的 约束中分离出来,单独画出其简图。 (2) 画出研究对象受的力,明确每个力是哪个施力体施 加的。 (3)根据约束性质画约束反力。 (4)考虑平衡条件,判断某些约束反力的方向。 (5) 注意作用力与反作用力的关系。
A
A
F
P
P
A
TA
P
2 、光滑面约束 P
A
FNA
3、光滑铰链约束
YA
A
XA
(平面铰链)
FAZ
FAX
FAY
(空间球形铰)
固定铰支座
A
(1)
(2)
(3)
FAx A FAy
活动铰支座
(1)
(2)
(3)
A
FB
4、 轴承约束 (1)滑动轴承
FAz
z
A
FAx
A
y
第一章-物体的受力分析和静力平衡方程全

第一章 物体的受力分析和静力平衡方程
1.4 力的投影、合力投影定理
三、合力投影定理 若一个力对刚体的作用效果与一个力系等效,这个力称为 该力系的合力,该力系中各个力称为这个合力的分力。 合力在某一轴上的投影等于各分力在同一轴上投影的代数 和。这个关系称为合力投影定理。
设有一力系F1、 F2…、 Fn,其在直角坐标轴上的投影分 别为Fx1、 Fx2…、 Fxn, Fy1、 Fy2…、 Fyn,该力系的合力
第一篇 工程力学基础
概述
工程力学是一门研究物体机械运动以及构件强度、刚度和 稳定性的科学。
静力学
工程力学
理论力学 材料力学
运动学 动力学
第一篇 工程力学基础
是物体间相互的机械作用。作用在物体上的力引起 两种效应:
外效应(运动) : 使物体的运动状态改变; 内效应(变形) : 使物体的形状发生变化;
第一章 物体的受力分析和静力平衡方程
1.0 概述 1.1 静力学基本概念 1.2 约束和约束反力 1.3 分离体和受力图 1.4 力的投影、合力投影定理 1.5 力矩、力偶 1.6 力的平移 1.7 平面力系的简化、合力矩定理 1.8 平面力系的平衡方程 1.9 空间力系
HM 00 01 02 03 04 05 06 07 08 09 10 11 12
1.2 约束和约束反力
以下为工程实际中常见的 约束类型 及 其反力:
(1) 柔索约束
柔软的绳索、链条、纲丝或皮带等柔性体对物体的约束。
F
T1
T1’
G
G
的约束反力是作用在 接触点,方向沿柔性体轴线,背离被约束物体。是离点而 去的力。
HM 00 01 02 03 04 05 06 07 08 09 10 11 12
第一章 静力平衡

公理分析它的受力情况,这个过程称为物体的受力分析。
作用在物体上的力有:一类是:主动力,如重力,风力,气体
压力等。
二类是:被动力,即约束反力。
28
二、受力图 画物体受力图主要步骤为:①选研究对象;②取分离体; ③画上主动力;④画出约束反力。 [例1]
第一章
§1–1
§1–2 §1–3 §1–4
静力平衡
静力学的基本概念
静力学公理 约束和受力图 平面力系
1
第一章
静力学公理与物体的受力分析
静力学的基本概念
静力学公理 约束和受力图 平面力系
§1–1
§1–2 §1–3 §1–4
2
第一节
静力学基本概念
一、力的概念
1.定义:力是物体间的相互机械作用,这种作用可以改变物 体的运动状态。 2. 力的效应: ①运动效应(外效应) ②变形效应(内效应)。 3. 力的三要素:大小,方向,作用点 力的单位: 国际单位制:牛顿(N) 4、力的表示方法 千牛顿(kN)
21
4.链杆约束
RA
链杆的约束反力沿着链杆中心线,指向待定。
22
5.铰链支座约束
(1)固定铰支座
23
固定铰支座
24
(2)活动铰支座(滚轴支座)
N
N的实际方向也 可以向下
25
活动铰支座(轴支座)
26
6.固定端支座
固定端支座的反力有限制构件移动的力和限制转动的力偶
27
受力分析
解决力学问题时,首先要选定需要进行研究的物体,即选
4、受力图上不能再带约束。
即受力图一定要画在分离体上。
40
化工机械基础-第01章 物体的受力分析和静力平衡方程

Page26
化工设备机械 基础
{F1, F2 ,, Fn} {FR}
合力:与某力系等效的力
FR :该力系的合力(resultant force) Fi(i=1,2,…n):合力的分力(component force)
平衡力系(equilibrium force system): 对刚体不产生任何作用效果的力系。
• 参考资料、补充知识
• 参考教材(补充教材的部分内容) • 文献、资料(网络检索)
化工设备机械 基础
参考教材
化工设备机械 基础
• 赵军等编.化工设备机械基础(第三版).北京:化学工业出版 社. 2016.
• 陈国桓编.化工机械基础(第二版).北京:化学工业出版社, 2015.
• 董大勤,高炳军,董俊华编.化工设备机械基础(第四版).北 京:化学工业出版社,2012.
FRy F1y F2y Fny Fy
FRz F1z F2z Fnz Fz
合力的大小
( ) ( ) ( ) FR FR2x FR2y FR2z
Fx 2 Fy 2 Fz 2
合力R 的方向余弦
cos
ห้องสมุดไป่ตู้
FRx FR
Fx
FR
,
cos FRy
FR
Fy
FR
,
cosg FRz
力对某点的矩等于该力沿坐标轴的分力对 同一点之矩的代数和
Page49
化工设备机械 基础
Page50
化工设备机械 基础
Page51
化工设备机械 基础
二、 力偶和力偶矩
1、力偶——大小相等的二反向平行力。
机械设计基础 物体的受力分析与平衡讲解

T2
T1
A
W
1 3
2
T1 A
T2 W
1.3 力对点之矩、力偶
1.3.1 力对点之矩
1、力矩 力矩(力×力臂):力使物体绕O点转动的效应 m0 (F) F d
力矩(力×力臂)
m0 (F) F d
⑴力矩的大小力F和O点的位置有关 d=0→M=0 F=0→M=0 ⑵力沿作用线移动力矩不变
汇交力系可以合成一个力, 力偶系可以合成一个合力偶
平面力系向一点简化
y F1
F4
o
F2 F3
A
x
F5
汇交力系(合力)
平面力系
力偶系(合力偶)
平面任 (合力) 意力系 (合力偶)
简化
1.4 .1、力的平移定理
作用在刚体上的力向刚体上任一点平移后需附加一力偶, 此力偶的矩等于原力对该点的矩
等效
力的平移(螺栓组联接受力分析) F M
竖直平面V:作用力Fr、 Fa
k
支反力 RA′ 、 RB′ 水平面H: 作用力Ft
j A
Fr
支反力 RA″ 、 RB″
若齿轮对称布置(中点),半径为r, 求支反力RA 、 RB 解:先分别求得分力,再合成
⑴∑Fy=0 RA′ + RB′ =Fr
∑MA=0 2aRB′ =aFr+rFa
∑Fx =0 RB =Fa
G+Pδ
M=6H
Pcosα
T2
Psinα
T= 100T2
各杆为二力杆
T2 sin45°=Q T2 =Rcos30° Q:R=sin45°cos30°1
=0.61 4
1.4 . 2 平面力系向一点简化 平移 + 合成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铰支座:用圆柱铰链将一个构件与底座连接。 分为固定铰支座和可动铰支座
(1)固定铰链约束 (固定铰支座)
被连接件A只能绕销轴转动,而不能沿销轴半径方 向移动。
特点:约束反力的指向随杆件,受力情况不同而相应 地变化。约束反力的作用线通过铰链中心,但其方向 待定,通常用水平和铅垂两个方向的分力表示。
固定铰支座的几种表示:
F Fx2 Fy2 tan Fy Fx
力F的指向和投影Fx和Fy的正负号判定: 如果把力F沿x、y轴分解为两个分力F1、F2, 投影的绝对值等于分力的大小,投影的正负号指明 了分力是沿该轴的正向还是负向。 (力的投影是代数量)。
力的投影与分力关系: 将力F沿直角坐标轴方向分解,所得分力Fx、 Fy的值与力F在同轴上的投影的绝对值相等。但是, 力的分力是矢量,具有确切的大小、方向和作用 点;而力的投影是代数量,不存在唯一作用线问 题。
固定铰链约束实例:
(2)活动铰链约束 (可动铰支座、辊轴支座)
特点:约束反力的指向必定垂直于支承面,并通过 铰链中心指向物体。
活动铰支座的几种表示:
3.固定端约束 P9
物体的一部分固嵌于另一物体所构成的约束。 如:建筑物中的阳台、电线杆、塔设备、跳台(跳 板)等。 特点:限制物体三个方向 运动,产生三个约束反力。 既不允许构件作纵向或横 向移动,也不允许构件转 动。
三、合力投影定理
合力投影定理:力系的合力在某轴上的投影等于 力系中各力在同轴上投影的代数和。即
Rx F1x F2 x ... Fnx Fx
其中合力 F 的大小及方向:
Ry F1 y F2 y ... Fny Fy
Fx Fy F tan F
(二)力的表现形式 (1)集中力:集中作用在很小面积上的力(近似看 成作用在某一点上)。
(2)分布(载荷):连续分布在一定面积或体积上的 力;单位长度上的均布载荷,称载荷集度(q)。
F
q(x) q
集中力
分布力
均布力 均布载荷
二、刚体的概念
在任何情况下都不发生变形的物体。
(理想化的力学模型)
理想化 分子的集合 看成连续体 理想化 看成刚体 理想化 看成质点
F'
B
d
F' F
A B
F
B
M
A
A
F"
(F )
(F’,F”,F)
F’=F”=F ,
M B M B ( F ) Fd
(F’,M)
思考:1.附加力偶作用面在哪儿? 2.同一平面内的一个力和一个力偶能否等效成 一个力?
结论:一个力平移的结果可得到同平面的一个 力和一个力偶;反之同平面的一个力F1和一个力偶 矩为m的力偶也一定能合成为一个大小和方向与力 F1相同的力F,其作用点到力作用线的距离为:
第一篇 工程力学基础
本篇主要讨论两个问题: 1)构件的受力分析(静力学) 静力平衡的基本规律; 求解结构上的未知力。 2)构件的承载能力分析(材料力学) 强度、刚度、稳定性,即杆件 受力后的基本变形(拉、压、弯、 扭)。
第一章 物体的受力分析和静力平衡方程
静力学主要研究:
(1)力系的简化;
(2)刚体的平衡条件。
确定反力的方向时,可借助于以下各点:
* 是否与二力构件相连,是,则由二力构件的分离 体图确定二力构件的连接点受力方向,而它的相 反方向(反作用力的方向)就是所求方向; * 研究对象是否是三力构件,是,则已知两个受 力方 向,可利用三力平衡汇交定理确定方向; * 根据主动力系和约束的性质确定反力方向。 即要充分利用二力杆定理、三力汇交定理、作 用与反作用定理来确定约束反力。
力偶的等效性推论:
唯一决定平面内力偶效应的特征量是力偶矩的代 数值,即保持力偶矩不变,可以改变其力或力臂的大 小。
因此,以后可用力偶的转向箭头来代替力偶。
M=F· · d=F d
F
d
d
F
=
第六节 力的平移
一、力的平移定理:作用于刚体上某一点A的力可以 平移到刚体上的任一点,但必须同时附加一个力偶, 其力偶矩等于原力F对新作用点B的矩.
平面力偶系:若干个力偶(一对大小相等、指向相反、作用线
平行的两个力称为一个力偶)组成的力系。 平面平行力系:各力作用线平行的力系。 平面一般力系:除了平面汇交力系、平面力偶系、平面平行力系
之外的平面力系。
对所有的力系均讨论两个问题:
(1)力系的简化(即力系的合成)问题;
(2)力系的平衡问题。
一、平面力系的简化
若已知力F的大小及其与x轴所夹的锐角α,则力
F在坐标轴上的投影Fx和Fy可按下式计算: Fx=±Fcosα Fy=±Fsinα 力在坐标轴上的投影有两种特殊情况: (1) 当力与坐标轴垂直时,力在该轴上的投影等于零。 (2) 当力与坐标轴平行时,力在该轴上的投影的绝对 值等于力的大小。
如果已知力F在直角坐标轴上的投影Fx和Fy, 则力F的大小和方向可由下式确定
F
2 y x
2
第五节 力矩 一、力矩
1.力矩的概念
力偶
物理量Fd及其转向来度量力使物体绕转动中心 O的效应,这个量称为力F对O点之矩。简称力矩, 记为
mo ( F ) F d
其中:O —称为矩心 ;
单位:N.m d —称为力臂
力矩的正负规定: 力矩在平面上逆时针转动为正, 顺时针转动为负。
二力杆实例:
弯杆
F1
F2
F
B
A
RB
B
C
C
RC
(2)力的平行四边公理 作用于同一点的两个力可以合成为一个合力,合 力的大小和方向是以这两个力为邻边的平行四边形的 对角线矢量,其作用点不变。也即: 合力等于两分 力的矢量和。
Fy
B F2 R
B R
F1 A
A
Fx
合力的正交分解
推论: 三力平衡汇交定理:如果一物体受三个力作用而处 于平衡时,若其中两个力的作用线相交于一点,则 第三个力的作用线必交于同一点。
二、力偶与力偶矩 (1)力偶概念 作用在同一物体上等值、反向、不共线的一对 平行力称为力偶,记作(F,F′)。 在力学中用力的大小F与力偶臂d
的乘积Fd加上正号或负号作为度
量力偶对物体转动效应的物理量,
该物理量称为力偶矩,并用符号
M(F,F′)或M表示, 即M(F,F′)= M =±Fd
工程实例
固定端约束实例:
NAX
固定端约束的托架
1.概念
第三节 分离体和受力图
分离体:将所要研究的物体从周围物体中单独分离 出来,使之成为自由体。 受力图:表示分离体及其受力的图形。
2.画受力图的基本步骤
(1)取分离体:根据问题的要求确定研究对象,将它从周 围物体的约束中分离出来,单独画出研究对象的轮廓图形; (2)画已知力:载荷,特意指明的重力等,不特意指明 重力的构件都是不考虑重力的; (3)画约束反力:确定约束类型,根据约束性质画出约 束反力。
(二)常见的约束类型及其反力 1.柔性约束
由柔软的绳索、链条或皮带构成的柔性体约束
S1 S'1
T P P
S2
S'2
特点: 柔性体约束只能承受拉力,不能受压。约束反力 的作用线沿着被拉直的柔性物体中心线且背离物体运动 方向。约束反力是作用在接触点,限制物体沿柔性体伸 长的方向运动,是离点而去的力。
柔性约束实例:
力偶的三要素: 1)力偶矩的大小; 2)力偶的转向; 3)力偶作用面。 力偶作用面在空间的位置及旋转轴的方向;用 垂直于作用面的垂线指向来表征。凡是空间相互平 行的平面,它们的方位均相同。
力偶矩正负规定:
若力偶有使物体逆时针旋转的趋势,力偶矩取 正号;反之,取负号。
(2)力偶的性质 ① 力偶无合力,即力偶在任一轴上的投影等于零。 ② 力偶对转动效应与矩心的位置无关。 力偶对其作用面内任一点之矩,恒等于力偶矩, 是一常数;而力对某点之矩,矩心的位置不同,力矩 就不同(力矩与力偶的本质区别之一)。 ③力偶的等效性:在同一平面内的两个力偶,如果 它们的力偶矩大小相等,力偶的转向相同,则这两个 力偶是等效的。即三要素相同的力偶彼此等效。
研 •根据实际问题抽象建立力学模型 究 •应用数学方法描述客观规律 方 •应用数学工具得到解决问题的方法 法
第一节 静力学基本概念 一、力的概念及作用形式
(一)概念 1、力: 是物体间相互的机械作用,这种作用 使物体的机械运动状态发生变化(外效应), 或使物体发生变形(内效应)。 力的三要素:大小、方向、作用点 力的单位: N(牛顿),kN(千牛) 力的表示方法: 常用黑体字母表示
F1 F2
F1 F' 1 M1
F' 2 M2 F' 3 F' n
O M3 M3 Mn
F' R
O
F3
F3
Fn
Fn
(F1,F2,F3,…,Fn)
(F1’,F2’,F3’,…,Fn’) (FR’,Mo) (M1,M2,M3,…,Mn) F1’=F1 M1=Mo(F1) FR’=F1’+F2’+F3’+…+Fn’ Mo=M1+M2+M3+…+Mn =F1+F2+F3+…+Fn F2’=F2 M2=Mo(F2) =Mo(F1)+Mo(F2)+…+Mo(Fn) F3’=F3 M3=Mo(F3) =∑Fi =∑Mo(Fi) ……
载人飞船的对接
研究轨道问题时——质点 研究对接问题时——刚体
三、平衡的概念
(1)二力平衡原理
F'
作用于刚体上的两个力平衡的必要充分