大学物理学第二版第章习题解答精编

合集下载

大学物理学第二版第章习题解答

大学物理学第二版第章习题解答
(8)“物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?
(9)任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?
(10)质点沿圆周运动,且速率随时间均匀增大, 、 、 三者的大小是否随时间改变?
(11)一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?

在离船的高度为 的岸边,一人以恒定的速率 收绳,求当船头与岸的水平距离为 时,船的速度和加速度。
解:建立坐标系如题图所示,船沿 轴方向作直线运动,欲求速度,应先建立运动方程,由图题,可得出
习题图
两边求微分,则有
船速为
按题意 (负号表示绳随时间 缩短),所以船速为
负号表明船速与 轴正向反向,船速与 有关,说明船作变速运动。将上式对时间求导,可得船的加速度为
终了在 点时, ,
由功能原理知:
经比较可知,用功能原理求最简捷。
墙壁上固定一弹簧,弹簧另一端连接一个物体,弹簧的劲度系数为 ,物体 与桌面间的摩擦因素为 ,若以恒力 将物体自平衡点向右拉动,试求到达最远时,系统的势能。
习题图
解:物体水平受力如图,其中 , 。物体到达最远时, 。设此时物体的位移为 ,由动能定理有
(3)物体受到了几个力的作用,是否一定产生加速度?
(4)物体运动的速率不变,所受合外力是否一定为零?
(5)物体速度很大,所受到的合外力是否也很大?
(6)为什么重力势能有正负,弹性势能只有正值,而引力势能只有负值?
(7)合外力对物体所做的功等于物体动能的增量,而其中某一分力做的功,能否大于物体动能的增量?

大学物理(第二版)第一章习题答案

大学物理(第二版)第一章习题答案

第一章习题1.1 一人自愿点出发,25s 内向东走了30m ,又10s 内向南走了10m ,再15s 内向正西北走了18m 。

求:⑴ 位移和平均速度 ⑵ 路程和平均速率 解:由图所示,人的移动曲线是从O 点出发,到A 点,再到B 点,C 点。

⑴ 位移:OC30OA m = ,10AB m =,18BC m =由于是正西北方向,所以45ABD ADB ∠=∠=︒BD =(()(()222222cos 4518301021830102OC CD OD OD CD =+-︒=-+--⨯-⨯-⨯1324305.92=-≈ 17.5OC m ≈平均速度的大小为:()17.50.35m 50r v t ∆===∆ ⑵ 路程应为:58m s OA AB BC =++=平均速率为1.16m s 1.2有一质点沿着x 轴作直线运动,t 时刻的坐标为234.52x t t =-,试求:⑴ 第2秒内的平均速度 ⑵ 第2秒末的瞬时速度 ⑶ 第2秒内的路程。

解:⑴ 当1t s =时,1 2.5x m = 当2t s =时,218162x m =-=平均速度为 ()212 2.50.5m s v x x =-=-=- ⑵ 第2秒末的瞬时速度为 ()22966m t dxv t t dt===-=-⑶ 第2秒内的路程:(在此问题中必须注意有往回走的现象) 当 1.5t s =时,速度0v =,2 3.375x m = 当1t s =时,1 2.5x m = 当2t s =时,32x m =所以路程为:3.375 2.5 3.3752 2.25m -+-= 1.3质点作直线运动,其运动方程为2126x t t =-,采用国际单位制,求:⑴ 4t s =时,质点的位置,速度和加速度⑵ 质点通过原点时的速度 ⑶ 质点速度为零时的位置⑷ 作位移,速度以及加速度随着时间变化的曲线图。

解:⑴ 由运动方程2126x t t =-,可得速度,加速度的表达式分别为1212dx v t dt ==- 12dv a dt==- 所以当4t s =时,质点的位置,速度和加速度分别为48m x =-;36m s v =-;212m a =-⑵ 质点经过原点的时刻12s t =,20s t =此时的速度分别为 ()112m v =- ()212m s v =⑶ 质点速度为零对应的1s t =,位置为6m x = 1.4质点沿直线运动,速度()3222m v t t =++,如果当2s t =时,4m x =,求3st =时质点的位置,速度和加速度。

《大学物理学》第二版上册课后答案

《大学物理学》第二版上册课后答案

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dvdt =和0d v dt=各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出22r x y =+drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-= 最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。

大学物理教程第二版-第1章答案

大学物理教程第二版-第1章答案

大学物理教程第二版-第1章答案1 -5 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ?+?=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x两式计算.题 1-5 图解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=?-==t t xv2s0.422m.s 36d d -=-==t t x a1 -6 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;分析质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,(详见题1-1分析).解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r题 1-6 图1 -9 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和txd d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解由分析知,应有=tt a 0d d 0vv v得 03314v v +-=t t (1)由=txx t x 0d d 0v得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1)、(2)得v 0=-1 m·s-1, x 0=0.75 m于是可得质点运动方程为75.0121242+-=t t x 1 -10 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v后再两边积分.解选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v vB A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有=-t t B A 0d d d 0v vvvv得石子速度 )e 1(Bt BA--=v 由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度. (2) 再由)e 1(d d Bt BAt y --==v 并考虑初始条件有 t BA y t Bt y d )e 1(d 00??--= 得石子运动方程)1(e 2-+=-Bt BAt B A y 1 -12 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr=v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t和a n ,前者只反映质点在切线方向速度大小的变化率,即tt te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ.解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ12-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 22222s m 0.4d d d d )(-?-=+=tyt x t则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t ttt e e e a 222s1s m 58.3)(d d d d -=?=+==v v v n n t n a a e e a 222s m 79.1-?=-=(4) t =1.0s质点的速度大小为122s m 47.4-?=+=y x v v v则m 17.112==na ρv1 -18 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tω==.在t =2 s时,法向加速度和切向加速度的数值分别为22s2s m 30.2-=?==ωr a t n2s2s m 80.4d d -=?==tωra t t(2) 当22212/t n t a a a a +==时,有223nt a a =,即 ()()422212243t r rt =得 3213=t此时刻的角位置为rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt =t =0.55s。

新编基础物理学第二版第二章习题解答

新编基础物理学第二版第二章习题解答

习题二2-1.两质量分别为m 和M ()M m ≠的物体并排放在光滑的水平桌面上,现有一水平力F 作用在物体m 上,使两物体一起向右运动,如题图2-1所示,求两物体间的相互作用力。

若水平力F 作用在M 上,使两物体一起向左运动,则两物体间相互作用力的大小是否发生变化?解:以m 、M 整体为研究对象,有()F m M a =+…①以m 为研究对象,如解图2-1(a ),有Mm F F ma -=…②由①、②两式,得相互作用力大小Mm MFF m M=+若F 作用在M 上,以m 为研究对象,如题图2-1(b )有Mm F ma =…………③由①、③两式,得相互作用力大小Mm mFF m M=+发生变化。

2-2. 在一条跨过轻滑轮的细绳的两端各系一物体,两物体的质量分别为M 1和M 2 ,在M 2上再放一质量为m 的小物体,如题图2-2所示,若M 1=M 2=4m ,求m 和M 2之间的相互作用力,若M 1=5m ,M 2=3m ,则m 与M 2之间的作用力是否发生变化?解: 受力图如解图2-2,分别以M 1、M 2和m 为研究对象,有111T M g M a -=222()()M m g T M m a +-=+2 M m mg F ma -=又12T T =,则2M mF=1122M mgM M m++当124M M m ==时289M mmg F= 当125,3M m M m ==时2109M mmgF=,发生变化。

题图2-2题图2-1解图2-1解图2-22-3.质量为M 的气球以加速度a 匀加速上升,突然一只质量为m 的小鸟飞到气球上,并停留在气球上。

若气球仍能向上加速,求气球的加速度减少了多少?解:设f 为空气对气球的浮力,取向上为正。

分别由解图2-3(a )、(b)可得Ma Mg f =-1)()(a m M g m M f +=+-由此解得1Ma mga m M-=+()1m a g a a a m M+∆=-=+2-4.如题图2-4所示,人的质量为60kg ,底板的质量为40kg 。

大学物理学第二版 习题解答

大学物理学第二版 习题解答

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等 (2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么 (4) 质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一定保持不变(5) r ∆v 和r ∆v 有区别吗v ∆v 和v ∆v有区别吗0dv dt =v 和0d v dt=v 各代表什么运动 (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确两者区别何在(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变 (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。

大学物理第二版答案(北京邮电大学出版社)

大学物理第二版答案(北京邮电大学出版社)

大 学 物 理 习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:(m)j t t i t r ⎪⎭⎫ ⎝⎛-+++=4321)53(2(2) 第一秒内位移jy y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i ji +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度)s m (53)2012(411-⋅+=+=∆∆=j i j i t r V (4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V (5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a (6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1-2 23d d 23++==t t txvc t t t c t v x x +++=+==⎰⎰241d d 34当t =2时x =4代入求证 c =-12即1224134-++=t t t x tt tv a t t v 63d d 23223+==++=将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m x 1-3 (1) 由运动方程消去t 得轨迹方程⎩⎨⎧+==ty t x 2342)3(2=--y x (2) 1秒时间坐标和位矢方向为 my mx 5411== [4,5]m:︒===3.51,25.1ααxytg (3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆)s m (2411-⋅+=∆∆=j i tr V (4) 质点的速度与加速度分别为 itVa j i tr V8d d ,28d d ==+== 故t =1s 时的速度和加速度分别为2111s m 8,s m 28--⋅=⋅+==i a j i V1-4 该星云飞行时间为a 1009.2s 1059.61093.31074.21046.910177915⨯=⨯=⨯⨯⨯⨯即该星云是年前和我们银河系分离的.101009.2⨯1-5 实验车的加速度为g)(25m/s 1047.280.13600101600223≈⨯=⨯⨯==t v a 基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s 1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -=代入已知数得,,如图所示,相对南面,小球开始下落时,它和电2m/s 2.1=a s 5.00=t h 梯的速度为m/s)0v 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为习题1-9图 习题1-10图习题1-12图习题1-13图习题2-1图2m/s 0.17=三物体只有水平方向的运动,只须列出水平方向的牛顿方程及相关方程:习题2-3图习题2-2图)4(:)3(0cos )2(sin :)1(:322211MaN F M g m T a m T m am T m =-⎩⎨⎧=-==水平αα为绳中的雨拉力在水平向的合力水平3N )5(sin 3αT T N +=水平联立(1),(2),(3),(4),(5)解得)N (78480)(2221212==-++=g m m g m m m m F (因为三个物体有同一加速度a ,且在水平方向只受外力F 的作同,所以,可将三个物体看作一个物体:aM m m F )(21++=再与(1),(2),(3)式联立求解即可。

《大学物理学》第二版上册课后答案

《大学物理学》第二版上册课后答案

《大学物理学》第二版上册课后答案大学物理学习题答案习题一答案习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ?和r ?有区别吗?v ?和v ?有区别吗?0dv dt =和0d v dt=各代表什么运动? (6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出22r x y =+ dr v dt= 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ?=-=-=最初s 2内的平均速度为: 00(/)2ave x v m s t ?===? t 时刻的瞬时速度为:()44dx v t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-?=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ?---====-? (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt -===-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(8)质点的动量和动能是否与惯性系的选取有关?功是否与惯性系有关?质点的动量定理与动能定理是否与惯性系有关?请举例说明.
(9)判断下列说法是否正确,并说明理由:
(a)不受外力作用的系统,它的动量和机械能都守恒.
(b)内力都是保守力的系统,当它所受的合外力为零时,其机械能守恒.
(c)只有保守内力作用而没有外力作用的系统,它的动量和机械能都守恒.
(10)在弹性碰撞中,有哪些量保持不变,在非弹性碰撞中,又有哪些量保持不变?
(11)放焰火时,一朵五彩缤纷的焰火质心运动轨迹如何?为什么在空中焰火总是以球形逐渐扩大?(忽略空气阻力)
质量为 质点在流体中作直线运动,受与速度成正比的阻力 ( 为常数)作用, 时质点的速度为 ,证明:
(1) 时刻的速度为 ;
终了在 点时, ,
由功能原理知:
经比较可知,用功能原理求最简捷。
墙壁上固定一弹簧,弹簧另一端连接一个物体,弹簧的劲度系数为 ,物体 与桌面间的摩擦因素为 ,若以恒力 将物体自平衡点向右拉动,试求到达最远时,系统的势能。
习题图
解:物体水平受力如图,其中 , 。物体到达最远时, 。设此时物体的位移为 ,由动能定理有


所以
一地下蓄水池,面积为 ,水深度为 ,假定水的上表面低于地面的高度是 ,问欲将这池水全部抽到地面,需作功多少?
习题图
解:建坐标如习题图,图中 表示水面到地面的距离, 表示水深。水的密度为 ,对于坐标为 、厚度为 的一层水,其质量 ,将此层水抽到地面需作功
将蓄水池中的水全部抽到地面需作功
(J)
一炮弹质量为 ,以速度 飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为 ,且一块的质量为另一块质量的 倍,如两者仍沿原方向飞行,试证其速率分别为 , 。
习题图
解方法一:当物体滑到与水平成任意 角的位置时,物体在切线方向的牛顿方程为

注意摩擦力 与位移 反向,且 ,因此摩擦力的功为
方法二:选 为研究对象,合外力的功为
考虑到 ,因而
由于动能增量为 ,因而按动能定理有
, 。
方法三:选物体、地球组成的系统为研究对象,以 点为重力势能零点。
初始在 点时, 、
得到法向加速度和切向加速度的表达式

在 时,法向加速度和切向加速度为:

(2)要使总加速度与半径成 角,必须有 ,即
解得 ,此时
甲乙两船,甲以 的速度向东行驶,乙以 的速度向南行驶。问坐在乙船上的人看来,甲船的速度如何?坐在甲船上的人看来乙船的速度又如何?
解:以地球为参照系,设 、 分别代表正东和正北方向,则甲乙两船速度分别为
(5) 和 有区别吗? 和 有区别吗? 和 各代表什么运动?
(6)设质点的运动方程为: , ,在计算质点的速度和加速度时,有人先求出 ,然后根据

而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即

你认为两种方法哪一种正确?两者区别何在?
(7)如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?

根据伽利略变换,当以乙船为参照物时,甲船速度为

即在乙船上看,甲船速度为 ,方向为东偏北
同理,在甲船上看,乙船速度为 ,方向为西偏南 。
有一水平飞行的飞机,速率为 ,在飞机上安置一门大炮,炮弹以水平速度 向前射击。略去空气阻力,
(1)以地球为参照系,求炮弹的轨迹方程;
(2)以飞机为参照系,求炮弹的轨迹方程;
(1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量;
(2)为了使这力的冲量为200Ns,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度 的物体,回答这两个问题。
解:(1)若物体原来静止,则
[ ],沿x轴正向,
若物体原来具有初速度 ,则
于是
同理,
这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.
(2)同上理,两种情况中的作用时间相同,即
令 ,解得 。
一小船质量为100kg,船头到船尾共长3.6m。现有一质量为50kg的人从船尾走到船头时,船头将移动多少距离?假定水的阻力不计。
习题图
解:由动量守恒
又 ,

如图,船的长度
所以
即船头相对岸边移动
质量 的质点,从静止出发沿 轴作直线运动,受力 (N),试求开始 内该力作的功。
(3)以炮弹为参照系,飞机的轨迹如何?
解:(1)以地球为参照系时,炮弹的初速度为 ,而 ,
消去时间参数 ,得到轨迹方程为:
(若以竖直向下为y轴正方向,则负号去掉,下同)
(2)以飞机为参照系时,炮弹的初速度为 ,同上可得轨迹方程为
(3)以炮弹为参照系,只需在(2)的求解过程中用 代替 , 代替 ,可得 .
(1)经过多长时间质点到达 轴;
(2)到达 轴时的位置。
解:
(1)当 ,即 时,到达 轴。
(2) 时到达 轴的位矢为:
即质点到达 轴时的位置为 。
一质点沿 轴运动,其加速度与坐标的关系为 ,式中 为常数,设 时刻的质点坐标为 、速度为 ,求质点的速度与坐标的关系。
解:按题意
由此有 ,
即 ,
两边取积分 ,
一质点沿 轴运动,坐标与时间的变化关系为 ,式中 分别以 、 为单位,试计算:(1)在最初 内的位移、平均速度和 末的瞬时速度;(2) 末到 末的平均加速度;(3) 末的瞬时加速度。
解:
(1)最初 内的位移为为:
最初 内的平均速度为:
时刻的瞬时速度为:
末的瞬时速度为:
(2) 末到 末的平均加速度为:
(2)子弹所受的冲量 ,将 代入,得
(3)由动量定理可求得子弹的质量
一质量为 的质点在xoy平面上运动,其位置矢量为 ,求质点的动量及 到 时间内质点所受的合力的冲量和质点动量的改变量。
解:质点的动量为
将 和 分别代入上式,得

动量的增量,亦即质点所受外力的冲量为
作用在质量为10kg的物体上的力为 ,式中 的单位是 。
证明:设一块的质量为 ,则另一块的质量为 。利用 ,有
, ①
又设 的速度为 , 的速度为 ,则有

[动量守恒]③
联立①、③解得
, ④
联立④、②解得
,于是有
将其代入④式,有
又因为爆炸后,两弹片仍沿原方向飞行,当 时只能取 。
一质量为 的子弹射入置于光滑水平面上质量为 并与劲度系数为 的轻弹簧连着的木块后使弹簧最大压缩了 ,求子弹射入前的速度 .
拦截条件为:

所以

取最大值的条件为: ,由此得到 ,相应地 。
因此 的最大值为
取最大值时对应的出发时间最迟。快艇截住这条船所需的时间为

习题二答案
习题二
简要回答下列问题:
(1)有人说:牛顿第一定律只是牛顿第二定律在合外力等于零情况下的一个特例,因而它是多余的.你的看法如何?
(2)物体的运动方向与合外力方向是否一定相同?
(3) 末的瞬时加速度为: 。
质点作直线运动,初速度为零,初始加速度为 ,质点出发后,每经过 时间,加速度均匀增加 。求经过 时间后,质点的速度和位移。
解:由题意知,加速度和时间的关系为
利用 ,并取积分得

再利用 ,并取积分[设 时 ]得

一质点从位矢为 的位置以初速度 开始运动,其加速度与时间的关系为 .所有的长度以米计,时间以秒计.求:

解出
系统的势能为
一双原子分子的势能函数为
式中 为二原子间的距离,试证明:
⑴ 为分子势能极小时的原子间距;
⑵分子势能的极小值为 ;
⑶当 时,原子间距离为 ;
证明:(1)当 、 时,势能有极小值 。由

所以 ,即 为分子势能取极值时的原子间距。另一方面,
当 时, ,所以 时, 取最小值。
(2)当 时,
解.根据质点动量定理,
,
根据牛顿第二定律,
(m/s2)
一颗子弹由枪口射出时速率为 ms-1,当子弹在枪筒内被加速时,它所受的合力为 N(a,b为常数),其中t以秒为单位:
(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;
(2)求子弹所受的冲量;
(3)求子弹的质量。
解:
(1)由题意,子弹到枪口时,有 ,得
, ,
可解得
, , 。
平板中央开一小孔,质量为 的小球用细线系住,细线穿过小孔后挂一质量为 的重物。小球作匀速圆周运动,当半径为 时重物达到平衡。今在 的下方再挂一质量为 的物体,如题2-15图。试问这时小球作匀速圆周运动的角速度 和半径 为多少?
(8)“物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?
(9)任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?
(10)质点沿圆周运动,且速率随时间均匀增大, 、 、 三者的大小是否随时间改变?
(11)一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?

在离船的高度为 的岸边,一人以恒定的速率 收绳,求当船头与岸的水平距离为 时,船的速度和加速度。
解:建立坐标系如题图所示,船沿 轴方向作直线运动,欲求速度,应先建立运动方程,由图题,可得出
习题图
两边求微分,则有
船速为
按题意 (负号表示绳随时间 缩短),所以船速为
负号表明船速与 轴正向反向,船速与 有关,说明船作变速运动。将上式对时间求导,可得船的加速度为
相关文档
最新文档