一次方程及其应用
一元一次方程的应用

一元一次方程的应用一元一次方程是指只有一个未知数,并且该未知数的指数为1的方程。
一元一次方程的一般形式为ax + b = 0,其中 a 和 b 为已知常数,x 为未知数。
一元一次方程的应用非常广泛,可以在各个领域中解决实际问题。
本文将以数学、物理和经济三个方面来讨论一元一次方程的具体应用。
一、数学领域1. 解题应用:一元一次方程的解可以代表问题的答案。
通过列方程、整理方程、求解方程的过程,可以得到问题的解决方案。
2. 几何应用:一元一次方程可以用于求解图形的坐标、长度、面积等问题。
例如,求两点之间的距离、直线与坐标轴的交点等都可以转化为一元一次方程的问题。
3. 概率应用:一元一次方程可以用于概率计算中。
例如,已知事件发生的概率,求解该事件发生的次数等,可以通过建立一元一次方程来解决。
二、物理领域1. 力学应用:一元一次方程可以用于解决力学问题。
例如,已知物体的质量和加速度,求解力的大小;已知物体的速度和时间,求解物体的位移等。
2. 热学应用:一元一次方程可以用于热学问题的计算。
例如,已知物体的温度和传热系数,求解物体的传热速率;已知物体的热容和温度变化,求解物体的热量等。
三、经济领域1. 成本应用:一元一次方程可以用于经济成本的计算。
例如,已知某商品的固定成本和单位产品的生产成本,求解生产一定数量商品的总成本。
2. 收益应用:一元一次方程可以用于经济收益的计算。
例如,已知某汽车公司的定价策略和销售数量,求解该公司的总收益。
3. 投资应用:一元一次方程可以用于投资回报的计算。
例如,已知某项投资的投资额和回报率,求解投资多少年可以收回成本。
综上所述,一元一次方程的应用十分广泛,不仅可以用于数学领域的解题,还可以用于物理和经济等实际问题的求解。
掌握一元一次方程的应用方法,将有助于我们解决各种实际问题,并提升我们的数学思维能力。
一元一次方程常见应用题型及解法

一元一次方程常见应用题:
一、行程问题:路程=速度×时间
1:相遇问题:甲路程+乙路程=总路程
2:追及问题:a、不同时同地出发:快者(追者)走的路程=慢者(前者)走的路程
b、同时不同地出发:慢者走的路程+两者距离=快者走的路程
3、水流问题:顺水行的路程=逆水行的路程
提前写出:顺水速度=静水速度+水流速度
逆水速度=静水速度-水流速度
二、工程问题:工作总量=工作效率×工作时间工作效率与单独工作的时间互为倒数
各部分工作量之和=1
三、利润率、销售问题:
商品利润=商品售价-商品进价=商品进价×商品利润率
商品利润率=商品利润/商品进价×100%
售价=进价×(1+利润率)
注:进价
售价=实际销售价格
标价=定价=原价=预计售价=原销售价
四、数字问题:
设一个两位数的十位上的数字和个位上的数字分别为a、b,则这个两位数表示为10a+b 五、按比例分配问题:
甲:乙:丙=a:b:c 全部数量=各种成分的数量之和(设一份为χ)
六、配套问题
“加工的两种物品成比例”
七、分配问题
“总量不变”
八、积分问题
比赛总场数=胜场总数+平场总数+负场总数
比赛总积分=胜场总积分+平场总积分+负场总积分九、规律问题
●3个规律数字:设中间的数为χ
●月历中的问题
月历中每一行上相邻的两数,右边的数比左边的数大1;
月历中的每一列上相邻的两数,下边的数比上边的数大7 十、方案决策问题
选择最优的方案就要把每种方案的结果算出来,进行比较。
一元一次方程的解法及应用

一元一次方程的解法及应用一元一次方程是初中数学中最基础的一种方程形式,它的形式可以表示为ax+b=0,其中a和b为实数,且a不等于0。
解一元一次方程可以通过运用一些基本的解法和技巧来实现。
在本文中,将介绍一些常见的解一元一次方程的方法,并探讨一些实际应用场景。
一、解法一:移项法移项法是解一元一次方程最常用的方法之一。
其基本思想是将方程中的未知数项移至一边,常数项移至另一边,使方程变为形如x=c的简单形式。
例如,解方程2x+3=7:首先,我们将方程中的常数项3移至右边:2x+3-3=7-3化简后得到:2x=4最后,将方程两边同除以2,得到解:x=2二、解法二:消元法消元法是解一元一次方程的另一种常见方法。
其基本思想是通过相互抵消未知数项或常数项,从而使方程变为形如x=c的简单形式。
例如,解方程3x+2=2x+5:首先,我们将方程中的常数项2移至左边,将未知数项3x移至右边:3x-2x=5-2化简后得到:x=3最终得到解x=3。
三、解法三:代入法代入法通常用于解决一元一次方程组,它的基本思想是将一个方程的某个变量用另一个方程中的变量表示,然后代入到另一个方程中,进而求解未知数的值。
例如,解方程组:2x+y=7x-y=3首先,根据第二个方程可得x=y+3将x的表达式代入第一个方程中:2(y+3)+y=7化简后得到:3y+6=7继续化简可得:3y=1最终得到解y=1/3,代回x的表达式可得x=10/3。
应用:一元一次方程在实际生活中有广泛的应用。
以下是一些常见的应用场景:1. 价格计算:在商业活动中,一元一次方程常用于求解价格。
例如,在打折优惠时,我们可以通过一元一次方程求解最终价格。
2. 时间计算:一元一次方程也可用于时间计算。
例如,在计算速度、时间和距离之间的关系时,我们可以建立一元一次方程来求解未知数。
3. 购物优惠:商场常常会进行满减优惠活动,我们可以通过一元一次方程求解购买满足条件所需的最低金额。
一元一次方程在生活中的应用

一元一次方程在生活中的应用
一元一次方程可以用来解决很多实际问题,如移动手机定价问题、
树木移植问题、预算规划问题、安装家具长度计算问题等。
1、移动手机定价问题。
若一部手机的原价为500元,经销商降低了20%,则可用一元一次方程x-500=0.2x,求解出手机实际售价x=400元。
2、树木移植问题。
若将一棵树移植到新地方,移植工程共花费2000元,土地房屋搭建费用1000元,则可用一元一次方程x+1000=2000,
求出移植树的费用x=1000元。
3、预算规划问题。
若某家庭每月收入9000元,其中食物费用占据2/3,则可用一元一次方程x+6000=9000,求出食物费用x=3000元。
4、安装家具长度计算问题。
若客厅的长度为6m,已安装的柜子占据
3/4,则可用一元一次方程x+4.5=6,求出柜子的长度x=1.5m。
七年级数学一元一次方程的应用

七年级数学一元一次方程的应用一元一次方程是初中数学中的基础内容,也是数学在实际生活中广泛应用的一种工具。
本文将从实际问题的角度出发,探讨七年级数学一元一次方程的应用。
1. 商品打折问题假设某商场正在进行打折促销活动,现有一款商品原价为x元,经过折扣后降价到原价的80%。
我们可以通过一元一次方程来计算出折后价格。
设折后价格为y元,则有方程:y = 0.8x。
通过解这个方程,便可以得出折后价格。
这个例子展示了一元一次方程在计算打折后价格问题中的应用。
2. 速度问题在旅行中,我们常常需要计算行驶距离、速度和时间之间的关系。
假设某辆汽车行驶的速度是v km/h,行驶t小时后,行驶的总距离s km。
我们可以通过一元一次方程来计算这些参数之间的关系。
设总距离s为y km,则有方程:s = vt。
通过解这个方程,我们可以计算出汽车行驶的总距离。
这个例子展示了一元一次方程在速度问题中的应用。
3. 家庭预算问题家庭预算是人们生活中常遇到的问题之一。
假设某家庭每月的总收入是x元,总支出是y元。
我们可以通过一元一次方程来计算每月结余或者透支的情况。
设结余为z元,则有方程:z = x - y。
通过解这个方程,我们可以得到每月的结余或者透支情况。
这个例子展示了一元一次方程在家庭预算问题中的应用。
4. 距离、时间、速度问题某辆汽车行驶了一段距离d,行驶的时间是t小时,我们需要计算汽车的平均速度v km/h。
通过一元一次方程我们可以找出速度与距离、时间之间的关系。
设平均速度v为y km/h,则有方程:v = d/t。
通过解这个方程,我们可以计算汽车的平均速度。
这个例子展示了一元一次方程在距离、时间和速度问题中的应用。
以上是几个七年级数学中一元一次方程的应用例子,从商品打折、速度问题、家庭预算问题到距离、时间、速度问题,一元一次方程在实际生活中无处不在。
掌握了一元一次方程的应用,我们不仅能更好地理解数学的基础概念,还能更好地解决实际生活中的问题。
一元一次方程的解法及其应用(含答案)初中数学

一元一次方程的解法及其应用[教学目标]1. 经历从具体问题中的数量相等关系,列出方程的过程,体会并认识到方程是刻画现实世界的一个有效的数学模型。
2. 了解方程、一元一次方程以及方程的解等基本概念,了解方程的基本变形及其在解方程中的作用。
3. 会解一元一次方程,并经历和体会解方程中“转化”的过程和思想,了解一元一次方程解法的一般步骤,并能正确、灵活运用。
4. 会根据具体问题中的数量关系列出一元一次方程并求解,能根据问题的实际意义检验所得结果是否合理。
5. 通过实践与探索过程,体会数学建模思想,提高分析和解决实际问题的能力。
【典型例题】例1. 已知()||m x m +=-320032是关于x 的一元一次方程,求m 的值。
解:由一元一次方程的定义可知: ||m m -=+2130,且≠由||||m m m -===2133,得,则± 又由m m +-303≠,得≠ ∴m =3小结:方程ax b a a b +=00()≠,且、为已知数是关于x 的一元一次方程,这里包含有(1)未知数只有一个,且未知数的最高次数是“1”。
(2)未知数的系数合并后不能为零。
(3)它必须是等式。
例2. 已知x =23是一元一次方程334325()m x x m-+=的解,则m 的值是多少? 解:因为x =23是方程334325()m x x m-+=的解,所以3342332235()m m -+=××即33215m m -+=解得m =-14小结:方程的解是指满足方程两边相等的未知数的值,x =23是原方程的解,则把原方程中的x 换成23后等式仍然成立。
从而可以得到另一个关于m 的方程求解。
例3. 解下列方程:(1)5263x x +=-(2)0408613...x x -=- (3)30%70%(440%x x x ++=-)(4)32234122[()]xx ---= (5)97352775x x +=-(6)21431233436()()()x x x -+-=-+ (7)x x +--=-40230516...解:(1)5263x x +=-移项得: 2365+=-x x 合并同类项得:5=x ∴x =5(2)由方程0408613...x x -=-两边同时乘以10得: 486013x x -=-413608x x +=+ 1768x = x =4(3)30%70%(440%x x x ++=-) 方程两边都乘以100得: 3070440x x x ++=-()3744x x x ++=-() 372840x x x +++= 1428x =- x =-2(4)32234122[()]xx ---=去中括号得:()xx 4132---=xx 4132---= x x --=1648 -=324x x =-8 (5)97352775x x +=-97273575x x -=--x =-2(6)21431233436()()()x x x -+-=-+ 21431233436()()()x x x -----=()()x ---=321412346436()x -=4126x -= 418x =x =92(7)x x +--=-40230516...545022320516().()..x x +--=-××5202616x x +-+=-. 3276x =-. x =-92.例 4. 如果关于x 的方程23523331432x x n x n n -=--=+-与()的解相同,求()n -3582的值。
六年级 一元一次方程及应用题答案
一元一次方程及其应用一、基本知识1.解方程:类型包括移项类型,去括号类型,去分母类型。
2.列方程解应用题。
二、训练题(一)选择1.下列解方程的过程中,正确的是(C ) A.13=2x +3,得 2x =3-13 B.4y-2y+y=4,得(4-2)y=4 C. -12x=0,得x=0 D.2x=-3,得x=23- 2.下列解方程去分母正确的是( C ) A.由1132x x --=,得2x - 1 = 3 - 3x; B.由232124x x ---=-,得2(x - 2) - 3x - 2 = - 4C.由131236y y y y +-=--,得3y + 3 = 2y - 3y + 1 - 6y;D.由44153x y +-=,得12x - 1 = 5y + 20 3. 若式子57x -与49x +的值相等,则x 的值等于( B ).(A )2 (B )16 (C )29 (D )1694. 若方程53ax x =+的解为5x =,则a 的值是( B ).(A )14(B )4 (C )16 (D )80 5. 小李在解方程513a x -=(x 为未知数)时,误将x -看作x +,得方程的解为2x =-,则原方程的解为( C ).(A )3x =- (B )0x = (C )2x = (D )1x =6. 三个连续整数的和为54,则这三个数为( C )(A )15,16,17 (B )16,17,18 (C )17,18,19 (D )18,19,207. 已知甲有图书80本,乙有图书48本,要使甲、乙两人的图书一样多, 应从甲调到乙多少本图书?若设应调x 本,则所列方程正确的是( C ).(A )80+x=48-x (B )80-x=48 (C )48+x=80-x (D )48+x=80d c b a 8.受季节影响,某种商品每年按原售价降价10%后,又降价a 元,现在每件售价b 元,那么该商品每件的原售价为( A )A 、00101-+b aB 、))(101(00b a +-C 、00101--a b D 、))(101(00b a -- 9.甲、乙两人环湖竞走,环湖一周400,乙的速度是80米/分,甲的速度是乙的速度的411倍,且甲在乙的前100米处,多少分钟后,两人第一次相遇?设经过x 分钟两人第一次相遇,所列方程为( B )A 、x x 804510080⨯=+B 、x x 804530080⨯=+ C 、x x 804510080⨯=- D 、x x 804530080⨯=- 10.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( D )A .54B .27C .72D .45(二)填空1. 当=___ -2__时,式子2x-1的值比式子5x+6的值小1.。
一元一次方程的应用
一元一次方程的应用1. 苹果的购买:假设每个苹果的价格是p,你买了x个苹果,花了y 元。
这个购买过程可以用方程px = y来表示,其中p是苹果的单价。
通过解这个方程,可以计算出每个苹果的价格或购买的数量。
2. 电费计算:假设每度电的价格是p,你使用了x度电,支付了y元的电费。
这个计算过程可以用方程px = y来表示,通过解这个方程,可以计算出每度电的价格或使用的数量。
3. 路程和速度的关系:假设一个人以每小时v的速度行驶了x小时,那么他所行驶的路程可以用方程vx = d来表示,其中d是行驶的总路程。
通过解这个方程,可以计算出速度或行驶的时间。
4. 汽车行驶的时间:假设一个汽车以每小时的速度v行驶了x千米,行驶的时间可以用方程vx = t来表示,其中t是行驶的时间。
通过解这个方程,可以计算出汽车的速度或行驶的距离。
5. 工作量计算:假设一项工作需要x个小时完成,每小时工作的效率是p个单位,那么完成这项工作需要的总工作量可以用方程px = w来表示,其中w是工作的总量。
通过解这个方程,可以计算出工作的效率或完成工作所需的时间。
6. 线性销售模型:假设一种商品每件的价格是p,销售了x件,总销售额为y元。
这个销售过程可以用方程px = y来表示。
通过解这个方程,可以计算出每件商品的价格或销售的数量。
7. 比例关系:假设一个问题中存在两个量x和y,它们之间存在比例关系,可以用方程yx = t来表示,其中t是比例系数。
通过解这个方程,可以计算出两个量的比例关系。
以上这些是一元一次方程在现实生活中的一些应用场景,我们可以通过解这些方程来计算出各种参数的值或者确认各种关系。
整合了数学和实际问题,使得人们可以更好地理解和解决实际生活中的各种情况。
一元一次方程的应用
一元一次方程的应用一元一次方程是初中数学中的基础知识,学生们经常会遇到各种与一元一次方程相关的问题。
本文将探讨一元一次方程在日常生活、工作和实际问题中的应用。
一、商品售价的计算在购物时,我们常常会遇到各种折扣和促销活动。
通过一元一次方程可以计算出商品的实际售价。
如某商品原价为x元,打7折后的售价为0.7x元,如果现在的售价是100元,那么我们可以列出以下方程:0.7x = 100通过解这个方程,我们可以得到商品原价为142.86元。
这个例子展示了一元一次方程在计算商品售价方面的应用。
二、速度与时间的计算当我们要计算一个物体的速度时,有时候只知道物体运动的时间和路程,这时候可以利用一元一次方程来解决。
例如,某车以每小时40公里的速度行驶,行驶了t小时,那么该车行驶的路程可以表示为40t公里。
如果我们知道该车行驶了120公里,那么我们可以列出以下的方程:40t = 120通过解这个方程,我们可以得到该车行驶的时间为3小时。
这个例子展示了一元一次方程在计算速度与时间方面的应用。
三、利润的计算在商业活动中,人们常常需要计算出销售商品的总成本和利润。
通过一元一次方程,可以帮助我们计算出商品的利润率。
例如某商品的成本为C元,售价为S元,如果我们知道该商品的利润率是20%,那么我们可以列出以下方程:S - C = 0.2C通过解这个方程,我们可以得到商品的成本为0.83S元。
这个例子展示了一元一次方程在计算利润方面的应用。
四、游戏得分的分析在游戏中,我们经常需要分析得分的情况。
通过一元一次方程,可以帮助我们计算出达到特定得分目标所需要的平均分数。
例如,某个游戏共有n关,小明已经通过了m关,每关平均得分为x分,如果我们想要达到总得分1000分的目标,那么我们可以列出以下方程:mx = 1000通过解这个方程,我们可以得到小明每关的平均得分为20分。
这个例子展示了一元一次方程在分析游戏得分方面的应用。
总结:一元一次方程在日常生活、工作和实际问题中有广泛的应用。
专题04 一次方程(组)及其应用-备战2022年中考数学题源解密(解析版)
专题04 一次方程(组)及其应用考向1 一次方程(组)及其解法【母题来源】(2021·浙江温州)【母题题文】解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x【分析】可以根据乘法分配律先将2乘进去,再去括号.【解答】解:根据乘法分配律得:﹣(4x+2)=x,去括号得:﹣4x﹣2=x,故选:D.【母题来源】(2021·浙江金华)【母题题文】已知是方程3x+2y=10的一个解,则m的值是.【分析】把二元一次方程的解代入到方程中,得到关于m的一元一次方程,解方程即可.【解答】解:把代入方程得:3×2+2m=10,∴m=2,故答案为:2.【母题来源】(2021·浙江嘉兴)【母题题文】已知二元一次方程x+3y=14,请写出该方程的一组整数解.【分析】把y看做已知数求出x,确定出整数解即可.【解答】解:x+3y=14,x=14﹣3y,当y=1时,x=11,则方程的一组整数解为.故答案为:(答案不唯一).【母题来源】(2021·浙江丽水)【母题题文】解方程组:.【分析】方程组利用代入消元法求出解即可.【解答】解:,把①代入②得:2y﹣y=6,解得:y=6,把y=6代入①得:x=12,则方程组的解为.【母题来源】(2021·浙江台州)【母题题文】解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=3,即x=1,把x=1代入①得:y=2,则方程组的解为.【试题分析】以上中考真题主要考察了一元一次方程与二元一次方程组的解法步骤以及二元一次方程的多解问题;【命题意图】一次方程(组)的解法是对等式基本性质的熟悉程度的检验,也是后续方程求解的基础,准确掌握一元一次方程以及二元一次方程组的解法,是考生拿到此考点分值的重点;【命题方向】一次方程(组)的解法在浙江中考中占比不大,分值在0~6分,个别城市几乎不会单独出题,出题也基本在选择或者填空题的前半部分,属于难度较小的一类题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识体系图
一元一次方程
一次方程(组)及其应用 二元一次方程组
方程
定义 解
等式的性质
性质1 性质2
一元一次方程
定义 解法 应用
二元一次方程
定义 解
二元一次方程组
定义 解 解法 应用
3
2.1.1 等式的概念及性质
1.等式:表示相等关系的式子叫做等式.
2.等式的性质:
(1)等式两边加(或减)同一个数(或同一个式子),结果仍相 等.即:如果a=b,那么a±c=b±c;
V正方体=a3(a表示正方体的边长).
V圆锥=
1 r2h (r表示底面圆的半径,h表示高)
3
14
4.增长率问题:设a为原来量,m为平均增长率,n为增长次数,b为
增长后的量,则a(1+m)n=b;当m为平均下降率时,则有a(1-m)n
=b. 5.利润问题: 利润=售价-进价=进价×利润率;售价=标价×折扣率=进价 ×(1+利润率); 总利润=总售价-总进价=单件利润×销售量. 6.利息问题: 利息=本金×利率×期数本息和=本金×利息.
5
2.1.3 方程的解
1.能够使方程左右两边相等的未知数的值,叫做方程的解.求方 程解的过程叫做解方程. 2.二元一次方程的解:适合二元一次方程的一组未知数的值. 3.二元一次方程组的解:二元一次方程组中两个方程的公共解.
6Hale Waihona Puke 2.1.4 解一次方程(组)的解法
1.解一元一次方程主要有以下步骤: (1)去分母(注意不要漏乘不含分母的项); (2)去括号(注意括号外是负号时,去括号后括号内各项均要变 号); (3)移项(注意移项要变号); (4)合并同类项; (5)系数化1;
15
【例1】在如图的2017年6月份的月历表中,任意框出表中竖列上三个相邻的
数,这三个数的和不可能是
()
A.27
B.51
C.69
D.72
16
【解析】本题考查了一元一次方程的应用. 设第一个数为x,则第二个数为x+7,第三个数为x+14. 故三个数的和为x+x+7+x+14=3x+21. 当x=16时,3x+21=69;当x=10时,3x+21=51;当x= 2时,3x+21=27; 当x=17时,3x+21=72.但是根据图中可知x不大于16,所以x不能取17. 【答案】D
(2)等式的两边乘同一个数,或除以同一个不为零的数,结果任
然相等.即:
如果a=b,那么ac=bc;如果a=b,那么
a c
b c
c
0.
4
2.1.2 一次方程(组)的相关概念
1.含有未知数的等式叫做方程. 2.只含有一个未知数(元),且含未知数的项的最高次数是1,这 样的整式方程叫做一元一次方程. 3.含有两个未知数,且含未知数的项的次数都为1,这样的整式方 程叫做二元一次方程. 4.将两个或两个以上的方程联立在一起,就构成了一个方程组.如 果方程组中含有两个未知数,且含未知数的项的次数都是1,这样 的方程组叫做二元一次方程组.
(2)加减消元法:两个二元一次方程中同一个未知数的系数互为 相反数或相等时,将两个方程的两边分别相加或相减,从而消去这 个未知数,得到一元一次方程,这种方法叫做加减消元法,简称加 减法.
8
2.1.5 列方程(组)解应用题的一般步骤
1.审:即审清题意,分清题中的已知量、未知量. 2.设:即设关键未知数. 3.找:即找出各量之间的等量关系. 4.列:即根据等量关系列方程(组). 5.解:即解方程(组). 6.验:即检验所解出的答案是否正确,是否符合题意. 7.答:即规范作答,注意单位名称.
顺水速度=船在静水中速度+水流速度 逆水速度=船在静水中速度-水流速度
13
2.工程问题:工作量=工作效率×工作时间,各部分工作量之和=工 作总量.
3.几何图形问题:
(1)面积问题:S长方形=ab,(a,b分别表示为长和宽).
S正方形=a2(a表示边长).
S圆=πr2(r表示圆的半径).
(2)体积问题:V长方体=abh(a,b,h分别为长方体的长、宽和高).
9
一元方程(组)及其应用方法归纳
1.在解一元一次方程时,经常用到两个相乘:一是去分母时,方程 两边同乘以分母的最小公倍数;二是将分母化为整数时,把分母、 分子同乘以10n.这两个“同乘以”有着本质的区别,一个用的是等 式的性质,一个用的是分数的基本性质,两者不可混淆.
10
2.两种设元方法 (1)直接设元.在全面透彻地理解问题的基础上,根据题中求什 么就设什么是未知数,或要求几个量,可直接设出其中一个为未 知数,再用这个未知数表示另一个未知量.这种设未知数的方法 叫做直接设元法. (2)间接设元.如果对某些题目直接设元不易求解,便可将并不 是直接要求的某个量设为未知数,从而使得问题变得容易解答, 我们称这种设未知数的方法为间接设元法.
7
2.解二元一次方程组的基本思想是消元,有代入消元法与加减消元 法两种消元办法.即把多元方程通过代入、加减、换元等方法转化 为一元方程来解.
(1)代入消元法:在二元一次方程组中选取一个适当的方程,将 一个未知数用含另一个未知数的式子表示出来,再代入另一个方程, 消去一个未知数得到一元一次方程,求出这个未知数的值,进而求 得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入 法.
第二单元 方程(组)与不等式 (组)
第6课时 一次方程(组)及其应用
1
考纲考点
1.能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世 界的一个有效的数学模型. 2.能用观察、画图等手段估计方程的解. 3.会解一元一次方程、二元一次方程组.
2015年、2017年江西中考没有单独考查二元一次方程组和一元一次方程, 都是与其他知识点综合考查,2013年、2014年、2016年江西中考都分别 考查了列二元一次方程组、二元一次方程组的应用、二元一次方程组的 解法及一元一次方程应用,预测2018年一次方程(组)及其应用单独考 查的几率任然较小,单独考查多以二元一次方程组的计算为主.
11
3.列方程(组)解应用题的关键是把已知量和未知量联系起来,找出 题目中的数量关系,并根据题意或生活实际建立等量关系.一般来 说,有几个未知量就必须列出几个方程,所列方程必须注意:①方 程两边表示的是同类量;②同类量的单位要统一;③方程两边的数 值要相等.
12
常见的应用题题型归纳及关系式总结
1.有关路程、速度的问题 (1)行程问题:路程=速度×时间. (2)相遇问题:两者路程之和=全程. (3)追及问题:快者路程=慢者先走路程(或相距路程)+慢者后 走路程. (4)水中航行问题: