射频通信电路- 调制与解调电路
射频通信电路第三章 调频 3-2

间接调频方案
相位与调制信号成正比
vo (t ) 的相位是
优点: 优点: 频率稳定度很高 调制信号 vΩ (t ) 的相位是
k f VΩm Ω
sin Ωt )
∆ωm m f = ∆ϕm = Ω
mf
v (t ) = Vcm cos(ω c t + m f sin Ωt )
调相波 ϕ (t ) = ωc t + k p vΩ (t )
v (t ) = Vcm cos ϕ (t ) = Vcm cos(ω c t + k pVΩm cos Ωt )
∆ω m = k f VΩm
∆ϕ (t ) = k f
∆ϕ m = k f
∆ω m = k p ΩVΩm
∆ϕ (t ) = k pVΩm cos Ωt
VΩm sin Ωt Ω
VΩm ∆ω m = Ω Ω
∆ ϕ m = k p V Ωm
③调频波的表达式 调频波的相位变化规律为 调频波的相位变化规律为: 相位变化规律
频谱的非线性搬移——与调幅不同 与调幅不同 频谱的非线性搬移
调频波的每条谱线的幅度 谱线的幅度为 B. 调频波的每条谱线的幅度为 J n (m f )Vm
J n (m f ) ——宗数为 m f 的n阶第一类贝塞尔函数 宗数为 阶
J − n (m f ) J n (m f ) = − J − n (m f ) (n为偶数时) 频谱以 (n为奇数时)
然有起伏,但总的趋势是减少的 然有起伏,但总的趋势是减少的 减少
导致结果:越远离载频ωC的边频的能量越 导致结果:越远离载频ω 边频的 载频 小
ωc
② 带宽 频谱结构: 频谱结构: 理论上——以载频ωC为中心,有无数对边频分量 以载频ω 为中心, 无数对边频分量 理论上 以载频 ωC,ωC±Ω,ωC±2Ω,……ωC±nΩ(n为正整数) ω nΩ( 为正整数) 远离载频 实际上——远离载频ωC的边频的能量很小 远离载频ω 的边频的能量很小 实际上 带宽 BWε = 2 LF 其中
射频通信电路- 调制与解调电路

2020/7/28
Information&Communication Engineering Dept. XJTU
4
9·1 调制与解调器
1、平衡调制器电路
vD1 vc vW , iD1 gD (vc vW )s(wct)
R
C
vo
设输入信号(普通调幅波AM信号)
vi (t) Vim (1 ma cos Wt) coswct
RC滤波器的取值原则一般为:
➢ RC>>1/wc,以保证电容C对高频载波近似短路,
滤除输出信号的高频部分; ➢ RC<1/Wmax,保证低频调制信号可以通过RC低通 滤波器。
2020/7/28
Information&Communication Engineering Dept. XJTU
2020/7/28
Information&Communication Engineering Dept. XJTU
14
9·2 包络检波电路
把二极管用折线特性逼近,并考虑到平均直流偏压Vo对 二极管构成的负偏压,可以得到:
i
gD 0
(vD
VD
)
vD VD vD 0
vD vi Vo Vim coswct Vo i gD (Vim coswct Vo VD )
2020/7/28
Information&Communication Engineering Dept. XJTU
12
9·2 包络检波电路
输入信号vi(t)是一普通调幅波AM信号:
vi (t) Vim (1 ma cos Wt) coswct iD (t) a0 a1Vim (1 ma cos Wt) coswct
射频通信电路第三章_调频_3-2

(n为偶数时) 频谱以
(n为奇数时)
c 中心对称
载频
J0 (mf )Vm
第一对旁频
J1(m f )Vm
第二对旁频
J2 (mf )Vm
分析 J n (m f )
第一. 载频分量 J 0 (m f )随 m f 是变化的
特征:
m f =2.40,5.52, 8.65……,载波分量 J 0 (m f ) =0
v(t) Vm cos(ct mf sin t)
VmRe (e jmf sint e jct )
的周期函数
调频波的傅立叶展开式为 :
e jm f sin t
J n (m f )e jnt
n
J n (m f
)
1
2
e jm f
sin t
e jnt dt
v(t)
Vm Re
nJ n
(m
f
)e
j (ct nt )
Vm J n (m f ) cos(c n)t
n
分析调频波的频谱
v(t) Vm Jn (mf ) cos(c n)t n
A
.
以载频ω
为中心,有无数对边频分量
c
② 带宽
频谱结构:
理论上——以载频ω
为中心,有无数对边频分量
C
ω C,ω C±Ω ,ω C±2Ω ,……ω C±nΩ (n为正整数) 实际上——远离载频ω C的边频的能量很小 带宽 BW 2LF
n 其中 L ——边频数 对
c
F ——调制信号频率
问题:应考虑多少对边频?舍去多少? ——取决于要求精度
调制电路与解调电路

调制电路与解调电路一、调幅电路调幅电路是把调制信号和载波信号同时加在一个非线性元件上(例如晶体二极管或三极管)经非线性变换成新的频率分量,再利用谐振回路选出所需的频率成分。
调幅电路分为二极管调幅电路和晶体管基极调幅、发射极调幅及集电极调幅电路等。
通常,多采用三极管调幅电路,被调放大器如果使用小功率小信号调谐放大器,称为低电平调幅;反之,如果使用大功率大信号调谐放大器,称为高电平调幅。
在实际中,多采用高电平调幅,对它的要求是:(1)要求调制特性(调制电压与输出幅度的关系特性)的线性良好;(2)集电极效率高;(3)要求低放级电路简单。
1、基极调幅电路图1是晶体管基极调幅电路,载波信号经过高频变压器T1加到BG的基极上,低频调制信号通过一个电感线圈L与高频载波串联,C2为高频旁路电容器,C1为低频旁路电容器,R1与R2为偏置的分压器,由于晶体管的ic=f(ube)关系曲线的非线性作用,集电极电流ic含有各种谐波分量,通过集电极调谐回路把其中调幅波选取出来,基极调幅电路的优点是要求低频调制信号功率小,因而低频放大器比较简单。
其缺点是工作于欠压状态,集电极效率较低,不能充分利用直流电源的能量。
2、发射极调幅电路图2是发射极调幅电路,其原理与基极调幅类似,因为加到基极和发射极之间的电压为1伏左右,而集电极电源电压有十几伏至几十伏,调制电压对集电极电路的影响可忽略不计,因此射极调幅与基极调幅的工作原理和特性相似。
3、集电极调幅电路图3是集电极调幅电路,低频调制信号从集电极引入,由于它工作于过压状态下,故效率较高但调制特性的非线性失真较严重,为了改善调制特性,可在电路中引入非线性补尝措施,使输入端激励电压随集电极电源电压而变化,例如当集电极电源电压降低时,激励电压幅度随之减小,不会进入强压状态;反之,当集电极电源电压提高时,它又随之增加,不会进入欠压区,因此,调幅器始终工作在弱过压或临界状态,既可以改善调制特性,又可以有较高的效率,实现这一措施的电路称为双重集电极调幅电路。
射频电路 第九章调制与解调电路

v
充电
vi (t ) > 0 时,二极管导通
τ 充 = R D C 很小,充得快
放电
当 vi (t ) < v AV 时,二极管截止
τ 放 = RC 很大,放得慢
输入 等幅波
17/87
结果: AV 保持在输入信号的峰值上 v
2010-9-16 《高频电子线路》
二极管视为开关——导通、截止
⎧g D vD iD = ⎨ ⎩0
2010-9-16
vD > 0 vD ≤ 0
1 ( RD = 是二极管导通电阻) gD
16/87
《高频电子线路》
峰值包络检波原理 设输入为等幅载波(包络为常数)
vi (t ) = Vcm cos ωc t
二极管两端电压
v D = vi (t ) − v AV = vi (t ) − v c
第九章 9.1 调制与解调器
调制与解调电路
9.4 调幅波的包络检波器 9.5 调频电路 9.5.2 直接调频电路 9.5.3 间接调频电路 9.6 鉴频电路
2010-9-16
《高频电子线路》
1/87
射频发射机和接收机
ωIF
2010-9-16
《高频电子线路》
2/87
第九章
调制与解调电路
AM、DSB、SSB ASK、PSK 相干解调、包络检波 频谱非线性搬移——FM、FSK 频谱线性搬移:
输入阻抗
Ri 的大小
——用能量守恒原理求证
设输入信号为: vi (t ) = Vcm cos ωc t
2 1 Vcm 则输入功率为: Pi = × 2= VAV = = kdVcm ≈ Vcm 2 2 V AV Vcm 负载所得功率为: Po = = R R 二极管在载波一周内导通时间极短,电流很小,吸收功率极小 则:P
第三章--信号调制解调电路

uo
uc
10k
5k
∞ + + N
uc
R1 10k C
t
T2 T1 T0
A
R4
15k
a)
b)
• (3)电压调频法 • 利用电压变化去控制振荡回路的参数L、 C或R,从而使得振荡器频率得到调制。这 种频率受电压控制的振荡器叫做压控振荡 器。常用的受控元件有变容二极管、晶体 管、场效应管等。 • 电压调频法可用于一些遥测仪器,例如, 在测量旋转扭矩的仪器中,可以通过调频 电路将应变仪的输出电压转换为调频信号 发射出来。在接收端再将这一调频信号解 调,得到所需的测量结果。
一、调幅的原理与方法
1.调幅的原理与意义
(1)原理 调幅波是一个具有上下边带的双边频 信号。
1 us (t ) Z 0U m cos ct Z mU m cos(c )t cos(c )t 2
信号的调幅过程
ux(t)
O uc(t)
O
(a)调制信号
t
t
(b)载波信号
a)原理图
-8V
b) 实用电路
②开关电路调制
ux(t) + o uc(t)
+ ux(t)
_
T1
t
T2 us(t)
_
o
us(t) o
t
uc(t) uc(t)
t
3.调幅信号的解调过程
从已调信号中检出调制信号的过程称为解调,
也称为检波。
us(t)
us'(t) O t
ux(t)
O
t
(a)调幅信号
O
t
(C)原信号
信息传输过程
信息传输处理主要包括调制与解调两个过程
psk调制解调电路的新原理和过程

Psk调制解调电路的新原理和过程目录: 1. 引言 2. Psk调制原理 3. Psk解调原理 4. Psk调制解调电路的实现5. 新原理和过程6. 总结1. 引言Psk(相位偏移键控)调制和解调技术是无线通信中常用的调制解调方式之一。
它通过改变载波信号的相位,来传输数字信号。
本文将介绍Psk调制解调电路的基本原理和传统实现方式,同时探讨一些新的原理和过程,以拓宽对这一主题的理解。
2. Psk调制原理Psk调制的基本原理是根据数字信号的码元来调整载波信号的相位。
具体来说,假设二进制数字信号的两种状态为0和1,将0映射到一个特定的相位,如0°,将1映射到另一个相位,如180°。
这样,在传输过程中,根据数字信号的变化,载波信号的相位会相应地改变,从而传输数字信息。
这种方式使得信号在频谱中具有良好的集中性,能够有效地传输数据。
3. Psk解调原理Psk解调的过程是将调制后的Psk信号转换为可供数字系统处理的基带信号。
解调电路需要对Psk信号的相位进行检测,判断每个码元所对应的相位,并将其转化为数字信号。
常见的解调方式有包络检波、相干解调等。
包络检波方法通过检测Psk信号的幅度变化来确定相位,而相干解调则是通过将Psk信号与本地参考信号相乘,再通过低通滤波得到基带信号。
4. Psk调制解调电路的实现传统上,Psk调制解调电路的实现主要基于模拟电路。
调制电路通常由载波产生器和相位调制电路组成,而解调电路则需要相位解调器和解调滤波器。
这些电路在实现上较为复杂,不仅需要精确的设计,而且在制造过程中也容易受到各种噪声和失真的影响。
模拟电路的性能通常会受到工艺、温度等因素的影响,可能无法满足高精度和高速传输的需求。
5. 新原理和过程随着数字电路和信号处理技术的发展,Psk调制解调电路的实现方式也在不断创新。
一种新的原理是将Psk调制解调电路实现在数字领域中,利用现代的低功耗、高速度的数字集成电路,以及数字信号处理器(DSP)的算法。
ASK调制与解调电路设计

ASK调制与解调电路设计调制与解调电路是无线通信中的重要组成部分,用于将信息信号转换为适合传输的高频信号,并在接收端将高频信号还原为原始信息信号。
接下来将详细介绍调制与解调电路的设计。
一、调制电路设计:调制电路主要用于将低频信息信号调制到高频载波上进行传输,常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)。
1.AM调制电路设计:AM调制主要包括信号放大、频率变换、调幅和输出滤波等环节。
具体设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,一般使用运放进行放大。
(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。
(3)调幅:将频率变换后的高频信号经过调幅电路进行调幅,常用的调幅电路有晶体二极管调制器和集成电路调制器等。
(4)输出滤波:将调幅后的信号通过低通滤波器进行滤波,去除高频噪声和杂波。
2.FM调制电路设计:FM调制是将信息信号的频率变化转换为载波频率的变化,并将其用于传输。
FM调制电路的设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,使用运放或差动放大电路进行放大。
(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。
(3)调频:将频率变换后的高频信号进行调频,一般采用三角调制电路进行调频。
(4)输出滤波:将调频后的信号经过低通滤波器进行滤波,去除高频噪声和杂波。
3.PM调制电路设计:PM调制是将信息信号的相位变化转换为载波相位的变化,并将其用于传输。
PM调制电路的设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,使用运放或差动放大电路进行放大。
(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。
(3)调相:将频率变换后的高频信号进行调相,一般采用集成电路调相器进行调相。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法器输出为:
vo Kvivr KVimVrm cos Wt coswct cos[(wc w )t ]
1 2
KVimVrm
cos Wt{cos(wt
)cos[(2wc来自w )t]}经滤波器后得到:
vo
1 2
KVimVrm
cos Wt
cos(wt
)
从上式可以看出,若要从输出中得到调制信号cosWt,就必 须要求w0,0 =>参考信号必须与发端载波同频同相。若接收信号为单边带 信号,也可以得出完全相同的结论。
第九章 调制与解调电路
调幅-平衡调制与相干解调、包络检波 调频-直接调频与间接调频、鉴频电路
其他-载波提取、正交信号形成
第九章 内容目录
9·1 调制与解调器
平衡调制器、相干解调器
9·2 载波提取 9·3 正交信号形成电路 9·4 调幅波的包络检波电路
包络检波电路、同步检波
9·5 调频电路
相干解调适用于所有的调幅信号;非相干解调 则只能用于AM信号。
2020/7/28
Information&Communication Engineering Dept. XJTU
9
9·2 包络检波电路
对检波器的要求通常有:
检波效率: 无源检波器Kd小于1,越大越好。 检波失真:用解调输出中的高次谐波分量之和
5
9·1 调制与解调器
2、双平衡调制器
vD1 vc vW , iD1 gD (vc vW )s(wct) vD2 vc vW , iD2 gD (vc vW )s(wct) vD3 vc vW , iD3 gD (vc vW )s(wct ) vD4 vc vW , iD4 gD (vc vW )s(wct )
故多数情况下都采用开关函数的工作方式,我们也 就以开关函数分析方法来分析二极管调制器的工作 原理。
2020/7/28
Information&Communication Engineering Dept. XJTU
4
9·1 调制与解调器
1、平衡调制器电路
vD1 vc vW , iD1 gD (vc vW )s(wct)
相干解调
同FM
3
9·1 调制与解调器
一、二极管平衡调幅电路
采用二极管实现调幅电路时,输入信号可以是较小的 信号或较大的信号两种情况。
信号小时二极管的特性可以用幂级数展开逼近 信号大时二极管的特性要用开关函数描述
由于采用小信号激励方式在产生w±W的同时,会产 生w±2W 的频率分量,很难通过滤波的方法去除,
DSB
拟 调
SSB
线性 搬移
2Fmax Fmax
乘法器+ 滤波器
制 调 FM 角 PM
非线性 搬移
2(mf+1)F
直接调频 间接调频
包络检波 相干解调 斜率鉴频 正交鉴频 锁相鉴频
数 ASK
字 调
PSK
制 FSK
2020/7/28
线性 搬移
2Fmax
乘法器+ 滤波器
非线性 搬移
直接调频
Information&Communication Engineering Dept. XJTU
2020/7/28
Information&Communication Engineering Dept. XJTU
8
9·2 包络检波电路
调幅信号解调的方法
可以分为两大类:相干解调和非相干解调。
相干解调是用与发端载波完全同频同相的本地 参考信号去和接收到的信号相乘,以实现频谱 搬移;
非相干解调则是利用所接收到的信号中的载波 分量和边频分量共同作用到非线性器件上所形 成的合频和差频效果,实现频谱的向下搬移作 用。
2020/7/28
Information&Communication Engineering Dept. XJTU
6
9·1 调制与解调器
二、相干解调
从频率上看,振幅解调是把已调波的边带搬回到低频, 也属于线性频谱搬移,所以实现的基本方法还是在 时域上将两个信号相乘,并通过滤波器滤出所需要 的信号。
iL iD1 iD2 iD3 id 4 2gDvWs(wct) 2gd vWs(wct )
2gDvWs2 (wct)
2 g DVWm
cos Wt
4
cos w ct
4
3
cos 3wct
组和频率分量为:nwc W, n为1,3,5,
和平衡调制器相比,有用频率分量幅度加倍,且无W频率分量
与基波分量的比值表示。其值越小越好。 检波器输入电阻:检波器输入端的中频电压与
中频电流之比。 其值越大越好。
2020/7/28
Information&Communication Engineering Dept. XJTU
10
9·2 包络检波电路
包络检波电路的构成
非线性器件+低通滤波器 vi 二极管 RC滤波
R
C
vo
设输入信号(普通调幅波AM信号)
vi (t) Vim (1 ma cos Wt) coswct
RC滤波器的取值原则一般为:
➢ RC>>1/wc,以保证电容C对高频载波近似短路,
滤除输出信号的高频部分; ➢ RC<1/Wmax,保证低频调制信号可以通过RC低通 滤波器。
2020/7/28
vD2 vc vW , iD2 gD (vc vW )s(wct)
iL
iD1
iD2
2 g D vW s (wct )
2 g DVWm
cos Wt(1 2
2
cos wct
)
组合频率分量为:nwc W , n为0,1,3,5,
2020/7/28
Information&Communication Engineering Dept. XJTU
从调幅信号中解调出调制信号的过程也称为检波.
设输入的DSB信号和参考信号分别为:
vi Vim cos Wt coswct vr Vrm cos[(wc w)t ]
2020/7/28
Information&Communication Engineering Dept. XJTU
7
9·1 调制与解调器
直接调频电路、间接调频电路
9·6 鉴频电路
斜率鉴频 ·正交鉴频 ·FSK双滤波器解调 ·锁相鉴频
2020/7/28
Information&Communication Engineering Dept. XJTU
2
9·0 调制与解调
调制方式 频谱特点 带宽 调制方式 解调方式
AM
C类功放调幅
模
调 幅