钢铁冶金学工艺原理—炼铁部分
钢铁冶金学(炼铁部分)

钢铁冶⾦学(炼铁部分)钢铁冶⾦学(炼铁部分)第⼀章概论1、试述3种钢铁⽣产⼯艺的特点。
答:钢铁冶⾦的任务:把铁矿⽯炼成合格的钢。
⼯艺流程:①还原熔化过程(炼铁):铁矿⽯→去脉⽯、杂质和氧→铁;②氧化精炼过程(炼钢):铁→精炼(脱C、Si、P等)→钢。
⾼炉炼铁⼯艺流程:对原料要求⾼,⾯临能源和环保等挑战,但产量⾼,⽬前来说仍占有优势,在钢铁联合企业中发挥这重⼤作⽤。
直接还原和熔融还原炼铁⼯艺流程:适应性⼤,但⽣产规模⼩、产量低,⽽且很多技术问题还有待解决和完善。
2、简述⾼炉冶炼过程的特点及三⼤主要过程。
答:特点:①在逆流(炉料下降及煤⽓上升)过程中,完成复杂的物理化学反应;②在投⼊(装料)及产出(铁、渣、煤⽓)之外,⽆法直接观察炉内反应过程,只能凭借仪器仪表简介观察;③维持⾼炉顺⾏(保证煤⽓流合理分布及炉料均匀下降)是冶炼过程的关键。
三⼤过程:①还原过程:实现矿⽯中⾦属元素(主要是铁)和氧元素的化学分离;②造渣过程:实现已还原的⾦属与脉⽯的熔融态机械分离;③传热及渣铁反应过程:实现成分与温度均合格的液态铁⽔。
3、画出⾼炉本体图,并在其图上标明四⼤系统。
答:煤⽓系统、上料系统、渣铁系统、送风系统。
4、归纳⾼炉炼铁对铁矿⽯的质量要求。
答:①⾼的含铁品位。
矿⽯品位基本上决定了矿⽯的价格,即冶炼的经济性。
②矿⽯中脉⽯的成分和分布合适。
脉⽯中SiO2和Al2O3要少,CaO多,MgO 含量合适。
③有害元素的含量要少。
S、P、As、Cu对钢铁产品性能有害,K、Na、Zn、Pb、F对炉衬和⾼炉顺⾏有害。
④有益元素要适当。
Mn、Cr、Ni、V、Ti等和稀⼟元素对提⾼钢产品性能有利。
上述元素多时,⾼炉冶炼会出现⼀定的问题,要考虑冶炼的特殊性。
⑤矿⽯的还原性要好。
矿⽯在炉内被煤⽓还原的难易程度称为还原性。
褐铁矿⼤于⾚铁矿⼤于磁铁矿,⼈造富矿⼤于天然铁矿,疏松结构、微⽓孔多的矿⽯还原性好。
⑥冶⾦性能优良。
冷态、热态强度好,软化熔融温度⾼、区间窄。
钢铁冶金原理(炼铁部分)期末考试总结

名词解释脉石:铁矿石中除有含Fe的有用矿物外,还含有其它化合物,统称为脉石。
焦比:冶炼每吨生铁消耗干焦或综合焦炭的千克数。
熔剂:由于高炉造渣的需要,入炉料中常配有一定数量助熔剂,简称熔剂。
有效容积利用系数:在规定的工作时间内,每立方米有效容积平均每昼夜生产的合格铁水的吨数。
等于[t/(m3*d)]=合格生铁折合产量/有效容积×规定工作日休风率:高炉休风时间(不包括计划中的大中及小修)占规定工作时间的百分数。
冶炼强度:冶炼过程强化的程度,干焦耗用量/有效容积×实际工作日直接还原:铁矿石还原剂为固态炭,产物为CO的反应。
耦合反应:某个渣中的离子得到或失去电子成为铁液中不带电的中性原子与另一个铁中原子失去或得到电子而成为渣中离子的氧化还原反应成为耦合反应。
熔化温度:理论上就是相图上液相线温度,或炉渣在受热升温过程中固相完全消失的最低温度。
熔化性温度:炉渣可自由流动的最低温度粘度曲线与45切线的切点温度。
长渣和短渣:温度降到一定值后,粘度急剧上的称为短渣;随温度下降粘度上升缓慢称为长渣。
液泛现象:反应生成的气体穿过渣层,生成气泡,气泡稳定存在于渣层内,炉渣在焦块空隙之间产生类似沸腾现象的上下浮动。
热交换的空区或热储备区:炉身中下部区间内,煤气与炉料的温差很小,大约只有50℃左右,是热交换及其缓慢的区域,成为热交换的空区或热储备区。
水当量:表示单位时间内炉料和炉气流温度变化1℃是所吸收或放出的热量。
上部调节:利用装料制度的变化一调节炉况称为上部调节。
下部调节:调节风速,鼓风动能及喷吹量等送风制度方面参数一调节炉况称为下部调节。
简答题1、高炉冶炼的过程主要目的是什么?答:用铁矿石经济而高效率的得到温度和成分合乎要求的业态生铁。
2、高炉冶炼过程的特点是什么?答:在炉料与煤气逆流运动的过程中完成了多种错综复杂的交织在一起的化学反应和物理变化,且由于高炉是密封的容器,除去投入及产出外,操作人员无法直接观察到反应过程的状况,只能凭借仪器仪表间接观察。
炼铁生产的原理

炼铁生产的原理
炼铁生产的原理是将铁矿石经过高温还原反应,将其中的铁元素
分离出来,制成纯铁。
这是钢铁生产的基础工艺之一,也是工业中广
泛采用的重要生产工艺之一。
炼铁的过程是一个复杂的物理化学过程,包含了多个步骤。
首先,需要选取适当的铁矿石原料,并且对其进行预处理,去除其中的杂质
和含水量。
然后,将铁矿石原料送入高炉,进行还原反应。
这个还原反应是指将铁矿石中的氧化铁还原成纯铁,反应公式为:Fe2O3 + 3CO → 2Fe + 3CO2。
在高炉内,铁矿石原料受热分解,其中
的氧化铁在高温下与碳还原成纯铁,同时也会产生大量的热能和CO2
等废气。
炼铁的过程中,需要加入一些焦炭和石灰石等辅助材料。
焦炭可
以提供还原反应所需的碳元素,而石灰石可以吸附氧化铁并产生渣,
保证铁水的纯度和质量。
在高炉内,铁矿石经过还原反应,产生的纯铁不断向下深入,落
入高炉底部的铁口中,流成一滩熔融态的铁水。
在此时,需要对铁水
进行加工和处理,包括分离渣和精炼纯铁等工艺过程。
其中,渣是指铁矿石原料中含有的其他杂质和氧化铁等物质,需
要通过熔炼和过滤等方法分离出来。
精炼纯铁则是将铁水在高温下再
次熔炼,去除其中的硫、磷等杂质元素,从而获得更高纯度的铁。
总之,炼铁是一项复杂的生产工艺,涉及多种物理化学原理。
通
过对铁矿石原料的各种处理和加工,再通过高温还原反应和分离处理,最终获得高品质的纯铁,为钢铁生产提供了重要的基础材料。
钢铁的冶炼原理及生产工艺流程

炼铁过程本质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。
炼铁方法主要有高炉法、直接复原法、熔融复原法等,其原理是矿石在特定的氛围中(复原物质CO、H2、C;适合温度等)经过物化反响获得复原后的生铁。
生铁除了少部分用于锻造外,绝大多半是作为炼钢原料。
1、高炉炼铁的冶炼原理(应用最多的)一)炼铁的原理(如何从铁矿石中炼出铁)用复原剂将铁矿石中的铁氧化物复原成金属铁。
铁氧化物(Fe2O3、Fe3O4、FeO)+复原剂(C、CO、H2)铁( Fe)二)炼铁的方法(1)直接复原法(非高炉炼铁法)(2)高炉炼铁法(主要方法)三)高炉炼铁的原料及其作用(1)铁矿石:(烧结矿、球团矿)供给铁元素。
冶炼一吨铁大概需要— 2吨矿石。
(2)焦碳:冶炼一吨铁大概需要 500Kg 焦炭。
供给热量;供给复原剂;作料柱的骨架。
(3)熔剂:(石灰石、白云石、萤石)使炉渣融化为液体;去除有害元素硫( S)。
(4)空气:为焦碳焚烧供给氧。
2、工艺流程生铁的冶炼虽原理同样,但因为方法不一样、冶炼设施不一样,因此工艺流程也不一样。
下边分别简单予以介绍。
高炉生产是连续进行的。
一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。
生产时,从炉顶(一般炉顶是由料种与料斗构成,现代化高炉是钟阀炉顶和无料钟炉顶)不停地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风( 1000~1300 摄氏度),喷入油、煤或天然气等燃料。
装入高炉中的铁矿石,主假如铁和氧的化合物。
在高温下,焦炭中和喷吹物中的碳及碳焚烧生成的一氧化碳将铁矿石中的氧争夺出来,获得铁,这个过程叫做复原。
铁矿石经过复原反响炼出生铁,铁水从出铁口放出。
铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂联合生成炉渣,从出铁口和出渣口分别排出。
煤气从炉顶导出,经除尘后,作为工业用煤气。
现代化高炉还能够利用炉顶的高压,用导出的部分煤气发电。
生铁是高炉产品(指高炉冶炼生铁),而高炉的产品不不过生铁,还有锰铁等,属于铁合金产品。
钢铁冶金学炼铁部分第三版

钢铁冶金学炼铁部分第三版(原创实用版)目录一、钢铁冶金学炼铁部分的概述二、钢铁冶金学炼铁部分的主要内容三、钢铁冶金学炼铁部分的重要性四、钢铁冶金学炼铁部分的未来发展趋势正文一、钢铁冶金学炼铁部分的概述钢铁冶金学炼铁部分是钢铁冶金学的一个重要组成部分,主要研究炼铁的原理、方法、设备和工艺。
炼铁是钢铁生产的第一步,其任务是将含铁的矿石通过高温还原的方法转化为铁。
炼铁部分的研究内容不仅包括传统的高炉炼铁,还包括直接还原法、熔融还原法等新型炼铁技术。
二、钢铁冶金学炼铁部分的主要内容钢铁冶金学炼铁部分的主要内容包括以下几个方面:1.矿石的准备和预处理:包括矿石的选择、破碎、筛分、混合等过程。
2.高炉炼铁:研究高炉的结构、原理、操作和控制,以及高炉炼铁的副产品(如炉渣、煤气等)的处理和利用。
3.直接还原法:研究使用一氧化碳、氢气等还原剂直接将矿石还原成铁的方法。
4.熔融还原法:研究在高温下将矿石和熔剂混合熔融,然后通过还原反应生成铁的方法。
5.铁的冶炼:研究铁的熔炼、铸造和连铸等过程,以及铁中的杂质控制和质量管理。
三、钢铁冶金学炼铁部分的重要性钢铁冶金学炼铁部分对于我国钢铁工业的发展具有重要意义,主要表现在以下几个方面:1.提高钢铁产量:炼铁是钢铁生产的第一步,其产量和质量直接影响到钢铁的总产量和质量。
2.降低生产成本:研究炼铁过程中的节能、减排和资源综合利用等技术,有助于降低钢铁生产的成本。
3.提高钢铁质量:研究炼铁过程中的杂质控制和质量管理技术,有助于提高钢铁的质量和性能。
4.保护环境:研究炼铁过程中的环保技术和副产品利用,有助于减少污染,实现绿色生产。
四、钢铁冶金学炼铁部分的未来发展趋势随着科技的进步和社会的发展,钢铁冶金学炼铁部分将面临以下发展趋势:1.绿色发展:加大对环保技术和副产品利用的研究,实现炼铁过程的绿色化和可持续发展。
2.智能化:借助大数据和人工智能技术,实现炼铁过程的智能化控制和优化,提高生产效率和质量。
工业上常用炼铁的原理

工业上常用炼铁的原理
1炼铁原理
炼铁是一项重要的冶金生产过程,它是可用铁矿石或其他含铁矿石制成的合金制成铁、钢材,以用于机械、建筑、船舶、军用等。
炼铁原理主要是把存在的铁矿石(包括砂铁矿、变性铁矿、褐铁矿、铁绿石、铁粉等)先进行粗粉磨碎,然后构成炼铁料,在炉内的高温作用下,较轻的碳及附有的硫氧九和氧化物,由于它们的密度较小,会被逐渐蒸发掉。
而最重要的是,温度逐渐加重,将接近低熔点的一些凝固物完全熔化,最后用浇铸成各种形状的铁锭、钢锭和铁钢板,来满足生产。
2炼铁炉种类
根据炼铁工艺需要,炼铁炉可以分为塔炉、腐蚀炉、塔鼓炉、顶窑炉等等,其中塔炉最为常用。
塔炉以它强大的能力,通过炉缸的上部除尘的功能,能够将空气和入炉料有分离,保持炉内的干净,且能够将高温的熔炼物排出,从而更有效的降低熔炼温度,提高了工艺效率与炼出材质。
而腐蚀炉,以它内部采用完全金属密封,防氧和空气对金属的侵蚀,保持炉内正常劣化,满足恒温的连续操作要求。
3炼铁过程中产生的污染
炼铁会产生着重大的环境污染。
主要有一氧化碳、硫氧化物、粉尘和植物毒素等排放的污染物。
一氧化碳的排放显著影响全球气候安全;硫氧化物排放会影响地表水和植物,加重大气中臭氧层破碎;粉
尘排放会影响大气和表面水,同时也会造成大气质量污染和大气湿度降低;植物毒素排放会造成土壤污染,影响远距离环境。
因此,应采取一些措施来减少炼铁过程中产生的污染。
比如采用新型节能和环境保护的炼铁工艺,对炉内热量和温度进行控制,减少二氧化碳、硫氧化物及粉尘排放。
另外,建议采取政府推出的环保补贴制度,奖励企业建立节能减排设施,降低其对环境造成的污染。
钢铁冶金学炼铁部分第三版

钢铁冶金学炼铁部分第三版摘要:一、钢铁冶金学炼铁部分的概述二、炼铁的原理和过程三、炼铁的设备和操作四、炼铁的环保和节能五、炼铁的发展趋势正文:一、钢铁冶金学炼铁部分的概述《钢铁冶金学炼铁部分第三版》是一本关于钢铁冶金学的专业书籍,主要介绍了炼铁的基本原理、过程、设备和操作。
本书在继承前两版的基础上,对炼铁技术进行了全面更新,以适应现代钢铁工业的发展。
书中还强调了炼铁的环保和节能,以及炼铁技术的发展趋势,为我国钢铁工业的持续发展提供了重要的理论支撑。
二、炼铁的原理和过程炼铁的原理是通过高温下的还原反应,将铁矿石中的铁氧化物还原成金属铁。
炼铁的过程主要包括原料准备、烧结、焦化、炼铁炉炼铁等环节。
在原料准备阶段,将铁矿石、焦炭、石灰石等原料进行混合和粉碎。
烧结是将混合好的原料进行高温烧结,形成烧结矿。
焦化是利用焦炭对铁矿石进行还原,生成一氧化碳和金属铁。
炼铁炉炼铁是将焦炭和烧结矿放入高炉,在高温下进行还原反应,生成金属铁。
三、炼铁的设备和操作炼铁的主要设备包括烧结炉、焦炉、高炉等。
烧结炉用于将原料进行烧结,形成烧结矿。
焦炉用于焦化,生成焦炭。
高炉用于炼铁,将铁矿石通过还原反应生成金属铁。
炼铁的操作主要包括原料配比、烧结矿破碎、烧结、焦化、高炉炼铁等环节。
四、炼铁的环保和节能炼铁过程中会产生大量的烟尘、二氧化硫等污染物,需要采取相应的环保措施进行治理。
目前,我国炼铁企业普遍采用除尘、脱硫等技术,有效降低了污染物排放。
此外,炼铁企业还通过提高资源利用率、降低能耗等措施,实现了炼铁过程的节能减排。
五、炼铁的发展趋势随着我国钢铁工业的转型升级,炼铁技术也在不断发展。
未来,炼铁技术将朝着绿色、高效、智能化的方向发展。
具体表现在:提高炼铁矿利用率,降低能耗;推广绿色炼铁技术,降低污染物排放;应用智能化技术,提高炼铁生产效率。
钢铁冶金学工艺原理—炼铁部分

1982年4000万吨钢 1996年1.01亿吨 2003年2.22亿吨 2005年3.49亿吨 2006年4.23亿吨 2008年5.00亿吨
2009年5.65亿吨
1.5 钢铁联合企业中的炼铁生产
钢铁联合企业系统作业图
1.5 钢铁联合企业中的炼铁生产
钢铁联合企业:将铁矿石在高炉内冶炼成生铁,用铁水炼成 钢,再将钢水铸成钢锭或连铸坯,经轧制等塑性变形方法加 工成各种用途的钢材
1.6.1 高炉炼铁的本质及生产工艺流程
高炉炼铁的本质
还原:将铁的氧化物还原为金属铁 造渣:实现渣铁分离 加热与控制:获得温度与化学成分合格的铁水
生 产 工 艺 流 程
1.6.2 高炉结构及附属设备
高炉内型
概念:高炉是一个竖立圆筒形炉子,其内部工作空间的形 状称为高炉内型,即通过高炉中心线的剖面轮廓。现代高 炉内型一般由炉缸、炉腹、炉腰、炉身、炉喉五段组成
特点:两头小,中间粗略带锥度的圆柱形空间 高炉有效容积:由高炉出铁口中心线所在水平面到大料钟
下降位置下沿水平面之间的容积。目前我国最大的高炉是 上海宝山钢铁总厂的l号高炉,容积为4063m3。在国外已 有5000m3以上的巨型高炉
高炉内型尺寸
H-全高,H=Hu十H6 Hu-有效高度,
Hu=hl十h2十h3十h4十h5 h0—死铁层高度 h1-炉缸高度 h2—炉腹高度 h3—炉腰高度 h4—炉身高度 H5 —炉喉高度 H6 —炉头高度 D —炉腹直径 al—炉喉直径 a0—大钟直径
1.6.4 高炉炼铁原料及其他辅助材料
分类 赤铁矿
矿物成分: Fe2O3,TFe70%,红色或褐色,又称红 矿。一般无磁性
晶形:α-Fe2O3,γ-Fe2O3(有磁性) 硬度:5.3~6 常形成巨大矿床,占铁矿总储量48.3% 脉石成分:石英、硅酸盐 有害元素:硫、磷、砷较少
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1960-1966年,在困难时期,继续发展:开发了以细粒铁精 矿为原料的自熔性及超高碱度烧结矿生产技术,高炉喷煤以 及复合矿冶炼技术等
1.4 中国钢铁工业的发展概况
1966-1976年,基本停滞(文革):与世界差距拉大
1.2 钢铁工业在国民经济中的地位
发展钢铁工业的优势
钢铁材料具有良好的物理化学性能,能满足人们的各种需要, 目前尚不能为其他材料所替代--现代社会仍是铁器时代
所需资源贮量丰富--可供人类长期大量采用 冶炼容易,积累了数千年生产和加工的丰富经验,生产规模
大,效率高,质量好和成本低--具有其他工业无可比拟的竞 争优势 废旧钢铁制品能够返回钢铁生产流程--可以反复回收利用
主要生产环节:原料处理,炼铁,炼钢,轧钢,能源供应, 交通运输等
炼铁在钢铁联合企业中的地位:炼铁是关键工序,是二次能 源(煤气)供应中心。其产品质量,品种,产量是衡量钢铁 企业生产水平的基本标志
1.6 高炉炼铁过程概述
1.6.1 高炉炼铁的本质及生产工艺流程 1.6.2 高炉结构及附属设备 1.6.3 炉内主要过程 1.6.4 高炉炼铁原料及其他辅助材料料 1.6.5 高炉产品 1.6.6 高炉冶炼的主要技术经济指标
人类学会由矿石炼铁大约在公元前14~15世纪。而 真正形成钢铁生产技术仅约100年
远古到13世纪末:利用自然地形将铁矿石与木炭一起放入用 砖砌筑的地炉内,加热冶炼,将矿石还原,生成海绵铁
13世纪末到19世纪中期:把铁矿石装入高炉中冶炼成液态 生铁。再将生铁冶炼成熟铁或软钢
19世纪中期至今:以生铁,海绵铁或废钢为原料,在平炉、 转炉、电炉中冶炼成钢或合金钢的时代
特点:两头小,中间粗略带锥度的圆柱形空间 高炉有效容积:由高炉出铁口中心线所在水平面到大料钟
下降位置下沿水平面之间的容积。目前我国最大的高炉是 上海宝山钢铁总厂的l号高炉,容积为4063m3。在国外已 有5000m3以上的巨型高炉
高炉内型尺寸
H-全高,H=Hu十H6 Hu-有效高度,
Hu=hl十h2十h3十h4十h5 h0—死铁层高度 h1-炉缸高度 h2—炉腹高度 h3—炉腰高度 h4—炉身高度 H5 —炉喉高度 H6 —炉头高度 D —炉腹直径 al—炉喉直径 a0—大钟直径
容 1.5 钢铁联合企业中的炼铁生产
1.6 高炉炼铁过程概述
1.7 炼铁技术的发展方向
1.1 生铁、熟铁与钢
相同点
以铁元素为主,含有少量碳,硅,锰,磷,硫等元 素的铁碳合金
区别
碳和其它元素含量的不同 钢:含碳量小于2.11% 生铁:含碳量大于2.11% 熟铁:含碳量小于0.02%
熟铁:质软,塑性好,易变形,强度和硬度均较低
优点:能耗低,污染小。
缺点:生产规模小,效率低,成本高。
铁矿石
炼
高炉
铁
过
程
铁水
熔剂 还原剂 燃料或电热
直接还原炉
铸铁机
海绵铁 商品铸铁
混铁炉
炼钢生铁块
炼
钢
转炉
废钢
平炉
过
程
钢水
废钢 电炉
铸锭或连铸
压 加 过 程
轧、锻 钢材
矿石-生铁-钢:即高 炉-转炉,平炉淘汰 矿石-海绵铁-钢:直 接还原-电炉流程
现代钢铁生产流程
1.4 中国钢铁工业的发展概况
春秋战国时代就出现了生铁冶炼,两汉时期,冶炼工业得到 较大发展:据资料记载,8.5m3高炉,领先优势一直延续了 2千年,直到明代中叶(约17世纪)西方产业革命兴起
近代到1949年,发展速度缓慢:技术水平及装备极其落后, 1949年粗钢产量仅25万吨
1.2 钢铁工业在国民经济中的地位
发展钢铁工业的必备条件
稳定可靠的原材料资源供应(矿石、煤、熔剂、耐火材料等) 稳定的动力资源(水、电等) 发达的运输业(公路、铁路、水运等) 雄厚的资金保证(投资高、建设周期长、资金回收效率慢等)
钢铁工业的发展,标志着上述条件的完善, 反应国民经济的发达程度
1.3 钢铁冶金的发展简史
从1977年开始持续发展:
1982年4000万吨钢 1996年1.01亿吨 2003年2.22亿吨 2005年3.49亿吨 2006年4.23亿吨 2008年5.00亿吨
2009年5.65亿吨
1.5 钢铁联合企业中的炼铁生产
钢铁联合企业系统作业图
1.5 钢铁联合企业中的炼铁生产
钢铁联合企业:将铁矿石在高炉内冶炼成生铁,用铁水炼成 钢,再将钢水铸成钢锭或连铸坯,经轧制等塑性变形方法加 工成各种用途的钢材
性质 生铁:性质硬而脆,不能锻造
钢:综合机械性能好
1.2 钢铁工业在国民经济中的地位
钢铁工业是基础材料工业,其发展状况反映了一个 国家国民经济的发达程度
国 民
工业化水平
劳动生产率
经
济 发
生活用品
达
程 度
国民生活水准
交通工具 市政设施
民用住宅
机械设备
基础材料 钢铁产品
人均年占有钢的数量是衡量一个国家发达程度的重要指标之一 日本世界第一800kg/人.年,中国380kg/人.年
钢铁冶金学 工艺原理
—炼铁部分
1 概论
2 高炉冶炼过程的物理变化
课 3 高炉冶炼过程的传输现象
程 内
4 高炉冶炼的能量利用
容 5 高炉炼铁工艺
6 高炉冶炼过程数学模型概述
7 非高炉炼铁
1 绪论
1.1 生铁、熟铁与钢
1.2 钢铁工业在国民经济中的地位
本 1.3 钢铁冶金的发展简史
章 内
1.4 中国钢铁工业的发展概况
高炉法
传统的以焦炭为能源,与转炉炼钢相配合, 组成高炉-转炉-轧机流程,被称为长流 程,是目前的主要流程。
现
优点:生产规模大,效率高,成本低。
代 炼
缺点:能耗高,污染大。
铁
泛指高炉以外,不以焦炭为能源,通常分
法
为直接还原和熔融还原,一般与电炉配合,
非高炉法
组成直接还原或熔融还原-电炉-轧机流 程,被称为短流程,是目前的辅助流程。
1.6.1 高炉炼铁的本质及生产工艺流程
高炉炼铁的பைடு நூலகம்质
还原:将铁的氧化物还原为金属铁 造渣:实现渣铁分离 加热与控制:获得温度与化学成分合格的铁水
生 产 工 艺 流 程
1.6.2 高炉结构及附属设备
高炉内型
概念:高炉是一个竖立圆筒形炉子,其内部工作空间的形 状称为高炉内型,即通过高炉中心线的剖面轮廓。现代高 炉内型一般由炉缸、炉腹、炉腰、炉身、炉喉五段组成