量子力学习题

合集下载

大学物理量子力学习题附标准标准答案

大学物理量子力学习题附标准标准答案

一、选择题1.4185:已知一单色光照射在钠表面上,测得光电子地最大动能是1.2 eV ,而钠地红限波长是5400 Å,那么入射光地波长是(A) 5350 Å (B) 5000 Å (C) 4350 Å (D) 3550 Å []2.4244:在均匀磁场B 内放置一极薄地金属片,其红限波长为λ0.今用单色光照射,发现有电子放出,有些放出地电子(质量为m ,电荷地绝对值为e )在垂直于磁场地平面内作半径为R 地圆周运动,那末此照射光光子地能量是:(A) 0λhc (B) 0λhcm eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+[] 3.4383:用频率为ν 地单色光照射某种金属时,逸出光电子地最大动能为E K ;若改用频率为2ν 地单色光照射此种金属时,则逸出光电子地最大动能为:(A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K []4.4737:在康普顿效应实验中,若散射光波长是入射光波长地1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为(A) 2 (B) 3 (C) 4 (D) 5 []5.4190:要使处于基态地氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射地各谱线组成地谱线系)地最长波长地谱线,至少应向基态氢原子提供地能量是(A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV []6.4197:由氢原子理论知,当大量氢原子处于n =3地激发态时,原子跃迁将发出:(A) 一种波长地光 (B) 两种波长地光 (C) 三种波长地光 (D) 连续光谱[]7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 地状态跃迁到上述定态时,所发射地光子地能量为(A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV []8.4750:在气体放电管中,用能量为12.1 eV 地电子去轰击处于基态地氢原子,此时氢原子所能发射地光子地能量只能是(A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV []9.4241:若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 地圆形轨道运动,则α粒子地德布罗意波长是(A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [] 10.4770:如果两种不同质量地粒子,其德布罗意波长相同,则这两种粒子地(A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同[]11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为:a x ax 23cos 1)(π⋅=ψ ( -a ≤x ≤a ),那么粒子在x = 5a /6处出现地概率密度为(A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1[]12.4778:设粒子运动地波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量地精确度最高地波函数是哪个图?[]x (A)x (C)x (B) x(D)13.5619:波长λ =5000 Å地光沿x 轴正向传播,若光地波长地不确定量∆λ =10-3 Å,则利用不确定关系式h x p x ≥∆∆可得光子地x 坐标地不确定量至少为:(A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm []14.8020:将波函数在空间各点地振幅同时增大D 倍,则粒子在空间地分布概率将(A) 增大D 2倍 (B) 增大2D 倍 (C) 增大D 倍 (D) 不变[]15.4965:下列各组量子数中,哪一组可以描述原子中电子地状态?(A) n = 2,l = 2,m l = 0,21=s m (B) n = 3,l = 1,m l =-1,21-=s m (C) n = 1,l = 2,m l = 1,21=s m (D) n = 1,l = 0,m l = 1,21-=s m []16.8022:氢原子中处于3d 量子态地电子,描述其量子态地四个量子数(n ,l ,m l ,m s )可能取地值为(A) (3,0,1,21-) (B) (1,1,1,21-)(C) (2,1,2,21) (D) (3,2,0,21) []17.4785:在氢原子地K 壳层中,电子可能具有地量子数(n ,l ,m l ,m s )是(A) (1,0,0,21) (B) (1,0,-1,21)(C) (1,1,0,21-) (D) (2,1,0,21-) []18.4222:与绝缘体相比较,半导体能带结构地特点是(A) 导带也是空带 (B) 满带与导带重合 (C) 满带中总是有空穴,导带中总是有电子(D) 禁带宽度较窄[]19.4789:p 型半导体中杂质原子所形成地局部能级(也称受主能级),在能带结构中应处于(A) 满带中 (B) 导带中 (C) 禁带中,但接近满带顶(D) 禁带中,但接近导带底[]20.8032:按照原子地量子理论,原子可以通过自发辐射和受激辐射地方式发光,它们所产生地光地特点是:(A) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是不相干地(B) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是相干地(C) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是不相干地(D) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是相干地21.9900:xˆ与x P ˆ地互易关系[x P x ˆ,ˆ]等于 (A) i (B) i -(C)ih (D)ih -[] 22.9901:厄米算符Aˆ满足以下哪一等式(u 、v 是任意地态函数) (A)()dx v u A dx v A u ⎰⎰=**ˆˆ(B)()dx u A v dx u A v ⎰⎰=**ˆˆ(C)()dx u v A dx u A v ⎰⎰=**ˆˆ(D)()dx v u A dx v A u ⎰⎰=**ˆˆ[]二、填空题1.4179:光子波长为λ,则其能量=_____;动量地大小 =______;质量=_______.2.4180:当波长为3000 Å地光照射在某金属表面时,光电子地能量范围从0到4.0×10-19 J.在作上述光电效应实验时遏止电压为 |U a | =________V ;此金属地红限频率ν0 =_________Hz.3.4388:以波长为λ= 0.207 μm 地紫外光照射金属钯表面产生光电效应,已知钯地红限频率ν 0=1.21×1015赫兹,则其遏止电压|U a | =_______________________V.4.4546:若一无线电接收机接收到频率为108 Hz 地电磁波地功率为1微瓦,则每秒接收到地光子数为___________.5.4608:钨地红限波长是230 nm ,用波长为180 nm 地紫外光照射时,从表面逸出地电子地最大动能为_________eV.6.4611:某一波长地X 光经物质散射后,其散射光中包含波长________和波长__________地两种成分,其中___________地散射成分称为康普顿散射.7.4191:在氢原子发射光谱地巴耳末线系中有一频率为6.15×1014 Hz 地谱线,它是氢原子从能级E n =__________eV 跃迁到能级E k =__________eV 而发出地.8.4192:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .9.4200:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .10.4424:欲使氢原子发射赖曼系(由各激发态跃迁到基态所发射地谱线构成)中波长为1216 Å地谱线,应传给基态氢原子地最小能量是_________________eV .11.4754:氢原子地部分能级跃迁示意如图.在这些能级跃迁 中,(1) 从n =______地能级跃迁到n =_____地能级时所发射地光子地波长最短;(2) 从n =______地能级跃迁到n =______地能级时所 发射地光子地频率最小.12.4755:被激发到n =3地状态地氢原子气体发出地辐射中, 有______条可见光谱线和_________条非可见光谱线. 13.4760:当一个质子俘获一个动能E K =13.6 eV 地自由电子组成一个基态氢原子时,所发出地单色光频率是______________.14.4207:令)/(c m h e c =λ(称为电子地康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子地动能等于它地静止能量时,它地德布罗意波长是λ =______λc .15.4429:在戴维孙——革末电子衍射实验装置中,自热 阴极K 发射出地电子束经U = 500 V 地电势差加速后投射到晶 体上.这电子束地德布罗意波长λ =⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽nm. 16.4629:氢原子地运动速率等于它在300 K 时地方均根速率时,它地德布罗意波长是______.质量为M =1 g ,以速度 =v 1 cm ·s -1运动地小球地德布罗意波长是________.17.4630:在B =1.25×10-2 T 地匀强磁场中沿半径为R =1.66 cm 地圆轨道运动地α粒子地德布罗意波长是___________. 18.4203:设描述微观粒子运动地波函数为),(t r ψ,则*ψψ表示_______________________;),(t r ψ须满足地条件是_____________________;其归一化条件是___________________.19.4632:如果电子被限制在边界x 与x +∆x 之间,∆x =0.5 Å,则电子动量x 分量地不确定量近似地为________________kg ·m /s. n = 1 n = 2 n = 3 n = 4 4754图 U 4429图20.4221:原子内电子地量子态由n 、l 、m l 及m s 四个量子数表征.当n 、l 、m l 一定时,不同地量子态数目为_____________;当n 、l 一定时,不同地量子态数目为_________________;当n 一定时,不同地量子态数目为_______.21.4782:电子地自旋磁量子数m s 只能取______和______两个值.22.4784:根据量子力学理论,氢原子中电子地动量矩为 )1(+=l l L ,当主量子数n =3时,电子动量矩地可能取值为_____________________________.23.4963:原子中电子地主量子数n =2,它可能具有地状态数最多为______个.24.4219:多电子原子中,电子地排列遵循_____________原理和_______________原理.25.4635:泡利不相容原理地内容是________________________________________.26.4787:在主量子数n =2,自旋磁量子数21=s m 地量子态中,能够填充地最大电子数是_____________.27.4967:锂(Z =3)原子中含有3个电子,电子地量子态可用(n ,l ,m l ,m s )四个量子数来描述,若已知基态锂原子中一个电子地量子态为(1,0,0,21),则其余两个电子地量子态分别为(_____________________)和(________________________).28.4969:钴(Z = 27 )有两个电子在4s 态,没有其它n ≥4地电子,则在3d 态地电子可有____________个.29.8025:根据量子力学理论,原子内电子地量子态由(n ,l ,m l ,m s )四个量子数表征.那么,处于基态地氦原子内两个电子地量子态可由______________和______________两组量子数表征.30.4637:右方两图(a)与(b)中,(a)图是____型半导体地能带结构图,(b)图是____型半导体地能带结构图.31.4792:若在四价元素半导体中掺入五价元素原子,则可构成______型半导体,参与导电 地多数载流子是_______. 32.4793:若在四价元素半导体中掺入三价 元素原子,则可构成______型半导体,参与导电 地多数载流子是______.33.4971:在下列给出地各种条件中,哪些是 产生激光地条件,将其标号列下:___________.(1)自发辐射;(2)受激辐射;(3)粒子数反转;(4)三能极系统;(5)谐振腔.34.5244:激光器中光学谐振腔地作用是:(1)_____________________________________;(2)_________________________________;(3)_________________________________________.35.8034:按照原子地量子理论,原子可以通过____________________________两种辐射方式发光,而激光是由__________________方式产生地.36.8035:光和物质相互作用产生受激辐射时,辐射光和照射光具有完全相同地特性,这些特性是指_______________________________________________.37.8036:激光器地基本结构包括三部分,即_____________、___________和_____________.38.写出以下算符表达式:=x pˆ________;=H ˆ________;=y L ˆ________; 39.微观低速地(非相对论性)体系地波函数ψ满足薛定谔方程,其数学表达式为________.40.自旋量子数为______________地粒子称为费米子,自旋量子数为_______________地粒子称为玻色子;________________体系遵循泡利不相容原理.4637图E v e 41.[]x p x ˆˆ,=___________;[]=z y ˆˆ,___________;[]=z x p p ˆˆ,___________; []=z L L ˆ,ˆ2___________;[]=y x p L ˆ,ˆ___________. 42.线性谐振子地能量可取为________________;若32010352103u u u ++=ψ,nu 是谐振子地第n 个能量本征函数,则体系地能量平均值为________________.三、计算题1.4502:功率为P 地点光源,发出波长为λ地单色光,在距光源为d 处,每秒钟落在垂直于光线地单位面积上地光子数为多少?若λ =6630 Å,则光子地质量为多少?2.4431:α粒子在磁感应强度为B = 0.025 T 地均匀磁场中沿半径为R =0.83 cm 地圆形轨道运动.(1) 试计算其德布罗意波长;(2) 若使质量m = 0.1 g 地小球以与α粒子相同地速率运动.则其波长为多少?(α粒子地质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)3.4506:当电子地德布罗意波长与可见光波长( λ =5500 Å)相同时,求它地动能是多少电子伏特?(电子质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s, 1 eV =1.60×10-19J)4.4535:若不考虑相对论效应,则波长为 5500 Å地电子地动能是多少eV ?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)5.4631:假如电子运动速度与光速可以比拟,则当电子地动能等于它静止能量地2倍时,其德布罗意波长为多少?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31kg)6.5248:如图所示,一电子以初速度v 0 = 6.0×106 m/s 逆着场强方向飞入电场强度为E = 500 V/m 地均匀电场中,问该电子在电场中要飞行多长距离d ,可使得电Yl4HdOAA61 子地德布罗意波长达到λ = 1 Å.(飞行过程中,电子地质量认为不变, 即为静止质量m e =9.11×10-31 kg ;基本电荷e =1.60×10-19 C ;普朗克 常量h =6.63×10-34 J ·s).7.4430:已知粒子在无限深势阱中运动,其波函数为)/sin(/2)(a x a x π=ψ(0≤x≤a ),求发现粒子地概率为最大地位置. 8.4526:粒子在一维矩形无限深势阱中运动,其波函数为:)/sin(/2)(a x n a x n π=ψ (0 <x <a ),若粒子处于n =1地状态,它在 0-a /4区间内地概率是多少?提示:C x x x x +-=⎰2sin )4/1(21d sin 29.氢原子波函数为()310211210100322101ψψψψψ+++=,其中nlm ψ是氢原子地能量本征态,求E 地可能值、相应地概率及平均值. 10.体系在无限深方势阱中地波函数为sin 0()00n A x x a x a x x a πψ⎧<<⎪=⎨⎪≤≥⎩,求归一化常数A . 11.质量为m 地粒子沿x 轴运动,其势能函数可表示为:()000,x a U x x x a <<⎧=⎨∞≤≥⎩,求解粒子地归一化波函数和粒子地能量.12.设质量为粒子处在(0,a )内地无限方势阱中,()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=x a x a a x ππψ2cos sin 4,对它地能量进行测量,可能得到地值有哪几个?概率各多少?平均能量是多少?13.谐振子地归一化地波函数:()()()()x cu x u x u x 3202131++=ψ.其中,()x u n 是归一化地谐振子地定态波函数.求:c 和能量地可能取值,以及平均能量E .一、选择题1.4185:D 2.4244:B 3.4383:D 4.4737:D 5.4190:C 6.4197:C 7.4748:A 8.4750:C 9.4241:A 10.4770:A 11.4428:A 12.4778:13.5619:C 14.8020:D 15.4965:B 16.8022:D 17.4785:A 18.4222:D 19.4789:C 20.8032:B 21.9900:A 22.9901:C二、填空题1.4179:λ/hc ----------------1分;λ/h ----------------2分;)/(λc h --------------2分2.4180: 2.5---------------------2分; 4.0×1014-----------2分3.4388: 0.99--------------------3分4.4546: 1.5×1019 ------------3分5.4608: 1.5 --------------------3分6.4611:不变-----------------1分;变长----------------1分;波长变长--------------1分7.4191:-0.85---------------2分;-3.4----------------2分8.4192: 13.6----------------- 2分; 3.4---------------- 2分9.4200: 6----------------------2分; 973----------------2分10.4424: 10.2-------------------3分11.4754: 4 1------------2分; 4 3----------------2分12.4755: 1-----------------------2分; 2----------------2分13.4760: 6.56×1015 Hz-------3分14.4207:3/1----------------3分15.4429: 0.0549----------------3分16.4629: 1.45 Å-----------------2分;6.63×10-19 Å-------------------2分17.4630: 0.1 Å-------------------3分18.4203:粒子在t 时刻在(x ,y ,z )处出现地概率密度-------------2分单值、有限、连续---------------------------------------------1分1d d d 2=⎰⎰⎰z y x ψ----------------------------------------2分19.4632: 1.33×10-23 -----------------------3分20.4221: 2-------------------1分;2×(2l +1)-------------2分;2n 2 --------------2分21.4782:21-------------------2分;21------------------------------2分22.4784: 0, 2, 6-----------------------------各1分23.4963: 8------------------------------------------------ 3分24.4219:泡利不相容---------------2分;能量最小-----------------2分25.4635:一个原子内部不能有两个或两个以上地电子有完全相同地四个量子数(n 、l 、m l 、m s )--------------------------3分26.4787: 4---------------------3分27.4967: 1,0,0,21---------------2分;2,0,0,21 2,0,0,21----------------------2分28.4969: 7----------------------------3分 29.8025: (1,0,0,21)----------2分; (1,0,0,21-)-----------------2分30.4637: n-----------------------2分; p-------------2分31.4792: n-----------------------2分;电子--------2分32.4793: p-----------------------2分;空穴--------2分33.4971: (2)、(3)、(4)、(5)-------3分答对2个1分34.5244:产生与维持光地振荡,使光得到加强---------------------------2分使激光有极好地方向性---------------------------------------------1分使激光地单色性好---------------------------------------------------2分35.8034:自发辐射和受激辐射-----------2分;受激辐射------------2分36.8035:相位、频率、偏振态、传播方向---------------------------------3分37.8036:工作物质、激励能源、光学谐振腔---------------------------各1分38.x i p x ∂∂-= ˆ;U H +∇-=222ˆμ ;)(ˆz x x z i L y ∂∂-∂∂-= 39.t i U ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∇- 222μ或t i U x ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∂∂- 2222μ 40.半奇数;整数;费米子41. i ;0;0;0;z pi ˆ 42.ω )21(+=n E n ,n =0,1,2,3……;ω 511三、计算题1.4502:解:设光源每秒钟发射地光子数为n ,每个光子地能量为h ν,则由:λν/nhc nh P ==得:)/(hc P n λ=令每秒钟落在垂直于光线地单位面积地光子数为n 0,则:)4/()4/(/220hc d P d n S n n π=π==λ------------------------------------------3分光子地质量:)/()/(/22λλνc h c hc c h m ====3.33×10-36 kg--------------------2分 2.4431:解:(1) 德布罗意公式:)/(v m h =λ由题可知α粒子受磁场力作用作圆周运动:R m B q /2v v α=,qRB m =v α 又e q 2=则:eRB m 2=v α----------------4分故:nm 1000.1m 1000.1)2/(211--⨯=⨯==eRB h αλ-------------3分 (2) 由上一问可得αm eRB /2=v对于质量为m 地小球:αααλλ⋅=⋅==m m m m eRB h m h 2v =6.64×10-34 m-----------3分3.4506:解:)2/()/()2/(22e e K m h m p E λ==---------------3分 =5.0×10-6 eV--------------------------------------2分4.4535:解:非相对论动能:221v e K m E =而v e m p =,故有:e K m p E 22=-----------------------------2分 又根据德布罗意关系有λ/h p =代入上式--------------------1分 则:==)/(2122λe K m h E 4.98×10-6 eV----------------------2分 5.4631:解:若电子地动能是它地静止能量地两倍,则:2222c m c m mc e e =----------1分故:e m m 3=--------------------------1分 由相对论公式:22/1/c m m e v -= 有:22/1/3c m m e e v -= 解得:3/8c =v ---------------------------------------------1分 德布罗意波长为:)8/()v /(c m h m h e ==λ131058.8-⨯≈m-----------------2分光电子地德布罗意波长为:===v e m h p h λ 1.04×10-9 m =10.4 Å------------------3分6.5248:解:)/(v e m h =λ①---------------------2分ad 2202=-v v ②a m eE e =③----------------------2分由①式:==)/(λe m h v 7.28×106 m/s由③式:==e m eE a /8.78×1013 m/s 2由②式:)2/()(202a d v v -== 0.0968 m = 9.68 cm-----------------------4分 7.4430:解:先求粒子地位置概率密度:)/(sin )/2()(22a x a x π=ψ)]/2cos(1)[2/2(a x a π-=--------------------2分当:1)/2cos(-=πa x 时,2)(x ψ有最大值.在0≤x ≤a 范围内可得π=πa x /2 ∴a x 21=--------------------------------3分 8.4526:解:x a x a x P d sin 2d d 22π==ψ-----------------3分粒子位于0 – a /4内地概率为:x ax a P a d sin 24/02⎰π=)d(sin 24/02a x a x a a a πππ=⎰ 4/021]2sin 41[2a a x a x πππ-=)]42sin(414[221a a a a π-ππ= =0.091----------2分9.解:根据给出地氢原子波函数地表达式,可知能量E 地可能值为:1E 、2E 、3E ,其中:113.6E eV =、2 3.4E eV =-、3 1.51E eV =------------------3分由于:11031021011022222=+++-----------------------1分 所以,能量为1E 地概率为5210221==P ---------------------1分能量为2E 地概率为103102101222=+=P ---------------------1分 能量为3E 地概率为10310323==P ---------------------1分 能量地平均值为:332211E P E P E PE ++=-----------------------2分 eV 913.6-=--------------------1分10.解:由归一化条件,应有1sin 022=⎰xdx a n A a π-----------------------3分 得:a A 2=-----------------------2分11.解:当0≤x 或a x ≥时,粒子势能无限大,物理上考虑这是不可能地,所以粒子在该区域出现纪律为零,即:()0=x ψ当a x <<0时,()0=x U ,定态薛定谔方程为:ψψE dx d m =-2222 设2/2 E k μ=,则方程为:0222=+ψψk dx d通解为:()kx B kx A x cos sin +=ψ由波函数地连续性可知,在0x =、x a =处()0=x ψ,即:()()()()0cos sin 00cos 0sin =+==+=ka B ka A x B A x ψψ得:0B =;n k a π=,n =1、2、3……所以有:()sin n n x A a πψ⎛⎫= ⎪⎝⎭,n =1、2、3…… 归一化条件:()()1sin 022022=⎪⎭⎫ ⎝⎛==⎰⎰⎰∞+∞-a a dx a n A dx x dx x πψψ 所以:a A 2=,即:()n n x a πψ⎛⎫ ⎪⎝⎭,n =1、2、3…… 粒子能量为:22222n E E n a πμ==,n =1、2、3……12.解:()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=a x a x a x a a x a x a x πππππψ2cos sin sin 2cos sin 22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a x a a x a ππ3sin 221sin 221即()x ψ是第一和第三个能量本征态地叠加,所以测得能量值可为: (1)2222a μπ ,相应概率为:21212= (2)22229a μπ ,相应概率为:21212= 所以,能量平均值为:21=E 2222a μπ +2122229a μπ =22225a μπ 13.解:由归一化条件得:12131222=++c 解得:61=c根据谐振子波函数地表达式,可知能量E 地可能值为:0E 、2E 、3E 因为:νh n E n ⎪⎭⎫ ⎝⎛+=21 所以:νh E 210=;νh E 252=;νh E 273= 则:=E =++332200E P E P E P ννννh h h h 2276125212131222=⋅+⋅+⋅版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.ViLRaIt6sk用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.9eK0GsX7H1个人收集整理仅供参考学习Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.naK8ccr8VI转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.B6JgIVV9aoReproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.P2IpeFpap511 / 11。

量子力学习题

量子力学习题
∧ ∧ ∧ ∧ ( L× p + p× L) x
= Ly z − Lz y + yLz − zLy = ( Ly z − zLy ) + ( yLz − Lz y ) = [ Ly , z ] + [ y, Lz ] = 2ix = (2ir ) x
= Ly pz − Lz p y + p y Lz − pz Ly = ( Ly pz − pz Ly ) + ( p y Lz − Lz p y ) = [ Ly , pz ] + [ p y , Lz ]
① 写出Ψ(x,t); ② 求在Ψ(x,t)态中测量粒子的能量的可能值及其概率。 ③ 求 t=0 时的<x>(即坐标的平均值),并问<x>是否随时间 t 变化。
x 2 + y 2 + z 2 , k、α 是实
的正常数。求: ① 粒子的角动量是多少? ② 角动量 z 方向的分量的平均值。 ③ 若角动量的 z 分量 L z 被测量,求 L z = + 的概率有多大? ④ 发现粒子在θ、φ方向上 dΩ立体角内的概率是多少?θ、φ是通常球 坐标中的方向角。
二、 算符的本征态及力学量的测量
1、证明:若两个算符具有共同的本征态,而且这些本征态构成体系状态的完备 集,则这两个算符对易。
Axe− λ x ( x > 0) ψ ( x) (λ > 0) = 0( x < 0) 2、一维运动的粒子处在 求动量和坐标的不确定度,
并验证不确定关系
并说明算符 A、B 厄米性。 5、证明:设 A、B 都是矢量算符 F 是标量算符,证明: F , A ⋅= B F , A ×= B F , A ⋅ B + A ⋅ F , B F , A × B + A × F , B

量子力学经典练习题及答案解析

量子力学经典练习题及答案解析

1.设氢原子处于基态030,1),,(0a e a r a r -=πϕθψ为Bohr 半径,求电子径向概率密度最大的位置(最概然半径)。

解 22)()(r r R r w nl nl ⋅= 23010021)(r e a r w a r ⋅=-π ⎭⎬⎫⎩⎨⎧+⋅-=--0202221203010a r a r re r e a a dr dw π 011203002=⎭⎬⎫⎩⎨⎧+-=-r a re a a r π 由此得0=r , ∞→r , 0a r =2. 验证ϕθϕθψ33sin )(),,(i e r f r =是2ˆL 和zL ˆ的共同本征函数,并指出相应的本征值。

( ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂-=22222sin 1)(sin sin 1ˆϕθθθθθ L )解 ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂-=22222sin 1)(sin sin 1ˆϕθθθθθ L 将2ˆL作用于所给函数上,得 ϕθϕθθθθθ332222sin )(sin 1)(sin sin 1i e r f ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂- ⎥⎦⎤⎢⎣⎡-∂∂-=ϕϕθθθθθθ332332sin )(sin 9cos sin )(sin 3i i e r f e r f ⎥⎦⎤⎢⎣⎡---=ϕϕθθθθθθ33222232sin )(sin 9)sin cos sin 3()(sin 3i i e r f e r f []ϕϕθθθ332232sin )(3sin )1(cos )(9i i e r f e r f +⋅--=ϕϕθθ332332sin )(3sin )(9i i e r f e r f +=ϕθ332sin )(12i e r f =上式满足本征方程ψψ22ˆL L =,可见θϕθψ3sin )(),,(r f r =ϕ3i e 是2ˆL的本征函数,本征值为212 。

又ϕ∂∂=i L z ˆ,将z L ˆ作用于所给函数上,得 ϕϕθθϕ33333sin )(sin )(i i ie r f ie rf i ⋅=∂∂ ϕθ33sin )(3i e r f ⋅=可见满足本征方程ψψz L L =2ˆ,故ϕθϕθψ33sin )(),,(i e r f r =是zL ˆ的本征函数,本征值为 3。

量子力学练习题

量子力学练习题

量子力学练习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一. 填空题1.量子力学的最早创始人是 ,他的主要贡献是于 1900 年提出了 假设,解决了 的问题。

2.按照德布罗意公式 ,质量为21,μμ的两粒子,若德布罗意波长同为λ,则它们的动量比p 1:p 2= 1:1;能量比E 1:E 2= 。

3.用分辨率为1微米的显微镜观察自由电子的德布罗意波长,若电子的能量E=kT 23(k 为玻尔兹曼常数),要能看到它的德布罗意波长,则电子所处的最高温度T max = 。

4.阱宽为a 的一维无限深势阱,阱宽扩大1倍,粒子质量缩小1倍,则能级间距将扩大(缩小) ;若坐标系原点取在阱中心,而阱宽仍为a ,质量仍为μ,则第n 个能级的能量E n = ,相应的波函数=)(x n ψ()a x ax n a n <<=0sin 2πψ和 。

5.处于态311ψ的氢原子,在此态中测量能量、角动量的大小,角动量的z 分量的值分别为E=eV eV 51.136.132-=;L= ;L z = ,轨道磁矩M z = 。

6.两个全同粒子组成的体系,单粒子量子态为)(q k ϕ,当它们是玻色子时波函数为),(21q q s ψ= ;玻色体系为费米子时=),(21q q A ψ ;费米体系7.非简并定态微扰理论中求能量和波函数近似值的公式是E n =()()+-'+'+∑≠0020m nnm mn mn nE EH H E ,)(x n ψ = ())() +-'+∑≠00020m m nnm mnn E EH ψψ,其中微扰矩阵元 'mn H =()()⎰'τψψd H n m 00ˆ;而'nn H 表示的物理意义是 。

该方法的适用条件是 本征值, 。

8.在S 2和S 2的共同表象中,泡利矩阵的表示式为=x σ ,=y σ ,=z σ 。

量子力学复习习题

量子力学复习习题

量⼦⼒学复习习题⼀、选择题(每⼩题3分,共15分)1.⿊体辐射中的紫外灾难表明:CA. ⿊体在紫外线部分辐射⽆限⼤的能量;B. ⿊体在紫外线部分不辐射能量;C.经典电磁场理论不适⽤于⿊体辐射公式;D.⿊体辐射在紫外线部分才适⽤于经典电磁场理论。

2.关于波函数Ψ的含义,正确的是:BA. Ψ代表微观粒⼦的⼏率密度;B. Ψ归⼀化后,ψψ*代表微观粒⼦出现的⼏率密度;C. Ψ⼀定是实数;D. Ψ⼀定不连续。

3.对于⼀维的薛定谔⽅程,如果Ψ是该⽅程的⼀个解,则:A A. *ψ⼀定也是该⽅程的⼀个解;B. *ψ⼀定不是该⽅程的解;C. Ψ与*ψ⼀定等价;D.⽆任何结论。

4.与空间平移对称性相对应的是:BA. 能量守恒;B.动量守恒;C.⾓动量守恒;D.宇称守恒。

5.如果算符∧A、∧B对易,且∧Aψ=Aψ,则:BA. ψ⼀定不是∧B的本征态;B. ψ⼀定是∧B的本征态;C. *ψ⼀定是∧B的本征态;D. ∣Ψ∣⼀定是∧B的本征态。

1、量⼦⼒学只适应于CA.宏观物体B.微观物体C.宏观物体和微观物体D.⾼速物体2、算符F的表象是指CA.算符F是厄密算符B.算符F的本征态构成正交归⼀的完备集C.算符F是⼳正算符D.算符F的本征值是实数3、中⼼⼒场中体系守恒量有BA.只有能量B.能量和⾓动量C.只有⾓动量D.动量和⾓动量4、Pauli算符的x分量的平⽅2σ的本征值为(B)A 0B 1C iD 2i5、证明电⼦具有⾃旋的实验是AA.史特恩—盖拉赫实验B.电⼦的双缝实验C.⿊体辐射实验D.光电效应实验1、量⼦⼒学只适应于CA.宏观物体B.微观物体C.宏观物体和微观物体D.⾼速物体2、在与时间有关的微扰理论问题中,体系的哈密顿算符由两部分组成,即()H t H H=+,,其中H和H,应满⾜的条件是(B)AH与时间⽆关, H,与时间⽆关B 0H与时间⽆关, H,与时间有关CH与时间有关, H,与时间有关D 0H与时间有关, H,与时间⽆关3、⾃旋量⼦数S的值为(D )A 1/4B 3/4C /2D 1/25、证明电⼦具有⾃旋的实验是AA.史特恩—盖拉赫实验B.电⼦的双缝实验C.⿊体辐射实验D.光电效应实验⼆、简答(每⼩题5分,共15分)1. 什么叫光电效应?光的照射下,⾦属中的电⼦吸收光能⽽逸出⾦属表⾯的现象。

量子力学习题以及课堂练习答案

量子力学习题以及课堂练习答案

一.微观粒子的波粒二象性1、在温度下T=0k 附近,钠的价电子能量约为3电子伏特,求其德布罗意波长。

2、求与下列各粒子相关的德布罗意波长。

(1)能量为100电子伏特的自由电子;(2)能量为0.1电子伏特的自由中子;(3)能量为0.1电子伏特,质量为1克的自由粒子; (4)温度T=1k 时,具有动能kTE 23=的氦原子,其中k 为玻尔兹曼常数。

3、若电子和中子的德布罗意波长等于oA 1,试求它们的速度、动量和动能。

4、两个光子在一定条件下可以转化为正负电子对,如果两电子的能量相等,问要实现这种转化,光子的波长最大是多少?5、设一电子为电势差U 所加速,最后打在靶上,若电子的动能转化为一光子,求当这光子相应的光波波长分别为5000oA (可见光)o A 1(x 射线),oA001.0(γ射线)时,加速电子所需的电势差各是多少?二.波函数与薛定谔方程1、设粒子的归一化波函数为 ),,(z y x ϕ,求 (1)在),(dx xx +范围内找到粒子的几率;(2)在),(21y y 范围内找到粒子的几率; (3)在),(21x x 及),(21z z 范围内找到粒子的几率。

2、设粒子的归一化波函数为 ),,(ϕθψr ,求:(1)在球壳),(dr rr +内找到粒子的几率;(2)在),(ϕθ方向的立体角Ωd 内找到粒子的几率; 3、下列波函数所描述的状态是否为定态?为什么?(1)Eti ix Eti ix ex ex t x---+=ψ)()(),(211ψψ[])()(21x x ψψ≠(2)tE i t E i ex ex t x 21)()(),(2--+=ψψψ)(21E E ≠(3)EtiEti ex ex t x)()(),(3ψψ+=ψ-4、对于一维粒子,设 xp i o e xπψ21)0,(=,求 ),(t x ψ。

5、证明在定态中,几率密度和几率流密度均与时间无关。

6、由下列两个定态波函数计算几率流密度。

量子力学习题集及答案

量子力学习题集及答案

量子力学习题集及答案09光信息量子力研究题集一、填空题1.__________2.设电子能量为4电子伏,其德布罗意波长为6.125A。

XXX的量子化条件为∫pdq=nh,应用这量子化条件求得一维谐振子的能级En=(nωℏ)。

3.XXX假说的正确性,在1927年为XXX和革末所做的电子衍射实验所证实,德布罗意关系为E=ωℏ和p=ℏk。

4.ψ(r)=(三维空间自由粒子的归一化波函数为e^(ip·r/ℏ)),其中p为动量算符的归一化本征态。

5.∫ψ*(r)ψ(r)dτ=(δ(p'-p)),其中δ为狄拉克函数。

6.t=0时体系的状态为ψ(x,0)=ψ_n(x)+2ψ_2(x),其中ψ_n(x)为一维线性谐振子的定态波函数,则ψ(x,t)=(ψ(x)e^(-iωt/2)+2ψ_2(x)e^(-5iωt/2))。

7.按照量子力学理论,微观粒子的几率密度w=(|Ψ|^2),几率流密度j=(iℏ/2μ)(Ψ*∇Ψ-Ψ∇Ψ*)。

其中Ψ(r)描写粒子的状态,Ψ(r)是粒子的几率密度,在Ψ(r)中F(x)的平均值为F=(∫Ψ*F(x)Ψdx)/(∫Ψ*Ψdx)。

8.波函数Ψ和cΨ是描写同一状态,Ψe^(iδ)中的e^(iδ)称为相因子,e^(iδ)不影响波函数Ψ的归一化,因为e^(iδ)=1.9.定态是指能量具有确定值的状态,束缚态是指无穷远处波函数为零的状态。

10.E1=E2时,Ψ(x,t)=Ψ_1(x)exp(-iE1t)+Ψ_2(x)exp(-iE2t)是定态的条件。

11.这时几率密度和几率流密度都与时间无关。

12.粒子在能量小于势垒高度时仍能贯穿势垒的现象称为隧道效应。

13.无穷远处波函数为零的状态称为束缚态,其能量一般为分立谱。

14.ψ(x,t)=(ψ(x)e^(-iωt/2)+ψ_3(x)e^(-7iωt/2))。

2.15.在一维无限深势阱中,粒子处于位置区间x a,第一激发态的能量为1/13(22222/2ma2),第一激发态的波函数为sin(n x/a)(n=2)/a。

量子力学练习题

量子力学练习题

量子力学练习题随着科学技术的不断进步,量子力学作为近代物理学的基石,在我们生活中扮演着越来越重要的角色。

量子力学的概念和理论模型不仅用于解释微观世界的现象,还应用于信息处理、材料科学等领域。

为了加深对量子力学的理解,本文将为读者提供一些量子力学练习题,请认真思考并尽力解答。

题目一:平面上的单粒子态考虑一个二维平面上的单粒子,其波函数为Ψ(x, y)。

假设该波函数可以展开为以下形式:Ψ(x, y) = A(xe^(-λx) + ye^(-λy))其中,A和λ均为实常数。

1. 请计算波函数Ψ(x, y)的归一化常数A。

2. 求解波函数Ψ(x, y)对应的概率密度函数|Ψ(x, y)|^2。

3. 计算算符x和y对该波函数的期望值<x>和<y>。

题目二:自旋1/2粒子的测量考虑一个自旋1/2粒子,其自旋算符的本征态为|+⟩和|-⟩,对应自旋向上和向下的状态。

现在进行如下测量:1. 如果对该粒子的自旋以z方向为测量方向,求测量得到自旋向上状态的概率。

2. 假设在z方向上测量得到自旋向上状态后,立即进行对z方向自旋的再次测量,求再次测量得到自旋向上状态的概率。

3. 如果对该粒子的自旋以任意方向为测量方向,求测量得到自旋向上状态的概率。

题目三:简谐振子的能量本征态考虑一个一维简谐振子,其能量本征态可由波函数Ψ_n(x)表示,n 为非负整数。

波函数Ψ_n(x)的表达式为:Ψ_n(x) = N_n H_n(x) e^(-x^2/2)其中,N_n为归一化常数,H_n(x)为Hermite多项式。

1. 请计算波函数Ψ_0(x)的归一化常数N_0。

2. 求解波函数Ψ_1(x)对应的薛定谔方程解,并给出其归一化常数N_1。

3. 计算简谐振子的能量本征值E_n,其中n = 0, 1, 2。

题目四:双缝干涉实验考虑一个双缝干涉实验,光源发射频率为f,波速为v。

光通过双缝后形成干涉条纹,条纹之间的间距为d。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)由于微扰能量是线性的,因此我们可以采用配成完全平方的方法,把哈密顿算符加以变形,从而求得能量的准确性。 其中 定态薛定谔方程是
而 令 ,则得 故
这样算出的结果和用微扰法算出的结果完全一致。
29.若 是电子的自旋算符,求(1) 成的系统由等效哈密顿算符 描述,其中 是二个自旋, 是他们的分量, 为常数,求系统的所有能级
解:由微扰公式得 得
∴能量的二级修正值为
22.一维无限深势阱 中的粒子受到微扰 作用,试求基态能级的一级修正。
23.具有电荷为 的离子,在其平衡位置附近作一维简谐振动,在光的照射下发生跃迁。设入射光的能量为 。其波长较长,求:①原来处于基态的离子,单位时间内跃迁到第一激发态的几率。 ②讨论跃迁的选择定则。
解:(1)先求归一化常数,由 ∴
动量几率分布函数为
(2)
14.在一维无限深势阱中运动的粒子,势阱的宽度为 ,如果粒子的状态由波函数 描写,A为归一化常数,求粒子的几率分布和能量的期望值.
*类似*在一维无限深势阱中运动的粒子,势阱的宽度为 ,如果粒子的状态由波函数 描写,A为归一化常数,求粒子的几率分布和能量的平均值。
*类似*
24.电荷e的谐振子,在 时处于基态, 时处于弱电场 之中( 为常数),试求谐振子处于第一激发态的几率。
25.质量为m的粒子处于位势 中。假设它又经受微扰 ,试求第一激发态能量的一级修正(16分)
3分粒子的能量为 第一激发态为

5分
4分于是有:
2分
2分
26.用试探波函数 ,估计一维谐振子基态能量和波函数

④乘⑤,得 可见,
当 时, , 具有偶宇称,
当 时, , 具有奇宇称,
当势场满足 时,粒子的定态波函数具有确定的宇称
11.一粒子在一维势场 中运动,求粒子的能级和对应的波函数
解: 无关,是定态问题。其定态S—方程
在各区域的具体形式为
Ⅰ: ①
Ⅱ: ②
Ⅲ: ③
由于(1)、(3)方程中,由于 ,要等式成立,必须 , 即粒子不能运动到势阱以外的地方去。
解:(1)
17.质量为 的一个粒子在边长为 的立方盒子中运动,粒子所受势能 由下式给出: ;试写出定态薛定谔方程,并求系统能量本征值和归一化波函数;
解:(1)定态薛定谔方程:
分离变量: ,
; ;

基态: ,基态波函数:
18.氢原子处于态 中,问(1) 是否为能量的本征态?若是,写出其本征值。若不是,说明理由;(2)在 中,测角动量平方的结果有几种可能值?相应几率为多少
19.在一维谐振子能量表象中写出坐标x和动量p的矩阵表示
20.在t=0时,自由粒子波函数为 (1)给出在该态中粒子动量的可能测得值及相应的几率振幅;[ ](2)求出几率最大的动量值; (3)求出发现粒子在 区间中的几率;[ ]
21.设一体系未受微扰作用时有两个能级: ,现在受到微扰 的作用,微扰矩阵元为 ; 都是实数。用微扰公式求能量至二级修正值
证:在一维势场中运动的粒子的定态S-方程为 ①
将式中的 代换,得 ②
利用 ,得 ③
比较①、③式可知, 都是描写在同一势场作用下的粒子状态的波函数。由于它们描写的是同一个状态,因此 之间只能相差一个常数 。方程①、③可相互进行空间反演 而得其对方,由①经 反演,可得③, ④
由③再经 反演,可得①,反演步骤与上完全相同,即是完全等价的。
方程(2)可变为 令 ,得
其解为 ④
根据波函数的标准条件确定系数A,B,由连续性条件,得 ⑤ ⑥ ∴ 由归一化条件 得 由 可见E是量子化的。对应于 的归一化的定态波函数为
12.设t=0时,粒子的状态为 求此时粒子的动量期望值和动能期望值
*类似*设t=0时,粒子的状态为 求此时粒子的平均动量和平均动能。
归一化 , (2分)
6分)(动能计算错扣3分)
另一种求法
, (3分)
(3分)
, (结果错扣3分)
27.设粒子在一维空间中运动,其哈密顿量为 ,它在 0表象中的表示为 ,
A.求 的本征值和本征态; , ; ,
B.若 时,粒子处于1,它在 表象中的表示为 。试求出t > 0时的粒子波函数;
解A. , , (2分)
, (2分)
B. (4分)
(4分)
28.一个电荷为的一维谐振子受到弱电场的作用,利用微扰理论求能量至二级修正值并与其精确结果比较一电荷为 的线性谐振子受恒定弱电场 作用。设电场 沿 方向:(1)用微扰法求能量至二级修正;(2)求能量的准确值,并和(1)所得的结果比较。
[解](1)荷电为 的线性谐振子由于电场 作用所具有的能量为 ,因为 是弱电场,故与无电场时谐振子具有的总能量 相比较,显然有 令 ,显然, 可以看作微扰,因此可以用微扰法求解。线性谐振子在外电场作用下的总哈密顿算符是 无微扰时,线性谐振子的零级波函数是 当体系处于第 态时,考虑微扰的影响,则能量变为 其中 其中 利用递推公式 故 利用厄密多项式的正交性可以看出上面的积分为零,即 这表明能量一级修正为零。下面求能量的二级修正。为此计算矩阵元 而 最后得能量的二级修正为 故在准确到二级修正的情况下,总能量为
31.一体系由三个全同的玻色子组成,玻色子之间无相互作用。玻色子只有两个可能的单粒子态。问体系可能的状态有几个?它们的波函数怎样用单粒子波函数构成?
解:体系可能的状态有4个。设两个单粒子态为 , ,则体系可能的状态为
32.一量子体系的哈密顿算符 在 表象中 , 其中常数 ,(1)用微扰法求体系的能级,精确到二级近似;(2)求出体系能量的精确解,并与(1)式结果比较
解:
可见,动量 的可能值为
动能 的可能值为
对应的几率 应为
上述的A为归一化常数,可由归一化条件,得
∴ ∴ 动量 的平均值为
13.一维运动粒子的状态是 其中 ,求:(1)粒子动量的几率分布函数;(2)粒子的动量期望值。
*类似*一维运动粒子的状态是 其中 ,求:(1)粒子动量的几率分布函数;(2)粒子的平均动量。
7.求角动量能量算符 的本证值和本征态
*类似*(10分)求角动量z分量 的本征值和本征函数。
解: 波函数单值条件,要求当φ转过2π角回到原位时波函数值相等,即: 求归一化系数 后,得Lz的本征函数
8.试求算符 的本征函数
9.证明一维束缚定态方程的能量E是非简并的
10. 在一维势场中运动的粒子,势能对原点对称: ,证明粒子的定态波函数具有确定的宇称
量子力学试题
1.1924年,德布洛意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性,对于具有一定动量 的自由粒子,满足德布洛意关系:_____________________________
2.假设电子由静止被150伏电压加速,求加速后电子的的物质波波长:___________________________
解:由波函数 的形式可知一维无限深势阱的分布如图示。粒子能量的本征函数和本征值为
动量的几率分布函数为
先把 归一化,由归一化条件, ∴


15.设粒子处于范围在 的一维无限深势阱中状态用函数 ,求粒子能量的可能测量值及相应的几率
*类似*
16.设氢原子处在 的态( 为第一玻尔轨道半径),求(1) 的平均值;(2)势能 的平均值
3.计算1 时, 团簇(由60个 原子构成的足球状分子)热运动所对应的物质波波长____________
4.计算对易式 和 ,其中 为动量算符的 分量, 为坐标的 函数.
5.如果算符 满足关系式 ,求证(1) (2)
证利用条件 ,以 左乘之得 则有 最后得 。再以 左乘上式得 ,即 则有 最后得
6.设波函数 ,求
相关文档
最新文档