六年级下册数学圆柱的体积
六年级下学期数学 圆柱的体积 完整版讲义 例题+课后作业

六年级下学期圆柱的体积知识概要1、圆柱的体积将圆柱切割拼成一个近似长方体:长方体的长:圆柱底面圆周长的一半πr长方体的宽:圆柱的底面半径r长方体的高:圆柱的高hV=πr·r·h =πr2hV=底面积×高2、体积单位及换算体积单位:立方米、立方分米、立方厘米相邻两个体积单位间的进率是10001立方米=1000立方分米1立方分米=1000立方厘米精讲精练例1、(1)圆柱的半径扩大为原来的3倍,高不变,体积扩大为原来的____倍。
如果高变成2倍,半径不变,体积变为原来的_____倍。
(2)判断:①圆柱的半径扩大为原来的2倍,表面积扩大为原来的4倍。
()②圆柱的半径扩大为原来的2倍,体积扩大为原来的6倍。
()演练1、(1)圆柱的半径缩小为原来的二分之一,高不变,体积缩小为原来的_____。
(2)判断:圆柱的半径扩大为原来的2倍,高不变,体积扩大为原来的4倍。
()例2、(1)已知圆柱体的底面半径3厘米,高10厘米。
那么这个圆柱体的体积是_____立方厘米.(2)如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.问这个物体的体积是多少平方米?(圆周率取3)1110.511.5演练2、(1)一个圆柱底面积是1⒉56平方分米,高是2分米,则圆柱的体积是多少立方分米?(2)一个双层的圆柱形蛋糕,两层都高15厘米,第一层和第二层蛋糕的半径分别为10厘米和5厘米。
求这个蛋糕的体积。
例3、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。
这个零件的体积是多少?演练3、有一个圆柱体的零件,高6厘米,底面直径是8厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。
这个零件的体积是多少?例4、(1)圆柱体的侧面展开,放平,是长宽分别为18厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米。
圆柱的体积说课稿7篇

圆柱的体积说课稿7篇圆柱的体积说课稿7篇作为一名教职工,时常需要用到说课稿,借助说课稿我们可以快速提升自己的教学能力。
快来参考说课稿是怎么写的吧!下面是小编为大家整理的圆柱的体积说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
圆柱的体积说课稿1各位领导、老师:大家好!:今天,我说课的内容是《圆柱的体积》。
我将从说教材、说学情、说教学流程三个方面进行说课。
一、说教材。
1.说内容。
《圆柱的体积》这节课选自冀教版六年级数学第12册三单元,主要内容是圆柱体的体积计算公式的推导和应用。
2.教材简析。
这一单元是小学阶段学习几何体知识的最后部分,是几何知识的综合运用。
《圆柱的体积》一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,学生已经有了把圆拼成近似的长方形的经验,很容易联想到把圆柱切拼成长方体。
学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。
3、分析教材的编写思路、结构特点。
为了更好地理解教材,我认真研读了人教版与冀教版两种不同版本的教材:冀教版教材:教材由过生日的情景图和两个不易直观比较出体积的茶叶桶,呈现了问题情境。
接着由“议一议”启发学生猜想怎样计算圆柱体积,在猜想的基础上,小组合作,动手操作,利用手中的圆柱体学具把一个圆柱体等分成16份、32等份拼成新的拼成长方体。
然后提出“说一说”引导同学观察讨论:拼成的长方体和圆柱体有什么关系?从而推导出圆柱体的体积计算公式。
通过例题1得以简单应用。
人教版教材:教材没有创设生动有趣的问题情境,直接奔入主题猜想怎样计算圆柱体积,直接引导学生利用手中的圆柱体学具,把一个圆柱体等分成16份、32份等新的拼成长方体。
引导同学观察讨论:拼成的长方体和圆柱体有什么关系?从而推导出圆柱体的体积计算公式,出示例4巩固应用,出示例5应用公式计算容积。
通过对比分析,发现:从教材内容安排和活动设计上,主导思想是一致的,都非常重视动手操作活动,让学生经历探究圆柱体积公式的全过程,在这些教学活动中,着重以引导学生运用自主学习、合作探究两种学习方式交替进行,让他们真正以课堂主人的身份参与全程,教师只是探究活动的组织者、引导者、合作者。
圆柱的体积(教案)-六年级下册数学苏教版

圆柱的体积(教案)六年级下册数学苏教版我今天要教授的是六年级下册数学苏教版的《圆柱的体积》。
一、教学内容我们今天的学习重点是理解圆柱体积的概念,掌握圆柱体积的计算方法。
我们将通过学习圆柱的底面积、高和体积的关系,来深入理解圆柱体积的计算。
二、教学目标我希望通过今天的教学,学生们能够理解圆柱体积的概念,掌握圆柱体积的计算方法,并且能够运用这个方法来解决实际问题。
三、教学难点与重点今天的教学难点是圆柱体积的计算方法,特别是如何将圆柱切割成薄片,计算这些薄片的体积,并将它们加起来得到整个圆柱的体积。
教学重点是让学生们能够理解并掌握这个计算方法。
四、教具与学具准备我已经准备好了圆柱体积的模型和计算器,学生们需要准备纸和笔来记录计算过程。
五、教学过程我会通过一个实践情景来引入圆柱体积的概念,我会拿出一个圆柱形的模型,让学生们观察并猜测它的体积是多少。
然后,我会带领学生们学习圆柱体积的计算方法,我会用一个具体的例子来讲解如何将圆柱切割成薄片,计算这些薄片的体积,并将它们加起来得到整个圆柱的体积。
接着,我会给学生们一些随堂练习,让他们自己尝试计算圆柱的体积。
我会让们在小组内讨论他们遇到的困难和问题,我会给予指导和帮助。
六、板书设计板书设计将包括圆柱体积的计算公式,以及如何将圆柱切割成薄片来计算体积的步骤。
七、作业设计作业题目:计算下面圆柱的体积。
圆柱1:底面半径为5cm,高为10cm。
圆柱2:底面半径为8cm,高为12cm。
答案:圆柱1的体积为785.4cm³。
圆柱2的体积为2010.6cm³。
八、课后反思及拓展延伸通过今天的教学,我觉得学生们对圆柱体积的概念有了更深入的理解,大多数学生都能够掌握圆柱体积的计算方法。
但是,还是有一部分学生在计算过程中容易出错,需要在课后加强练习。
另外,我也可以给学生们一些拓展延伸的任务,比如让他们尝试计算不同形状的立体图形的体积,来加深他们对体积概念的理解。
苏教版小学六年级下册数学课件 《圆柱的体积》圆柱和圆锥PPT(第3课时)

0.314m³ 中单位
不一致,要将结
果立方 7.把一块长、宽、高分别是5厘d米m改、写3.1为4立dm方、2dm的长
方体铁块,熔铸成
米。
一个底面半径是2dm的圆柱形铁块,这个圆柱形铁块
的高是多少分2米.5?dm
提示:长方体体 积与圆柱体积相
等。
课堂练 习
8.一根圆柱形钢材长2米,截成3段小圆柱后,
试一试:一个圆柱形水杯的容积是1.6升,从里面量, 平方分米。用这个水杯装3/4杯水,水面高多少分米?
先算出3/4杯水的体积是多少。所以:
V=¾×1.6=1.2(l) 高等于体积除以底面积,所以:
h=V÷s=1.2÷1.2=1(dm)
教学新 知
思考: (1)把圆钢竖着拉出水面8厘米,水面下降了4厘米, 能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么? 计算出这个圆钢的体积? (3)这题还可以怎样思考?
试一试:一个圆柱形水池,从里面量,底面直径是8
米,深3.5米。
(1)水池里最多能蓄水多少吨?(1立方米水重1吨)
(2)在水池的底面和四周抹上水泥,抹水泥部分的
(面积1)是V多=少s?h=4²π×3.5=175.84(m³)175.84m³=17 (2)S=2πrh+πr²=2×3.14×4×3.5+3.14×4²=138.
(2)l=4h+4d+15=4(20+30)+15=215cm
教学新 知
练一练:一个用塑料薄膜覆盖的蔬菜大棚,长15米, 横截面是一个半径 2米的(半1)圆搭形建。这个大棚大约要用多少平方米的塑料薄膜?
S=πrh+πr²=3.14×2×15+3.14×2²=106.76(m
小学六年级数学教案《圆柱的体积》(精选13篇)

小学六年级数学教案《圆柱的体积》小学六年级数学教案《圆柱的体积》(精选13篇)作为一位无私奉献的人民教师,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。
那么大家知道正规的教案是怎么写的吗?以下是小编帮大家整理的小学六年级数学教案《圆柱的体积》(精选13篇),欢迎大家借鉴与参考,希望对大家有所帮助。
小学六年级数学教案《圆柱的体积》篇1教学目标1.理解圆柱体体积公式的推导过程,掌握计算公式.2.会运用公式计算圆柱的体积.教学重点圆柱体体积的计算.教学难点理解圆柱体体积公式的推导过程.教学过程一、复习准备(一)教师提问1.什么叫体积?怎样求长方体的体积?2.圆的面积公式是什么?3.圆的面积公式是怎样推导的?(二)谈话导入同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)二、新授教学(一)教学圆柱体的体积公式.(演示动画圆柱体的体积1)1.教师演示把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.2.学生利用学具操作.3.启发学生思考、讨论:(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)(2)通过刚才的实验你发现了什么?①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.③近似长方体的高就是圆柱的高,没有变化.4.学生根据圆的面积公式推导过程,进行猜想.(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?5.启发学生说出通过以上的观察,发现了什么?(1)平均分的份数越多,拼起来的形体越近似于长方体.(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.6.推导圆柱的体积公式(1)学生分组讨论:圆柱体的体积怎样计算?(2)学生汇报讨论结果,并说明理由.因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积高)(3)用字母表示圆柱的体积公式.(板书:V=Sh)(二)教学例4.1.出示例4例4.一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?2.1米=210厘米50210=10500(立方厘米)答:它的体积是10500立方厘米.2.反馈练习(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?(三)教学例5.1.出示例5例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?水桶的底面积:=3.14=3.14100=314(平方厘米)水桶的容积:31425=7850(立方厘米)=7.8(立方分米)答:这个水桶的容积大约是7.8立方分米.三、课堂小结通过本节课的学习,你有什么收获?1.圆柱体体积公式的推导方法.2.公式的应用.小学六年级数学教案《圆柱的体积》篇2教学内容:北师大版教学六年级《圆柱的体积》教学目标:1、结合具体的情境和实践活动,理解圆柱体体积的含义。
六年级下册数学圆柱的体积

圆柱的体积☆☆知识讲解:知识点一:圆柱体积的意义和计算公式1.圆柱体积的意义:一个圆柱所占空间的大小,叫做这个圆柱的体积。
2.圆柱体积公式的推导:圆柱的体积=长方体的体积=长方体的底面积×长方体的高=圆柱的底面积×圆柱的高如果用V 表示圆柱的体积,S 表示圆柱的底面积,h 表示圆柱的高,可以得到圆柱的体积计算公式为:h r Sh V 2π==知识点二:圆柱的体积计算公式的应用知识应用1:已知圆柱的底面积和高,求圆柱的体积。
点击例题:一根圆柱形钢材,底面积是402cm ,高是m ,它的体积是多少知识应用2:已知圆柱的底面半径和高,求圆柱的体积。
点击例题:一个圆柱形罐头盒的底面半径是5cm ,高是18cm 。
体积是多少知识应用3:已知圆柱的底面直径和高,求圆柱的体积。
点击例题:一个圆柱形水桶,从里面量底面直径是4分米,高是5分米,这个水桶的容积是多少(得数保留整立方分米)可装水多少千克(1立方分米水重1千克)知识应用4:已知圆柱的底面周长和高,求圆柱的体积。
点击例题:一个圆柱形水泥柱,底面周长是米,高是3米,这根水泥柱的体积是多少立方米知识应用5:已知圆柱的体积和高(或底面积),也可以求出圆柱的底面积(或高)。
点击例题:在地面挖一个圆柱形水池,底面周长米,要使池内存水1570立方米,水池至少要挖多深过关精练:一个圆柱形容器的底面直径为4分米,现在往容器里倒入升的水,水深多少分米☆☆思维拓展:点拨方法1:如果把一个正方体的木料加工成一个最大的圆柱体,这个圆柱体的高就等于正方体的棱长,这个圆柱体的底面直径也就等于正方体的棱长。
点击例题:有一块正方体的木料,它的棱长是3分米,把这块木料加工成一个最大的圆柱体(如图),这个圆柱体的体积是多少过关精练:点拨方法2:将物体浸没在容器里,物体的体积等于升高的那部分液体的体积;如果物体没有完全浸没在液体中,则浸没在液体中的那部分体积等于升高的液体的体积。
六年级下册圆柱的体积

课题:圆柱的体积教学目标:1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算体积的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力。
3、渗透转化思想,培养学生的自主探索意识。
教学重、难点:1、掌握圆柱体积的计算公式。
2、圆柱体积的计算公式的推导。
教学过程一、复习。
1、长方体的体积公式是什么?(长方体的体积=长x宽x高,长方体和正方体体积的统一公式“底面积x高”,即长方体的体积=底面积x高)2、观察一个圆柱体,知名学生指出圆柱的底面、高、侧面、表面各式什么,怎么求?3、复习圆面积的计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、授新课。
1、圆柱体积计算公式的推导。
例5(1)用将圆转化的成长方形来求出圆的面积的方法推导圆柱的体积。
(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得大小相等的16块,把它们拼成一个近似长方体的立体图形------课件演示)(2)由于我们分的不够细,所以看起来还不太像长方体,如果分成的扇形越多,拼成的立体图形就越接近长方体。
(课件演示将圆柱细分,拼成一个长方体)。
(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
(长方体的体积=底面积x高,所以圆柱的体积=底面积x高,V=sh)2.教学补充例题出示例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。
它的体积是多少?指名学生分别回答下面的问题:(1)这道题已知什么?求什么?(2)能不能根据公式直接计算?(3)计算之前要注意什么?(计算既要分析已知条件和问题,还要注意要先统一,计量单位)(4)教师指导列式计算:第一种计算方法:2.1米=210厘米V=sh50X210=10500(立方厘米)答:它的体积是10500立方厘米。
第二种计算方法:50平方厘米=0.005平方米V=sh0.005x2.1=0.0105(立方米)答:它的体积是0.0105立方米。
小学六年级数学下册教学课件《圆柱的体积(2)》

2.一个圆柱形的水池,从里面量底面半径是5m,深 是3.2m。这个水池能蓄水多少吨? (1m3的水重1t。)
【教材P25 做一做 第2题】
V =πr2h 3.14×52×3.2=251.2(m3) 答:这个水池能蓄水251.2吨。
3.下面是一根钢管,求它所用钢材的体积。 (单位:cm)【教材P28 练习五 第12题】
探索新知
下图中的杯子能不能装下2袋这样的牛奶? (数据是从杯子里面测量得到的。)
容积的计算方 法与体积的计
算方法相同
要先计算出杯子的容积。
杯子的底面积:3.14×(8÷2)2
=3.14×42
=3.14×16
=50.24 (cm2) 杯子的容积: 50.24×10
=502.4 (cm3)
=502.4 (mL) 牛奶的体积:240×2=480(mL)
2÷2=1(m) 3.14×12×3=9.42(m3) 9.42 m3=9420 dm3=9420L 9420 ÷350≈26(辆)
三、一个水龙头的内直径是1.6cm,打开水龙 头后水的流速是30厘米/秒,一个容积是5L的 水桶,80秒能装满水吗?
5 L=5000 mL
3.14×
1.6 2
×2 30×80=4823.04(cm3)
所用钢材的体积就是用大圆柱的体积减 去中空的小圆柱的体积。
大圆柱的体积:3.14×(10÷2)2×80=6280(cm3) 小圆柱的体积:3.14×(8÷2)2×80=4019.2(cm3) 钢材的体积:6280-4019.2=2260.8(cm3)
3.下面是一根钢管,求它所用钢材的体积。 (单位:cm)【教材P28 练习五 第12题】
想象一下1秒流出的水是什么形状的。 求50秒流出的水的体积就是求什么?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级下册数学讲义
圆柱的体积
☆☆知识讲解:
知识点一:圆柱体积的意义和计算公式
1.圆柱体积的意义:一个圆柱所占空间的大小,叫做这个圆柱的体积。
2.圆柱体积公式的推导:
圆柱的体积=长方体的体积
=长方体的底面积×长方体的高
=圆柱的底面积×圆柱的高
如果用V 表示圆柱的体积,S 表示圆柱的底面积,h 表示圆柱的高,可以得到圆柱的体积计算公式为:h r Sh V 2π==
知识点二:圆柱的体积计算公式的应用
知识应用1:已知圆柱的底面积和高,求圆柱的体积。
点击例题:一根圆柱形钢材,底面积是402cm ,高是2.1m ,它的体积是多少?
知识应用2:已知圆柱的底面半径和高,求圆柱的体积。
点击例题:一个圆柱形罐头盒的底面半径是5cm ,高是18cm 。
体积是多少?
知识应用3:已知圆柱的底面直径和高,求圆柱的体积。
点击例题:一个圆柱形水桶,从里面量底面直径是4分米,高是5分米,这个水桶的容积是多少?(得数保留整立方分米)可装水多少千克?(1立方分米水重1千克)
知识应用4:已知圆柱的底面周长和高,求圆柱的体积。
点击例题:一个圆柱形水泥柱,底面周长是1.884米,高是3米,这根水泥柱的体积是多少立方米?
知识应用5:已知圆柱的体积和高(或底面积),也可以求出圆柱的底面积(或高)。
点击例题:在地面挖一个圆柱形水池,底面周长62.8米,要使池内存水1570立方米,水池至少要挖多深?
过关精练:一个圆柱形容器的底面直径为4分米,现在往容器里倒入25.12升的水,水深多少分米?
☆☆思维拓展:
点拨方法1:如果把一个正方体的木料加工成一个最大的圆柱体,这个圆柱体的高就等于正方体的棱长,这个圆柱体的底面直径也就等于正方体的棱长。
点击例题:有一块正方体的木料,它的棱长是3分米,把这块木料加工成一个最大的圆柱体(如图),这个圆柱体的体积是多少?
过关精练:
点拨方法2:将物体浸没在容器里,物体的体积等于升高的那部分液体的体积;如果物体没有完全浸没在液体中,则浸没在液体中的那部分体积等于升高的液体的体积。
点击例题:一个圆柱形玻璃杯,底面半径是10厘米。
里面装有水,谁的高度是12厘米,把一小铁块浸没在杯里水中,水上升到13厘米,这块铁约重多少克?(每立方厘米铁块重7.8克)
过关精练:
点拨方法3:根据液体的可变性这一特点,利用数学转化的思想将不规则的形体转化成规则的形体,再利用相关的体积公式进行解答。
点击例题:一个容积为1250mL的饮料瓶,瓶中饮料深20厘米。
把饮料瓶盖紧倒立,这时瓶中空余部分高5㎝,瓶中装有饮料多少升?
过关精练:一个果汁瓶下面部分呈圆柱形,瓶子高22厘米,底面积是10平方厘米,瓶内的果汁液面高度为12厘米。
盖紧瓶盖将瓶子倒立放置,果汁液面高度为16厘米。
求这个瓶子的容积。
点拨方法4:把一个长方形围成一个圆柱,把宽作为圆柱的高,长作为圆柱的底面周长,这种围法的容积要大些。
点击例题:东东妈妈要把一张长6.28米,宽3.14米的芦席围成一个圆柱形粮囤,请帮东东妈妈策划一下,以长方形的什么作圆柱的高,装的粮食多,这时它的容积是多少?
过关精练:一张长方形席子,长9.42m,宽6.28m ,把它卷成一个圆柱形,制成粮囤,怎样卷盛粮食最多?这时它的容积是多少?
点拨方法5:利用圆柱体转化成长方体之间的关系进行巧算解题:如果已知圆柱的侧面积侧S 与底面半径r ,那么圆柱的体积也可以用下列公式求得:r S V ⨯÷=2侧。
点击例题:一个圆柱体,它的侧面积是75.36dm 2
,底面半径是3 dm ,这个圆柱的体积是多少?
cm,底面半径是4cm,这个圆柱体的体积是过关精练:一个圆柱体,它的侧面积是125.62
多少?
点拨方法6:利用横切或纵切圆柱后的表面积变化,求出底面积或底面半径,进而求出圆柱的体积。
点击例题:把一根长1.4m的圆柱形钢材截成3段后(如下图),表面积比原来增加了4.8 dm2,这根钢材原来的体积是多少?
过关精练:把高为5分米的圆柱如图切开,拼成近似的长方体后,表面积增加了20平方分米。
圆柱的体积是多少立方分米?
☆☆过关检测一:
1.下图是把一个圆柱的底面分成若干个相等的扇形,切开后拼成一个近似的长方体。
思考:(1)长方体的底面积等于圆柱的(),长方体的高等于圆柱的()。
(2)长方体的前、后两面面积之和,就是圆柱的(),长方体的上、下两个面就是圆柱的(),长方体的左、右两个面的面积都等于圆柱的()与圆柱的()的乘积。
(3)原来圆柱的体积○切拼后长方体的体积;原来圆柱的表面积○切拼后长方体的表面积。
(填“>”“<”或“=”)
2.计算出下面圆柱的体积。
(单位:㎝)
3.把一个圆柱的侧面展开后,得到一个正方形,已知圆柱的高是6.28dm ,求圆柱的体积。
4.这个容器能装不能装下3000mL 牛奶?
5.一个圆柱形汽油桶中装满汽油,倒出油的
5
3后,桶中还剩36dm 3的汽油,如果油桶底面积是9dm 2,那么这个油桶的高是多少分米?
6.要挖一个底面周长是6.28米的圆柱形蓄水池,要使蓄水池能蓄水7850升,这个蓄水池要挖多少米深?
7.一个圆柱形玻璃容器的底面直径是10㎝,把一块铁块从这个容器的
水中取出后,水面的高度由6㎝降到4㎝,这块铁块的体积是多少?
8.一个长方形,以长为轴,旋转一周形成圆柱(长方形如下图),
它的体积是多少?
9.一个棱长2分米的正方体木料,将它切削成一个体积最大的圆柱,要切削去木材多少立方分米?
10.把一根2.5dm长的圆柱形木料,截去2dm,表面积比原来减少了25.12dm2,这根木料原来的体积是多少立方分米?
11.将一根底面直径4dm的圆柱形木料,沿着直径垂直与底面切成体积相等的两块,表面积增加了400 dm2,这根圆柱形木料的体积是多少?
12.
13.下面是一根钢管,求它所用钢材的体积。
(图中单位:cm)。