计量经济学(庞浩)第五章练习题参考解答
庞皓计量经济学第三版课后习题及答案 顶配

第二章练习题及参考解答表中是1992年亚洲各国人均寿命(Y)、按购买力平价计算的人均GDP(X1)、成人识字率(X2)、一岁儿童疫苗接种率(X3)的数据表亚洲各国人均寿命、人均GDP、成人识字率、一岁儿童疫苗接种率数据(1)分别分析各国人均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的数量关系。
(2)对所建立的回归模型进行检验。
【练习题参考解答】(1)分别设定简单线性回归模型,分析各国人均寿命与人均GDP、成人识字率、一岁儿童疫苗接种率的数量关系:1)人均寿命与人均GDP 关系Y i 1 2 X1i u i估计检验结果:2)人均寿命与成人识字率关系3)人均寿命与一岁儿童疫苗接种率关系(2)对所建立的多个回归模型进行检验由人均GDP、成人识字率、一岁儿童疫苗接种率分别对人均寿命回归结果的参数t 检验值均明确大于其临界值,而且从对应的P 值看,均小于,所以人均GDP、成人识字率、一岁儿童疫苗接种率分别对人均寿命都有显着影响.(3)分析对比各个简单线性回归模型人均寿命与人均GDP 回归的可决系数为人均寿命与成人识字率回归的可决系数为人均寿命与一岁儿童疫苗接种率的可决系数为相对说来,人均寿命由成人识字率作出解释的比重更大一些为了研究浙江省财政预算收入与全省生产总值的关系,由浙江省统计年鉴得到以下数据:表浙江省财政预算收入与全省生产总值数据的显着性,用规范的形式写出估计检验结果,并解释所估计参数的经济意义(2)如果2011 年,全省生产总值为32000 亿元,比上年增长%,利用计量经济模型对浙江省2011 年的财政预算收入做出点预测和区间预测(3)建立浙江省财政预算收入对数与全省生产总值对数的计量经济模型,. 估计模型的参数,检验模型的显着性,并解释所估计参数的经济意义【练习题参考解答】建议学生独立完成由12对观测值估计得消费函数为:(1)消费支出C的点预测值;(2)在95%的置信概率下消费支出C平均值的预测区间。
计量经济学(庞皓_第二版)课后习题及答案(1)

Yf 个别值置信度 95%的预测区间为:
∑ ^
^
Yf m tα 2 σ
1+ 1 + (X f − X )2
n
xi2
即
480.884 m 2.228× 7.5325× 1+ 1 + 7195337.357
12 3293728.494
= 480.884 m 30.3381 (亿元)
练习题 2.3 参考解答 计算中国货币供应量(以货币与准货币 M2 表示)与国内生产总值(GDP)的相关系数为
Yˆ2005 = −3.611151 + 0.134582 × 3600 = 480.884 (亿元)
区间预测:
∑ 平均值为:
xi2
=
σ
2 x
(n
−1)
=
587.26862
× (12
−1)
=
3793728.494
( X f 1 − X )2 = (3600 − 917.5874)2 = 7195337.357
测区间(α = 0.05 )。
2.2 某企业研究与发展经费与利润的数据(单位:万元)列于下表: 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
研究与发展经费 10 10 8 8 8 12 12 12 11 11 利 润 额 100 150 200 180 250 300 280 310 320 300
Yˆi = 6.017832 − 0.070414 × 80 = 0.384712 (次)
练习题 2.7 参考解答
美国软饮料公司的广告费用 X 与销售数量 Y 的散点图为
说明美国软饮料公司的广告费用 X 与销售数量 Y 正线性相关,可建立线性回归模型
计量经济学庞皓第二版第五章习题答案

第五章习题答案练习题5.1参考答案(1)因为222()i i Var u X σ=,所以22()i i f X X =,所以取221i iW X =,用2i W 乘给定模型两端,得312322221i i iii i i Y X u X X X X βββ=+++ 上述模型的随机误差项的方差为一固定常数,即22221()()i i i iu Var Var u X X σ==(2)根据加权最小二乘法,可得修正异方差后的参数估计式为***12233ˆˆˆY X X βββ=--()()()()()()()***2****22232322322*2*2**2223223ˆii i i i i i i i i i i i i i i i iW y x W x W y x W x x W x W x W x x β-=-∑∑∑∑∑∑∑()()()()()()()***2****23222222332*2*2**2223223ˆii i i i i i i i i i i i i i i i i W y x W x W y x W x x W x W x W x x β-=-∑∑∑∑∑∑∑其中22232***23222,,i ii ii i iiiW X W X W Y XXYWWW ===∑∑∑∑∑∑******222333i i i i i x X X x X X y Y Y =-=-=-练习题5.2参考答案(1)模型的估计该模型样本回归估计式的书写形式为:22ˆ9.347522+0.637069t= (2.569104) (32.00881)R =0.946423 R =0.945500 F=1024.564 DW=1.790431i i Y X =(2)模型的检验1.Goldfeld-Quandt 检验。
a.将样本X 按递增顺序排序,去掉中间1/4的样本,再分为两个部分的样本,即1222n n ==。
(2020年7月整理)庞皓版计量经济学课后习题答案.doc

第二章练习题参考解答练习题资料来源:《深圳统计年鉴2002》,中国统计出版社(1)建立深圳地方预算内财政收入对GDP的回归模型;(2)估计所建立模型的参数,解释斜率系数的经济意义;(3)对回归结果进行检验;(4)若是2005年年的国内生产总值为3600亿元,确定2005年财政收入的预测值和预测区间(0.05α=)。
2.2某企业研究与发展经费与利润的数据(单位:万元)列于下表:1995 1996 1997 1998 1999 2000 2001 2002 2003 2004研究与发展经费 10 10 8 8 8 12 12 12 11 11利润额 100 150 200 180 250 300 280 310 320 300 分析企业”研究与发展经费与利润额的相关关系,并作回归分析。
2.3为研究中国的货币供应量(以货币与准货币M2表示)与国内生产总值(GDP)的相互依存关系,分析表中1990年—2001年中国货币供应量(M2)和国内生产总值(GDP)的有关数据:年份货币供应量(亿元)M2国内生产总值(亿元)GDP1990 1529.31 8598.41991 19349.92 1662.51992 25402.2 26651.91993 34879.8 34560.51994 46923.5 46670.01995 60750.5 57494.91996 76094.9 66850.51997 90995.3 73142.71998 104498.5 76967.21999 119897.9 80579.42000 134610.3 88228.12001158301.994346.4资料来源:《中国统计年鉴2002》,第51页、第662页,中国统计出版社对货币供应量与国内生产总值作相关分析,并说明分析结果的经济意义。
2.4表中是16支公益股票某年的每股帐面价值和当年红利:根据上表资料:(1)建立每股帐面价值和当年红利的回归方程; (2)解释回归系数的经济意义;(3)若序号为6的公司的股票每股帐面价值增加1元,估计当年红利可能为多少?2.5美国各航空公司业绩的统计数据公布在《华尔街日报1999年年鉴》(The Wall Street 1。
庞皓第三版计量经济学练习题及参考解答(完整版)

百户拥有 家用汽车量(辆) Y 37.71 20.62 23.32 18.60 19.62 11.15 11.24
北 京 天 津 河 北 山 西 内蒙古 辽 宁 吉 林
黑龙江 上 海 江 苏 浙 江 安 徽 福 建 江 西 山 东 河 南 湖 北 湖 南 广 东 广 西 海 南 重 庆 四 川 贵 州 云 南 西 藏 陕 西 甘 肃 青 海 宁 夏 新 疆
5 6 7 8 9 10 11 12 根据上表资料:
2.56 3.54 3.89 4.37 4.82 5.66 6.11 6.23
1678 1640 1620 1576 1566 1498 1425 1419
(1)建立建筑面积与建造单位成本的回归方程; (2)解释回归系数的经济意义; (3)估计当建筑面积为 4.5 万平方米时,对建造的平均单位成本作区间预测。
650 m 2.23 5.4772 1 5.0833 650 m 30.1250
2.4 假设某地区住宅建筑面积与建造单位成本的有关资料如表 2.11: 表 2.11 建筑地编号 1 2 3 4 某地区住宅建筑面积与建造单位成本数据 建筑面积(万平方米)X 0.6 0.95 1.45 2.1 建造单位成本(元/平方米)Y 1860 1750 1710 1690
(1)消费支出 C 的点预测值;
(2)在 95%的置信概率下消费支出 C 平均值的预测区间。 (3)在 95%的置信概率下消费支出 C 个别值的预测区间。
【练习题 2.3 参考解答】 (1)当 X f 1000 时,消费支出 C 的点预测值;
ˆ 50 0.6 X =50+0.6*1000=650 C i i
e2 ˆ2 i n 1 ˆ
2
《计量经济学》第五章习题及参考答案.doc

第五章经典单方程计量经济学模型:专门问题一、内容提要本章主要讨论了经典单方程回归模型的几个专门题。
第一个专题是虚拟解释变量问题。
虚拟变量将经济现象中的一些定性因素引入到可以进行定量分析的回归模型,拓展了回归模型的功能。
本专题的重点是如何引入不同类型的虚拟变量来解决相关的定性因素影响的分析问题,主要介绍了引入虚拟变量的加法方式、乘法方式以及二者的组合方式。
在引入虚拟变量时有两点需要注意,一是明确虚拟变量的对比基准,二是避免出现“虚拟变量陷阱”。
第二个专题是滞后变量问题。
滞后变量包括滞后解释变量与滞后被解释变量,根据模型中所包含滞后变量的类别又可将模型划分为自回归分布滞后模型与分布滞后模型、自回归模型等三类。
本专题重点阐述了产生滞后效应的原因、分布滞后模型估计时遇到的主要困难、分布滞后模型的修正估计方法以及自回归模型的估计方法。
如对分布滞后模型可采用经验加权法、Almon多项式法、Koyck方法来减少滞项的数目以使估计变得更为可行。
而对自回归模型,则根据作为解释变量的滞后被解释变量与模型随机扰动项的相关性的不同,采用工具变量法或OLS 法进行估计。
由于滞后变量的引入,回归模型可将静态分析动态化,因此,可通过模型参数来分析解释变量对被解释变量影响的短期乘数和长期乘数。
第三个专题是模型设定偏误问题。
主要讨论当放宽“模型的设定是正确的”这一基本假定后所产生的问题及如何解决这些问题。
模型设定偏误的类型包括解释变量选取偏误与模型函数形式选取取偏误两种类型,前者又可分为漏选相关变量与多选无关变量两种情况。
在漏选相关变量的情况下,OLS估计量在小样本下有偏,在大样本下非一致;当多选了无关变量时,OLS估计量是无偏且一致的,但却是无效的;而当函数形式选取有问题时,OLS估计量的偏误是全方位的,不仅有偏、非一致、无效率,而且参数的经济含义也发生了改变。
在模型设定的检验方面,检验是否含有无关变量,可用传统的t检验与F检验进行;检验是否遗漏了相关变量或函数模型选取有错误,则通常用一般性设定偏误检验(RESET检验)进行。
计量经济学(庞浩)第五章练习题参考解答说课讲解

第五章练习题参考解答练习题5.1 设消费函数为i i i i u X X Y +++=33221βββ式中,i Y 为消费支出;i X 2为个人可支配收入;i X 3为个人的流动资产;i u 为随机误差项,并且222)(,0)(i i i X u Var u E σ==(其中2σ为常数)。
试回答以下问题:(1)选用适当的变换修正异方差,要求写出变换过程;(2)写出修正异方差后的参数估计量的表达式。
5.2 根据本章第四节的对数变换,我们知道对变量取对数通常能降低异方差性,但须对这种模型的随机误差项的性质给予足够的关注。
例如,设模型为u X Y 21ββ=,对该模型中的变量取对数后得如下形式u X Y ln ln ln ln 21++=ββ(1)如果u ln 要有零期望值,u 的分布应该是什么? (2)如果1)(=u E ,会不会0)(ln =u E ?为什么? (3)如果)(ln u E 不为零,怎样才能使它等于零?5.3 由表中给出消费Y 与收入X 的数据,试根据所给数据资料完成以下问题: (1)估计回归模型u X Y ++=21ββ中的未知参数1β和2β,并写出样本回归模型的书写格式;(2)试用Goldfeld-Quandt 法和White 法检验模型的异方差性; (3)选用合适的方法修正异方差。
Y X Y X Y X 55 80 152 220 95 140 65 100 144 210 108 145 70 85 175 245 113 150 801101802601101607912013519012516584115140205115180981301782651301859514019127013519090125137230120200759018925014020574105558014021011016070851522201131507590140225125165651001372301081457410514524011518080110175245140225841151892501202007912018026014524090125178265130185981301912705.4由表中给出1985年我国北方几个省市农业总产值,农用化肥量、农用水利、农业劳动力、每日生产性固定生产原值以及农机动力数据,要求:(1)试建立我国北方地区农业产出线性模型;(2)选用适当的方法检验模型中是否存在异方差;(3)如果存在异方差,采用适当的方法加以修正。
计量经济学第三版(庞浩)版课后答案全

第二章之五兆芳芳创作(1)①对于浙江省预算收入与全省生产总值的模型,用Eviews阐发结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/03/14 Time: 17:00Sample (adjusted): 1 33Included observations: 33 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.XCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)③关于浙江省财务预算收入与全省生产总值的模型,查验模型的显著性:1)可决系数为0.983702,说明所建模型整体上对样本数据拟合较好.2)对于回归系数的t查验:t(β2)=43.25639>t0.025(31)=2.0395,对斜率系数的显著性查验标明,全省生产总值对财务预算总收入有显著影响.④用标准形式写出查验结果如下:(0.004072) (39.08196)t= (43.25639) (-3.948274)R2=0.983702 F=1871.115 n=33⑤经济意义是:全省生产总值每增加1亿元,财务预算总收入增加0.176124亿元.(2)当x=32000时,①进行点预测,由上可知Y=0.176124X—154.3063,代入可得:②进行区间预测:先由Eviews阐发:由上表可知,当Xf=32000时,将相关数据代入计较得到:5481.6617—2.0395x175.2325x√1/33+1852223.473/675977068 .2≤即Yf的置信区间为(5481.6617—64.9649, 5481.6617+64.9649)(3) 对于浙江省预算收入对数与全省生产总值对数的模型,由Eviews阐发结果如下:Dependent Variable: LNYMethod: Least SquaresDate: 12/03/14 Time: 18:00Sample (adjusted): 1 33Included observations: 33 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.LNXCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)③关于浙江省财务预算收入与全省生产总值的模型,查验其显著性:1)可决系数为0.963442,说明所建模型整体上对样本数据拟合较好.2)对于回归系数的t查验:t(β2)=28.58268>t0.025(31)=2.0395,对斜率系数的显著性查验标明,全省生产总值对财务预算总收入有显著影响.④经济意义:全省生产总值每增长1%,财务预算总收入增长0.980275%(1)对修建面积与建造单位成本模型,用Eviews阐发结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/01/14 Time: 12:40Sample: 1 12Included observations: 12Variable Coefficient Std. Error t-Statistic Prob.XCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)由上可得:修建面积与建造成本的回归方程为:(2)经济意义:修建面积每增加1万平方米,修建单位成本每平方米削减64.18400元.(3)②再进行区间估量:用Eviews阐发:由上表可知,当Xf=4.5时,将相关数据代入计较得到:1556.647—2.228x31.73600x√1/12+43.5357/0.95387843≤即Yf的置信区间为(1556.647—478.1231, 1556.647+478.1231)第三章1)对出口货色总额计量经济模型,用Eviews阐发结果如下::Dependent Variable: YMethod: Least SquaresDate: 12/01/14 Time: 20:25Sample: 1994 2011Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.X2X3CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid8007316. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)①由上可知,模型为:②对模型进行查验:1)可决系数是0.985838,修正的可决系数为0.983950,说明模型对样本拟合较好2)F查验,F=522.0976>F(2,15)=4.77,回归方程显著3)t查验,t统计量辨别为X2的系数对应t值为10.58454,大于t(15)=2.131,系数是显著的,X3的系数对应t值为1.928512,小于t(15)=2.131,说明此系数是不显著的.(2)对于对数模型,用Eviews阐发结果如下:Dependent Variable: LNYMethod: Least SquaresDate: 12/01/14 Time: 20:25Sample: 1994 2011Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.LNX2LNX3CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)①由上可知,模型为:LNY=-20.52048+1.564221 LNX2+1.760695 LNX3②对模型进行查验:1)可决系数是0.986295,修正的可决系数为0.984467,说明模型对样本拟合较好.2)F查验,F=539.7364> F(2,15)=4.77,回归方程显著.3)t查验,t统计量辨别为-3.777363,17.57789,2.581229,均大于t(15)=2.131,所以这些系数都是显著的.(3)①(1)式中的经济意义:产业增加1亿元,出口货色总额增加0.135474亿元,人民币汇率增加1,出口货色总额增加18.85348亿元.②(2)式中的经济意义:产业增加额每增加1%,出口货色总额增加1.564221%,人民币汇率每增加1%,出口货色总额增加1.760695%(1)对家庭书刊消费对家庭月平均收入和户主受教育年数计量模型,由Eviews阐发结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/01/14 Time: 20:30Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.XTCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)②对模型进行查验:1)可决系数是0.951235,修正的可决系数为0.944732,说明模型对样本拟合较好.2)F查验,F=539.7364> F(2,15)=4.77,回归方程显著.3)t查验,t统计量辨别为2.944186,10.06702,均大于t(15)=2.131,所以这些系数都是显著的.③经济意义:家庭月平均收入增加1元,家庭书刊年消费支出增加0.086450元,户主受教育年数增加1年,家庭书刊年消费支出增加52.37031元.(2)用Eviews阐发:①Dependent Variable: YMethod: Least SquaresDate: 12/01/14 Time: 22:30Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.TCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)②Dependent Variable: XMethod: Least SquaresDate: 12/01/14 Time: 22:34Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.TCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid4290746. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)以上辨别是y与T,X与T的一元回归模型辨别是:(3)对残差进行模型阐发,用Eviews阐发结果如下:Dependent Variable: E1Method: Least SquaresDate: 12/03/14 Time: 20:39Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.E2CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)模型为:(3)由上可知,β2与α2的系数是一样的.回归系数与被解释变量的残差系数是一样的,它们的变更纪律是一致的.第五章(1)由Eviews软件阐发得:Dependent Variable: YMethod: Least SquaresDate: 12/10/14 Time: 16:00Sample: 1 31Included observations: 31Variable Coefficient Std. Error t-Statistic Prob.XCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid12220196 Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)由上表可知,2007年我国农村居民家庭人均消费支出(x)对人均纯收入(y)的模型为:(2)①由图形法查验由上图可知,模型可能存在异方差.②Goldfeld-Quanadt查验1)定义区间为1-12时,由软件阐发得:Dependent Variable: Y1Method: Least SquaresDate: 12/10/14 Time: 11:34Sample: 1 12Included observations: 12Variable Coefficient Std. Error t-Statistic Prob.X1CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid1772245. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)得∑e1i2=1772245.2)定义区间为20-31时,由软件阐发得:Dependent Variable: Y1Method: Least SquaresDate: 12/10/14 Time: 16:36Sample: 20 31Included observations: 12Variable Coefficient Std. Error t-Statistic Prob.X1CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid7909670. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)得∑e2i2=7909670.3)按照Goldfeld-Quanadt查验,F统计量为:在α=0.05水平下,份子分母的自由度均为10,查散布表得临界值F0.05(10,10)=2.98,因为F=4.4631> F0.05(10,10)=2.98,所以拒绝原假定,此查验标明模型存在异方差.(3)1)采取WLS法估量进程中,①用权数w1=1/X,成立回归得:Dependent Variable: YMethod: Least SquaresDate: 12/09/14 Time: 11:13Sample: 1 31Included observations: 31Weighting series: W1Variable Coefficient Std. Error t-Statistic Prob.XCWeighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid8352726. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)Unweighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Sum squared resid14484289 Durbin-Watson stat对此模型进行White查验得:Heteroskedasticity Test: WhiteF-statistic Prob. F(2,28)Obs*R-squared Prob. Chi-Square(2)Scaled explained SS Prob. Chi-Square(2)Test Equation:Dependent Variable: WGT_RESID^2Method: Least SquaresDate: 12/10/14 Time: 21:13Sample: 1 31Included observations: 31Collinear test regressors dropped from specificationVariable Coefficient Std. Error t-Statistic Prob.C1045682.WGT^21173622.X*WGT^2R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid 1.40E+13 Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)从上可知,nR2=0.649065,比较计较的统计量的临界值,因为nR2=0.649065<0.05(2)=5.9915,所以接受原假定,该模型消除了异方差.估量结果为:t=(11.97157)(-0.972298)②用权数w2=1/x2,用回归阐发得:Dependent Variable: YMethod: Least SquaresDate: 12/09/14 Time: 21:08Sample: 1 31Included observations: 31Weighting series: W2Variable Coefficient Std. Error t-Statistic Prob.XCWeighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid6320554. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)Unweighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Sum squared resid19268334Durbin-Watson stat对此模型进行White查验得:Heteroskedasticity Test: WhiteF-statistic Prob. F(3,27)Obs*R-squared Prob. Chi-Square(3)Scaled explained SS Prob. Chi-Square(3)Test Equation:Dependent Variable: WGT_RESID^2Method: Least SquaresDate: 12/10/14 Time: 21:29Sample: 1 31Included observations: 31Variable Coefficient Std. Error t-Statistic Prob.CWGT^22240181.X^2*WGT^2X*WGT^2R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid 5.10E+12 Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)从上可知,nR2=0.999322,比较计较的统计量的临界值,因为nR2=0.999322<0.05(2)=5.9915,所以接受原假定,该模型消除了异方差.估量结果为:t=(10.70922)(-1.841272)③用权数w3=1/sqr(x),用回归阐发得:Dependent Variable: YMethod: Least SquaresDate: 12/09/14 Time: 21:35Sample: 1 31Included observations: 31Weighting series: W3Variable Coefficient Std. Error t-Statistic Prob.XCWeighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid9990985. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)Unweighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Sum squared resid12717412 Durbin-Watson stat对此模型进行White查验得:Heteroskedasticity Test: WhiteF-statistic Prob. F(2,28)Obs*R-squared Prob. Chi-Square(2)Scaled explained SS Prob. Chi-Square(2)Test Equation:Dependent Variable: WGT_RESID^2Method: Least SquaresDate: 12/09/14 Time: 20:36Sample: 1 31Included observations: 31Collinear test regressors dropped from specificationVariable Coefficient Std. Error t-Statistic Prob.C1212308.2141958.WGT^21301839.X^2*WGT^2R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid 2.17E+13 Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)从上可知,nR2=0.911022,比较计较的统计量的临界值,因为nR2=0.911022<0.05(2)=5.9915,所以接受原假定,该模型消除了异方差.估量结果为:t=(13.52507)(-0.151390)经过查验发明,用权数w1的效果最好,所以综上可知,即修改后的结果为:t=(11.97157)(-0.972298)第六章(1)成立居民收入-消费模型,用Eviews阐发结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/20/14 Time: 14:22Sample: 1 19Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.XCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)所得模型为:Se=(0.012877)(12.39919)t=(53.62068)(6.446390)(2)1)查验模型中存在的问题①做出残差图如下:残差的变动有系统模式,连续为正和连续为负,标明残差项存在一阶自相关.②该回归方程可决系数较高,回归系数均显著.对样本量为19,一个解释变量的模型,5%的显著水平,查DW统计表可知,dL=1.180,dU=1.401,模型中DW=0.574663,<dL,显然模型中有自相关.③对模型进行BG查验,用Eviews阐发结果如下:Breusch-Godfrey Serial Correlation LM Test:F-statistic Prob. F(2,15)Obs*R-squared Prob. Chi-Square(2)Test Equation:Dependent Variable: RESIDMethod: Least SquaresDate: 12/20/14 Time: 15:03Sample: 1 19Included observations: 19Presample missing value lagged residuals set to zero.Variable Coefficient Std. Error t-Statistic Prob.XCRESID(-1)RESID(-2)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)如上表显示,LM=TR2=7.425088,其p值为0.0244,标明存在自相关.2)对模型进行处理:①采纳狭义差分法a)为估量自相关系数ρ.对et进行滞后一期的自回归,用EViews 阐发结果如下:Dependent Variable: EMethod: Least SquaresDate: 12/20/14 Time: 15:04Sample (adjusted): 2 19Included observations: 18 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.E(-1)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.Durbin-Watson statb)对原模型进行狭义差分回归,用Eviews进行阐发所得结果如下:Dependent Variable: Y-0.657352*Y(-1)Method: Least SquaresDate: 12/20/14 Time: 15:04Sample (adjusted): 2 19Included observations: 18 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.CX-0.657352*X(-1)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)由上图可知回归方程为:Yt*=35.97761+0.668695Xt*Se=(8.103546)(0.020642)t=(4.439737)(32.39512)由于使用了狭义差分数据,样本容量削减了1个,为18个.查5%显著水平的DW统计表可知,dL=1.158,dU=1.391模型中DW=1,830746,du<DW<4- dU,说明在5%的显著水平下狭义差分模型中已无自相关.可决系数R2,t,F统计量也均达到理想水平.由此最终的消费模型为:Yt=104.9987+0.668695Xt②用科克伦-奥克特迭代法,用EVIews 阐发结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/20/14 Time: 15:15Sample (adjusted): 2 19Included observations: 18 after adjustmentsConvergence achieved after 5 iterationsVariable Coefficient Std. Error t-Statistic Prob.CXAR(1)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)Inverted AR Roots .63所得方程为:(3)经济意义:人均实际收入每增加1元,平均说来人均时间消费支出将增加0.669262元.(1)针对对数模型,用Eviews阐发结果如下:Dependent Variable: LNYMethod: Least SquaresDate: 12/27/14 Time: 16:13Sample: 1980 2000Included observations: 21Variable Coefficient Std. Error t-Statistic Prob.LNXCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)所得模型为:se=(0.038897) (0.241025)t=(24.45123) (9.007529)2)查验模型的自相关性该回归方程可决系数较高,回归系数均显著.对样本量为21,一个解释变量的模型,5%的显著水平,查DW统计表可知,dL=1.221,dU=1.420,模型中DW=1.159788<dL,显然模型中有自相关.(2)用狭义差分法处理模型:1)为估量自相关系数ρ.对et进行滞后一期的自回归,用EViews 阐发结果如下:Dependent Variable: EMethod: Least SquaresDate: 12/27/14 Time: 16:18Sample (adjusted): 1982 2000Included observations: 19 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.E(-1)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid2848090. Schwarz criterionLog likelihood Hannan-Quinn criter.Durbin-Watson stat2)对原模型进行狭义差分回归,用Eviews进行阐发所得结果如下:Dependent Variable: Y+0.012872*Y(-1)Method: Least SquaresDate: 12/27/14 Time: 21:06Sample (adjusted): 1981 2000Included observations: 20 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.CX+0.012872*X(-1)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid2882022. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)由上图可知回归方程为:Yt*=-104.9645+6.653757Xt*Se=(197.7928)( 0.304157)t=(-0.530679)( 21.87605)由于使用了狭义差分数据,样本容量削减了1个,为20个.查5%显著水平的DW统计表可知,dL=1.201,dU=1.411模型中DW=1.8222596,du<DW<4- dU,说明在5%的显著水平下狭义差分模型中已无自相关.可决系数R2,t,F统计量也均达到理想水平.由此最终的模型为:(3)对于此模型,用Eviews阐发结果如下:Dependent Variable: LNY1Method: Least SquaresDate: 12/27/14 Time: 22:16Sample (adjusted): 1981 2000Included observations: 20 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.LNX1CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)由题目可知,此模型样本容量为20,查5%显著水平的DW统计表可知,dL=1.201,dU=1.411模型中DW=1.590363,du<DW<4- dU,说明在5%的显著水平此模型中无自相关.可决系数R2,t,F统计量也均达到理想水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章练习题参考解答练习题5.1 设消费函数为i i i i u X X Y +++=33221βββ式中,i Y 为消费支出;i X 2为个人可支配收入;i X 3为个人的流动资产;i u 为随机误差项,并且222)(,0)(i i i X u Var u E σ==(其中2σ为常数)。
试回答以下问题:(1)选用适当的变换修正异方差,要求写出变换过程;(2)写出修正异方差后的参数估计量的表达式。
5.2 根据本章第四节的对数变换,我们知道对变量取对数通常能降低异方差性,但须对这种模型的随机误差项的性质给予足够的关注。
例如,设模型为u X Y 21ββ=,对该模型中的变量取对数后得如下形式u X Y ln ln ln ln 21++=ββ(1)如果u ln 要有零期望值,u 的分布应该是什么? (2)如果1)(=u E ,会不会0)(ln =u E ?为什么? (3)如果)(ln u E 不为零,怎样才能使它等于零?5.3 由表中给出消费Y 与收入X 的数据,试根据所给数据资料完成以下问题: (1)估计回归模型u X Y ++=21ββ中的未知参数1β和2β,并写出样本回归模型的书写格式;(2)试用Goldfeld-Quandt 法和White 法检验模型的异方差性; (3)选用合适的方法修正异方差。
Y X Y X Y X 55 80 152 220 95 140 65 100 144 210 108 145 70 85 175 245 113 150 801101802601101607912013519012516584115140205115180981301782651301859514019127013519090125137230120200759018925014020574105558014021011016070851522201131507590140225125165651001372301081457410514524011518080110175245140225841151892501202007912018026014524090125178265130185981301912705.4由表中给出1985年我国北方几个省市农业总产值,农用化肥量、农用水利、农业劳动力、每日生产性固定生产原值以及农机动力数据,要求:(1)试建立我国北方地区农业产出线性模型;(2)选用适当的方法检验模型中是否存在异方差;(3)如果存在异方差,采用适当的方法加以修正。
地区农业总产值农业劳动力灌溉面积化肥用量户均固定农机动力(亿元)(万人)(万公顷)(万吨)资产(元)(万马力)北京19.6490.133.847.5394.3435.3天津14.495.234.95 3.9567.5450.7河北149.91639 .0357.2692.4706.892712.6山西55.07562.6107.931.4856.371118.5内蒙古60.85462.996.4915.41282.81641.7辽宁87.48588.972.461.6844.741129.6吉林73.81399.769.6336.92576.81647.6黑龙江104.51425.367.9525.81237.161305.8山东276.552365.6456.55152.35812.023127.9河南200.022557.5318.99127.9754.782134.5陕西68.18884.2117.936.1607.41764新疆49.12256.1260.4615.11143.67523.35.5表中的数据是美国1988研究与开发(R&D)支出费用(Y)与不同部门产品销售量(X)。
试根据资料建立一个回归模型,运用Glejser方法和White方法检验异方差,由此决定异方差的表现形式并选用适当方法加以修正。
单位:百万美元工业群体销售量X R&D费用Y利润Z1.容器与包装6375.362.5185.12.非银行业金融11626.492.91569.53.服务行业14655.1178.3276.84.金属与采矿21869.2258.42828.15.住房与建筑26408.3494.7225.96.一般制造业32405.610833751.97.休闲娱乐35107.71620.62884.18.纸张与林木产品40295.4421.74645.79.食品70761.6509.25036.410.卫生保健80552.86620.113869.911.宇航952943918.64487.812.消费者用品101314.31595.310278.913.电器与电子产品116141.36107.58787.314.化工产品122315.74454.116438.815.五金141649.93163.99761.416.办公设备与电算机175025.813210.719774.517.燃料230614.51703.822626.618.汽车2935439528.218415.45.6 由表中给出的收入和住房支出样本数据,建立住房支出模型。
假设模型为i i i u X Y ++=21ββ,其中Y 为住房支出,X 为收入。
试求解下列问题: (1)用OLS 求参数的估计值、标准差、拟合优度(2)用Goldfeld-Quandt 方法检验异方差(假设分组时不去掉任何样本值)(3)如果模型存在异方差,假设异方差的形式是222i i X σσ=,试用加权最小二乘法重新估计1β和2β的估计值、标准差、拟合优度。
5.7 表中给出1969年20个国家的股票价格(Y )和消费者价格年百分率变化(X )的一个横截面数据。
国家 股票价格变化率%Y消费者价格变化率%X1.澳大利亚 5 4.32.奥地利 11.1 4.63.比利时 3.2 2.44.加拿大 7.9 2.45.智利 25.5 26.4 6.丹麦 3.8 4.27.芬兰 11.1 5.58.法国9.9 4.7 9.德国 13.3 2.2 10.印度 1.5 4 11.爱尔兰 6.4 4 12.以色列 8.9 8.4 13.意大利 8.1 3.3 14.日本 13.5 4.7 15.墨西哥 4.7 5.2 16.荷兰 7.5 3.6 17.新西兰 4.7 3.6 18.瑞典 8 4 19.英国 7.5 3.9 20.美国92.1试根据资料完成以下问题:(1)将Y 对X 回归并分析回归中的残差;(2)因智利的数据出现了异常,去掉智利数据后,重新作回归并再次分析回归中的残差; (3)如果根据第1条的结果你将得到有异方差性的结论,而根据第2条的结论你又得到相反的结论,对此你能得出什么样的结论?5.8 表中给出的是1998年我国重要制造业销售收入与销售利润的数据资料试完成以下问题:(1)求销售利润岁销售收入的样本回归函数,并对模型进行经济意义检验和统计检验; (2)分别用图形法、Glejser 方法、White 方法检验模型是否存在异方差; (3)如果模型存在异方差,选用适当的方法对异方差性进行修正。
5.9 下表所给资料为1978年至2000年四川省农村人均纯收入t X 和人均生活费支出tY 的数据。
四川省农村人均纯收入和人均生活费支出 单位:元/人时间农村人均纯收入农村人均生活费时间农村人均纯收入农村人均生活费X 支出Y X 支出Y1978 127.1 120.3 1990 557.76 509.161979 155.9 142.1 1991 590.21 552.391980 187.9 159.5 1992 634.31 569.461981 220.98 184.0 1993 698.27 647.431982 255.96 208.23 1994 946.33 904.281983 258.39 231.12 1995 1158.29 1092.911984 286.76 251.83 1996 1459.09 1358.031985 315.07 276.25 1997 1680.69 1440.481986 337.94 310.92 1998 1789.17 1440.771987 369.46 348.32 1999 1843.47 1426.061988 448.85 426.47 2000 1903.60 1485.341989 494.07 473.59数据来源:《四川统计年鉴》2001年。
(1)求农村人均生活费支出对人均纯收入的样本回归函数,并对模型进行经济意义检验和统计检验;(2)选用适当的方法检验模型中是否存在异方差;(3)如果模型存在异方差,选用适当的方法对异方差性进行修正。
5.10 在题5.9中用的是时间序列数据,而且没有剔除物价上涨因素。
试分析如果剔除物价上涨因素,即用实际可支配收入和实际消费支出,异方差的问题是否会有所改善?由于缺乏四川省从1978年起的农村居民消费价格定基指数的数据,以1978年—2000年全国商品零售价格定基指数(以1978年为100)代替,数据如下表所示:数据来源:《中国统计年鉴2001》练习题参考解答练习题5.1 参考解答(1)因为22()i i f X X =,所以取221i iW X =,用i W 乘给定模型两端,得312322221i i i i i i iY X u X X X X βββ=+++ 上述模型的随机误差项的方差为一固定常数,即 22221()()i i i iu Var Var u X X σ== (2)根据加权最小二乘法及第四章里(4.5)和(4.6)式,可得修正异方差后的参数估计式为***12233ˆˆˆY X X βββ=-- ()()()()()()()***2****22232322322*2*2**2223223ˆi i i i i i i i i i i i ii ii i iW y x W x W y x W x x W xW xW x xβ-=-∑∑∑∑∑∑∑()()()()()()()***2****23222222332*2*2**2223223ˆii i i i i i i i i i i ii ii i iW y x W x W y x W x x WxWxWx xβ-=-∑∑∑∑∑∑∑其中22232***23222,,i ii ii iiiiW X W X W Y XXYWWW===∑∑∑∑∑∑******222333i i i i i x X X x X X y Y Y =-=-=-练习题5.3参考解答(1)该模型样本回归估计式的书写形式为2ˆ9.34750.6371(2.5691)(32.0088)0.9464,..9.0323,1023.56i iY X R s e F =+===(2)首先,用Goldfeld-Quandt 法进行检验。