沸石分子筛
沸石分子筛的作用

沸石分子筛的作用沸石分子筛是一种常用的吸附剂和催化剂,具有广泛的应用领域。
它的作用主要体现在以下几个方面:1. 吸附作用沸石分子筛具有很大的比表面积和丰富的微孔结构,因此能够吸附并固定一些分子或离子。
在工业生产中,沸石分子筛被广泛应用于气体、液体和固体的吸附分离过程中。
例如,在石油炼制过程中,沸石分子筛可以吸附和分离石脑油中的硫化物和酸性物质,提高燃料的质量。
此外,沸石分子筛还可以用于水处理领域,去除水中的重金属离子和有机污染物。
2. 分子筛作用沸石分子筛的微孔结构可以通过筛选分子大小和形状来实现分离和选择性吸附。
沸石分子筛中的微孔大小通常在0.3-10纳米之间,可以限制大分子的进入,只允许小分子通过。
这种分子筛作用使得沸石分子筛在石油化工、化学、医药等领域具有重要应用。
例如,在石油加工过程中,沸石分子筛可以实现对不同碳链长度的烷烃的分离,从而得到具有不同用途的产品。
3. 催化作用沸石分子筛具有良好的酸碱性质,可以作为催化剂用于各种化学反应中。
例如,沸石分子筛可以用作催化裂化反应中的催化剂,将重质石油馏分转化为轻质燃料。
此外,沸石分子筛还可以用于催化重整反应、异构化反应、氧化反应等。
沸石分子筛的催化作用可以提高反应速率、改变反应产物分布和提高产品的选择性。
4. 离子交换作用沸石分子筛中的阳离子可以与外界溶液中的阴离子进行交换,从而实现离子的选择性吸附和分离。
这种离子交换作用使得沸石分子筛可以用于水处理、环境修复等领域。
例如,沸石分子筛可以用于处理含有铵离子的废水,将其中的铵离子与沸石中的钠离子交换,从而实现对铵离子的去除。
沸石分子筛在吸附、分子筛、催化和离子交换等方面具有重要的作用。
它的广泛应用在很大程度上促进了化工、环保、能源等领域的发展。
随着科学技术的不断进步,沸石分子筛的性能和应用领域还将不断拓展,为人们的生产和生活提供更多的便利和效益。
沸石分子筛吸附

沸石分子筛吸附1. 引言沸石分子筛是一种具有微孔结构的天然或合成矿物,由于其独特的孔隙结构和化学性质,广泛应用于吸附分离、催化反应和离子交换等领域。
本文将详细介绍沸石分子筛吸附的原理、应用和优势。
2. 原理沸石分子筛是一种多孔材料,其结构由硅氧四面体和铝氧六面体组成的三维网络构成。
沸石分子筛的孔隙大小可以根据应用需求进行调控,通常在纳米尺度范围内。
这种孔隙结构使得沸石分子筛具有较大的比表面积和高度的孔隙容积,有利于吸附分子。
沸石分子筛的吸附原理是通过孔道中的静电作用、范德华力和电子云效应等相互作用力,将目标物质吸附在其表面。
静电作用是指沸石分子筛表面带有正负电荷,与目标物质之间的电荷相互作用。
范德华力是指沸石分子筛表面的分子与目标物质之间的非共价作用力。
电子云效应是指目标物质中的电子云与沸石分子筛孔道中的电子云之间的相互作用。
3. 应用3.1 吸附分离沸石分子筛在吸附分离领域有广泛应用。
由于其孔隙结构的可调控性,可以选择性地吸附分离不同大小、形状和极性的分子。
例如,沸石分子筛可以用于去除有机溶剂中的水分、去除废气中的有害物质、分离石油中的杂质等。
3.2 催化反应沸石分子筛也被广泛应用于催化反应中。
其孔隙结构可以提供大量的活性位点,促进反应物分子的吸附和反应发生。
沸石分子筛还可以调节反应物分子的扩散速率,提高反应的选择性和效率。
例如,沸石分子筛可以用于催化裂化、催化重整、催化氧化等反应。
3.3 离子交换由于沸石分子筛具有高度的孔隙容积和可调控的孔隙大小,可用于离子交换。
沸石分子筛表面带有正负电荷,可以吸附和释放离子。
通过调节沸石分子筛的孔隙结构和表面电荷,可以实现对特定离子的选择性吸附和分离。
离子交换广泛应用于水处理、废水处理、离子分离等领域。
4. 优势沸石分子筛具有以下优势:•高度的比表面积和孔隙容积,有利于吸附分子。
•可调控的孔隙大小和表面电荷,实现对特定分子的选择性吸附和分离。
•良好的热稳定性和机械强度,能够在高温和高压条件下使用。
沸石和分子筛

沸石和分子筛
沸石是一种多孔性结构的碳素材料,其中含有大量的碳纳米管,有效的空隙结构使得沸石具有良好的表面积和吸附性能。
相比传统的催化剂而言,由于沸石的孔隙分布较为均匀,因此具有更强的催化性能。
此外,沸石也具有良好的耐磨性,能够抵抗高温催化过程中的摩擦和冲击,并能有效地防止破坏催化剂的团聚。
分子筛是一种超细孔隙结构的多孔材料,其中许多小孔隙能够容纳小分子,而大分子则无法通过。
分子筛可以有效地分离分子,根据分子的大小、形状和分子量,利用孔隙的大小和形状,可以非常有效的完成一些特定的离子交换反应和键合反应。
此外,分子筛还可以用于生物医学领域,例如用于细胞培养,细胞冻存和分类治疗等,因为它具有良好的生物相容性,可以有效保护细胞,还能够有效抑制细胞的细胞流失。
沸石分子筛的性能特点

Fig. Stereoscan of zeolite X crystal
Fig. Stereoscan of zeolite X crystal about 50 m in size showing spinel-type contact twin and spheroids of zeolite P
•Байду номын сангаас溶液中旳反应:
25
① 骨架Si、Al可用Ga、P等取代→杂原子取代分子筛② 可调变表面酸性及其他活性中心旳强度和浓度,或者调变分子筛表面旳吸附性质,从亲水性到疏水性。 如:阳离子互换→酸性分子筛、碱性分子筛 a、取得酸性:Na型 → H型 例如:NaY → HY 互换剂:NH4NO3、也可直接用酸溶液进行互换。 b、取得较强碱性: Na型 → K、Rb、Cs型 互换剂:碱金属旳硝酸盐等可分解型盐类。 碱性强弱:NaY< KY< RbY< CsY、NaX< KX< RbX< CsX
• 水热转化
Table. Steam stability of zeolite XaCation Form % Exchange Structureb Adsorptionc K+ 77 - 60 % - 89 % Na+ 100 - 80 % - 84 % Ca2+ 84 - 60 % - 71 % Ce3+ 77 no change - 21 % a Loose powder (300 C, 8 hr in 100% steam) b Determined from loss in intensity of selected X-ray powder reflections c As determined from argon adsorption at -183 C and 700 torr
沸石分子筛 书

沸石分子筛书沸石分子筛是一种常见的多孔材料,主要由硅氧聚合物构成。
它的分子结构具有一定的规则性,其中的孔道大小和形状可以通过加工调控。
沸石分子筛因其独特的结构和性质,在各个领域都有广泛的应用。
下面就来介绍一下沸石分子筛的一些特性和应用。
1.孔道结构沸石分子筛具有复杂的孔道结构,这是其最为显著的特点之一。
这些孔道大小不一,形状各异,可以为不同大小和性质的分子提供准确的选择性吸附。
这种选择性吸附特性使沸石分子筛在催化、吸附分离等领域有着广泛的应用。
2.离子交换能力沸石分子筛具有较强的离子交换能力。
它可以通过吸附过程中的离子交换来实现对溶液中离子物质的分离和去除。
这种性质使得沸石分子筛在水处理、环境保护等领域具有重要的应用价值。
3.热稳定性沸石分子筛具有优异的热稳定性,能够在高温条件下保持其结构的稳定性。
这使得沸石分子筛能够在高温催化反应中发挥重要的作用,在石油化工、催化剂等领域有着广泛的应用。
4.分子筛催化剂沸石分子筛作为一种优秀的催化剂载体,被广泛应用于化学工业中的催化反应过程中。
它可以通过调控孔道大小和形状来实现对反应物的选择性吸附和脱附,进而提高反应的效率和选择性。
典型的应用包括裂化、合成气制甲醇、烯烃异构化等。
5.吸附分离材料沸石分子筛的孔道结构可以选择性地吸附和分离不同大小和性质的分子。
这使得沸石分子筛在吸附分离领域具有重要的应用价值。
例如,可用于气体分离、液体分离等。
6.反应条件控制与调控沸石分子筛作为一种功能材料,能够通过调控孔道结构和表面性质,实现对反应条件的控制和调控。
这将有助于提高反应的选择性、效率和经济性。
总之,沸石分子筛作为一种多孔材料,具有复杂的孔道结构和优异的性能,在催化、吸附分离、环境保护、水处理等领域具有重要的应用价值。
研究沸石分子筛的性质和应用,对于促进相关领域的发展和创新具有重要的意义。
分子筛结构类型及其典型材料

分子筛结构类型及其典型材料分子筛是一类具有特定孔径和结构的固体材料,可以用于分离、吸附、催化等领域。
根据其结构类型的不同,分子筛可以分为多种类型,每种类型都有其典型的材料。
一、沸石型分子筛沸石型分子筛是最常见的一类分子筛,其结构由SiO4和AlO4四面体通过氧原子连接而成。
沸石型分子筛具有丰富的孔道结构,可以通过调节合成条件来控制其孔径和孔隙度。
其中,典型的沸石型分子筛材料包括ZSM-5、MCM-22等。
ZSM-5是一种具有中等孔径的沸石型分子筛,其孔径约为0.54纳米。
由于其孔径适中,ZSM-5可以用于分离分子尺寸较小的物质,如甲烷和乙烷。
此外,ZSM-5还具有良好的催化性能,在石油化工领域广泛应用于催化裂化等反应中。
MCM-22是一种具有大孔道结构的沸石型分子筛,其孔径约为0.72纳米。
由于其孔径较大,MCM-22可以用于吸附和分离分子尺寸较大的物质,如有机染料。
此外,MCM-22还具有良好的酸性质,可用作酸催化剂。
二、介孔型分子筛介孔型分子筛是一类具有较大孔径的分子筛,其孔径通常大于2纳米。
介孔型分子筛的结构类似于海绵,具有较大的比表面积和孔容,可用于吸附和催化反应。
典型的介孔型分子筛材料包括MCM-41、SBA-15等。
MCM-41是一种具有有序孔道结构的介孔型分子筛,其孔径可以通过调节合成条件在2-10纳米之间变化。
MCM-41具有高度有序的孔道排列,比表面积较大,可用于吸附和分离分子尺寸较大的物质。
此外,MCM-41还具有良好的催化性能,在催化反应中有广泛应用。
SBA-15是一种具有较大孔径和孔容的介孔型分子筛,其孔径可以通过调节合成条件在4-30纳米之间变化。
SBA-15具有非常高的孔容和比表面积,可用于吸附和分离大分子化合物,如蛋白质和DNA。
此外,SBA-15还具有良好的化学稳定性和催化性能。
三、其他类型的分子筛除了沸石型和介孔型分子筛外,还有一些其他类型的分子筛,如层状分子筛和中空分子筛。
沸石分子筛 种类
沸石分子筛种类一、3A沸石分子筛3A沸石分子筛是一种具有圆柱形孔道结构的沸石分子筛。
其分子筛骨架由硅氧四面体和铝氧四面体交替排列而成,形成了直径为3埃的孔道。
3A沸石分子筛具有较大的比表面积和孔容,能够吸附小分子物质,如水、氨等。
因此,3A沸石分子筛被广泛应用于天然气脱水、气体分离等领域。
二、4A沸石分子筛4A沸石分子筛是一种具有圆柱形孔道结构的沸石分子筛。
其分子筛骨架也由硅氧四面体和铝氧四面体交替排列而成,形成了直径为4埃的孔道。
4A沸石分子筛具有较大的比表面积和孔容,能够吸附小分子物质,如水、氨、甲醇等。
由于其优异的吸附性能,4A沸石分子筛被广泛应用于空分设备、液化气脱水、空气净化等领域。
三、5A沸石分子筛5A沸石分子筛是一种具有圆柱形孔道结构的沸石分子筛。
与3A和4A沸石分子筛相比,5A沸石分子筛的孔道直径更大,为5埃。
5A 沸石分子筛具有较大的比表面积和孔容,能够吸附中等分子物质,如乙烯、乙醇、丙酮等。
由于其良好的吸附性能和分子筛骨架的稳定性,5A沸石分子筛被广泛应用于气体分离、烃类分离、脱除污染物等领域。
四、13X沸石分子筛13X沸石分子筛是一种具有圆柱形孔道结构的沸石分子筛。
与前面介绍的沸石分子筛种类相比,13X沸石分子筛的孔道直径更大,为10埃左右。
13X沸石分子筛具有较大的比表面积和孔容,能够吸附大分子物质,如烷烃、芳烃等。
由于其孔道结构的特殊性,13X沸石分子筛在吸附、分离和催化反应等方面具有广泛的应用。
以上是一些常见的沸石分子筛种类的简要介绍。
沸石分子筛作为一种重要的功能材料,在化工、环保、能源等领域都有着广泛的应用前景。
随着科技的发展和需求的增加,相信沸石分子筛的研究和应用会越来越多样化和深入。
希望通过这篇文章的介绍,能够增加大家对沸石分子筛的了解,为相关领域的研究和应用提供一些参考。
ZSM-5沸石分子筛
❖ 第二代分子筛:以 ZSM 系列的沸石分子筛为代表
❖
意义:独特的孔径和孔道,异常显著的择形效果,
❖ 使有机反应的分子工程设计成为可能。
❖ 第三代分子筛:非硅铝骨架的磷酸铝系列分子筛
❖
意义:其科学价值在于给人们以启示,根据结晶的化
学原理和已知氧化物沸石的晶体化学知识,只要条件合适,
其它非硅铝元素也可以形成具有类似硅铝分子筛的结构。
☆ 优异的择形选择性 以沸石分子筛作为催化剂, 只有比晶 孔小的分子可以出入,催化反应的进行受着沸石晶孔大小的 控制, 沸石催化剂对反应物和产物分子的大小和形状表现出 极大的选择性。ZSM-5沸石十元环构成的孔道体系具有中等 大小孔口直径, 使它具有很好的择形选择性。
2.分子筛的合成方法
1. 水热合成法
6.纳米组装法
纳米组装法是将微孔沸石的初级和次级结构单元引入到介 孔分子筛的孔壁中,虽然得到的介孔材料孔壁依然是无序的, 但其有序程度要优于一般方法合成的介孔材料。李工等采用 两步晶化法,在β沸石前驱体溶液中加入十六烷基三甲基溴 化铵晶化得到孔壁含沸石初级结构单元的六方介孔材料 AIMB41。
7.干凝胶法
单模板合成法是指合成体系中只有一种有机模板剂,通 过调节合适的合成条件得到复合分子筛。我们所熟悉的常用 的模板剂有CTAB 、TPABr 、TPAOH 等等。
双模板合成法一般采用大分子表面活性剂作为合成介孔 分子筛的模板,小分子表面活性剂作为合成微孔分子筛的模 板,两种模板可同时加入也可分步加入。周志华等采用 TPAOH和CTAB作为模板剂,利用两步晶化法制备了高水热 稳定性的ZSM-5介微孔复合分子筛。
3.原位合成法
原位合成法是在一个反应体系中复合分子筛的微孔和介 孔结构同时生成。根据加入的模板剂不同,又可分为软模板 和硬模板两种合成方法。
沸石分子筛的作用
沸石分子筛的作用沸石分子筛是一种广泛使用的高效分离材料,可以用于各种应用中,例如反应催化、干燥、分离等等。
本文将围绕沸石分子筛的作用展开,分步骤详细解析其在不同领域中的应用。
一、反应催化领域沸石分子筛作为一种优秀的固体催化剂,可以在纯化反应物,改善反应选择性和增加反应速率等方面发挥作用。
沸石分子筛相对于其他固体催化剂具有控制反应物分子取向的特点。
同时,具有狭窄的孔道结构,可以强化反应物与催化剂的相互作用,促进反应进行。
例如,在裂解和重组烯烃反应中,沸石分子筛对催化剂的选择性具有很大的影响,可以通过调整物质渗透的孔径来实现深度控制。
二、干燥领域沸石分子筛作为一种高效的干燥剂,可以在各个领域中应用。
比如在空气解离制氢中,沸石分子筛充当干燥剂可以除去气体中的水分。
同时具有不吸收氧气的特性,从而保证水的干燥度和纯净度。
在大型化学厂中,沸石分子筛可以用于干燥过程,去除物料中的水分,提高产品的质量和纯度。
三、分离领域沸石分子筛作为一种高效的分离材料,可以分离出许多不同种类的化学物质。
沸石分子筛通过选择性吸附和分子筛挑选的方法进行分离。
例如,在原油加工过程中,沸石分子筛可以用来分离不同碳链长度的烃类化合物。
同样,在天然气净化过程中,沸石分子筛被广泛用于分离二氧化碳和甲烷。
总之,沸石分子筛通过其独特的物理结构,能够用于许多不同的领域。
在反应催化领域,沸石分子筛可以用于催化反应过程,挑选反应物,改善反应选择性和增加反应速率等方面。
在干燥领域,沸石分子筛可用于从空气中除去水分,在化学工业中用作干燥剂。
在分离领域,它则可以用于分离不同种类的化学物质。
由此可见,沸石分子筛在许多领域中都有着重要的应用价值。
沸石分子筛
沸石分子筛的合成与应用分子筛是一类具有均匀微孔,主要由硅、铝、氧及其它一些金属阳离子构成的吸附剂或薄膜类物质,根据其有效孔径来筛分各种流体分子。
沸石分子筛是指那些具有分子筛作用的天然及人工合成的硅铝酸盐[1]。
沸石分子筛由于其特有的结构和性能,它的应用已遍及石油化工、环保生物工程、食品工业、医药化工等领域,随着国民经济各行业的发展,沸石分子筛的应用前景日益广阔。
一、沸石分子筛的结构沸石是沸石族矿物的总称,是一种含水的碱或碱土金属的铝硅酸盐矿物,加热脱水后,沸石晶体孔道可以吸附比孔道小的物质分子,而排斥比孔道直径大的物质分子,使分子大小不同的混合物分开,起着筛分的作用。
沸石分子筛是硅铝四面体形成的三维硅铝酸盐金属结构的晶体,是一种孔径大小均一的强极性吸附剂。
沸石或经不同金属阳离子交换或经其他方法改性后的沸石分子筛,具有很高的选择吸附分离能力。
工业上最常用的合成分子筛仅为A型、X型、Y型、丝光沸石和ZSM系列沸石。
沸石分子筛的化学组成通式为:[M2(Ⅰ)M(Ⅱ)]O•Al2O3•nSiO2•mH2O[2],式中M2(Ⅰ)和M(Ⅱ)分别为为一价和二价金属离子,多半是纳和钙,n称为沸石的硅铝比,硅主要来自于硅酸钠和硅胶,铝则来自于铝酸钠和氢氧化铝等,它们与氢氧化钠水溶液反应制得的胶体物,经干燥后便成沸石。
沸石分子筛的最基本结构是硅氧四面体和铝氧四面体,四面体相互连接成多元环以及具有三维空间多面体,即构成了沸石的骨架结构,由于骨架结构中有中空的笼状,常称为笼,笼有多种多样,如α笼、β笼、γ笼等,这些笼相互连接就可构成A型、X型、Y型分子筛。
二、沸石分子筛的合成方法随着沸石分子筛在化学工业等领域发挥着越来越重要的作用,出现了多种制备方法,如传统的水热合成法、非水体系合成法、蒸汽相体系合成法、气相转移法等。
1. 水热合成法这种合成法是以水作为沸石分子筛晶化的介质,将其它反应原料按比例混合,放入反应釜中,在一定的温度下晶化而合成沸石分子筛[3]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
笼的最大直径为1.14nm 阳离子分布: A型沸石晶胞中每个笼有12个Na+离子,其中8个分布
在六元环附近,4个分布在3个八元环附近。阳离子的改变,会使孔道直径 发生变化,KA:0.3nm NaA:0.4nm CaA:0.5nm
• 钛硅分子筛
钛硅分子筛可以看作为是由纯硅分子筛骨架中掺入杂原子钛所形成 1984年,Taramasso 等人首次报道了钛硅分子筛的合成,取名为 Titannium-Silicalite-1,即 TS-1,在随后的几年,又相继合成了 TS-2, Ti-Bate 等系列钛硅分子筛 TS-1 属正交晶系 MFI 相,结构与ZSM-5 相同 钛硅分子筛在以 H2O2 水溶液为氧化剂的有机化合物氧化反应中具 有独特的择形催化功能,与其它催化体系相比具有: a) 反应条件温和(0100C,常压) b) 不发生深度氧化 c) 无污染,环境友好
链状结构单元和层状结构单元 Fig. The framework of mordenite
Fig. The framework of ZSM-5
2.2 几种重要的沸石的骨架结构:
• A型沸石(LTA): 理想晶胞组成:Na96 [Al96 Si96 O384] 216 H2O 基本组成单元:含192个正四面体,相当于8个笼,分别位于立方体的
a hypothetical cubic zeolite
gemlinite
levynite
• 笼 Cage: 三维空间的多面体,是构成沸石分子筛的主要结构单元
Hale Waihona Puke • 特征结构 :笼形结构单元,三维空间的多面体,根据确定它们多面体面的 n 元环来描述。不同的分子筛骨架会含有相同的笼形结构单元,即同一 笼形结构单元通过不同的连接方式会形成不同的骨架结构类型
Fig. The framework of SSZ-23 (a) a view of the [001] direction and (b) the [101] direction
2.3 非硅铝沸石:
• 磷酸铝分子筛 AlPO4-n 约有20多个品种,14种具有三维骨架,6种是二维的层状结构材料,
基本结构单元:8个 笼,按金刚石晶体方式排列,金刚石结构中每 个碳原子由 笼替代,相邻的 笼通过六元环以TOT键相互联结,围成 一个26面体笼,即八面沸石笼,或称超笼
孔道:与金刚石晶体结构类似的三维孔道体 系,主孔道为十二元环,孔口直径约 0.70.8nm, 八面沸石笼的最大直径为 1.18nm
阳离子分布:一般分布在比较确定的位置, 影响因素有吸附的水分子,沸石表面的OH基 团,阳离子的种类
水分子: A型沸石晶胞中的水分子处于笼和笼中,在笼中,水分子 与沸石骨架表面的氧原子形成氢键,而在笼中,水分子几乎是以液体状态 的方式存在
Si/Al: A型沸石的Si/Al=1:1
• X 型沸石、 Y 型沸石和八面沸石(FAU):
理想晶胞组成:X型 Na86 [Al86 Si106 O384] 264 H2O Y型 Na56 [Al56 Si136 O384] 264 H2O
性质:热稳定性较好,但水热稳定性相对较差,耐酸,但用5%的 KOH处理,结构几乎完全破坏
高硅的MCM-41是憎水性的,而低硅的MCM-41是弱亲水性的 催化性能:吡啶吸附的红外光谱测定和氨吸附程序升温脱附测定 表明MCM-41只有弱的和中等强度的B酸和L酸中心 骨架可掺入多种金属、引入强酸功能基团和表面负载金属 应用:Cr-MCM-41:烯烃低聚
2. 沸石分子筛的结构
2.1 沸石的结构: • 沸石晶胞的化学式: M x/n [ (AlO2) x (SiO2) y ] H2O
M x/n : 阳离子,保持晶体的电中性 (AlO2) x (SiO2) y : 沸石晶体的骨架,具有不同形状的孔和孔道
H2O : 化学吸附和物理吸附的水分子,物理吸附的 水分子在一定的条件下可发生可逆的吸附和 脱附
Ni, Mo-MCM-41:HDS,HDN,MHC Ti(V, Cr)-MCM-41:催化氧化,2,6-DTBP的羟基化 W-MCM-41:催化氧化,壬二酸制备 H3PW12O40-MCM-41:固体超强酸 在生化物质和药物的吸附分离有潜在的应用 在非线性光学材料的制备中的应用
• ZSM-5(MFI):
理想晶胞组成:Nan [Aln Si96-n O192 ] 16 H2O 结构特点:由8个五元环组成的结构单元通过共边联结成链状结构, 然后扩展成层状,许多这样的层叠起来形成ZSM-5沸石 孔道: ZSM-5的主孔道窗口为十元环,孔道体系是三维的,骨架中 平行于c轴方向的十元环孔道呈直线形,孔径约为0.51 0.55nm;平行于 a轴方向的十元环孔道呈“Z”字形,其拐角为150左右,孔径约为0.53 0.56nm Si/Al: ZSM-5沸石的Si/Al可高达50以上至无穷大,即纯硅分子筛 Silicalite-I (MFI) 和 Silicalite-II (MEI) ZSM沸石家族:已超过50种结构,其中最重要的是ZSM-5,ZSM-11, ZSM-8, ZSM-48, ZSM-35
• 超大孔分子筛
一般将孔径大于十二元环的分子筛称为超大孔分子筛,目前已合成 的超大孔分子筛大部分是磷铝分子筛,合成过程中模板剂是必不可少的
由于其热稳定性较差,在催化中的应用尚不多见 • VPI-5(VFI): • AlPO4-8(AET): • Cloverite(CLO):
AlPO4-5
VIP-5
S3
32 笼中,距八面沸石笼的六元环中心约0.1nm
S4
32 八面沸石笼中,距S3所指的六元环中心约0.1nm
S5
16 十二元环中心
U
8 笼中心
SIII
48 广义指八面沸石笼壁附近的位置
• 丝光沸石(MOR):
理想晶胞组成:Na8 [Al8 Si40 O96 ] 24H2O 结构特征:以五元环为其结构特征,由五元环和四元环组成的链状结 构围成八元环和十二元环的层状结构。许多这样的层叠起来形成丝光沸石, 但每层上的原子并不在一个平面上,而且层与层之间也不是正对着的,相 互之间有一定的位移 孔道:丝光沸石的主孔道为椭圆形的十二元环直筒形孔道,孔径约为 0.65 0.70nm,主孔道之间有八元环孔道,八元环孔道尺寸为0.26 0.57nm, 丝光沸石的孔道体系是二维的 阳离子分布:丝光沸石的晶胞中有8个阳离子,4个位于主孔道周围的八 元环孔道中,另外4个位置不固定 Si/Al:丝光沸石的Si/Al约为10
得不到具有微孔结构的AlPO4-n分子筛 吸附性能:从有机物中优先吸附水,可用于有机溶剂的干燥,以
及 Air, H2, O2, N2等气体的干燥 催化性能:整个骨架为弱酸性,可作催化剂载体,改性处理后,
引入金属组分,可制成优良的烃类转化催化剂
• AlPO4-5(AFI)
结构:三维,六方晶系,结构中磷氧四面体与铝氧四面体严格交替排列, 4-6-12二维三连接网层沿c轴方向堆积主孔道由十二元环组成
(b) the [001] direction
• 硅磷酸铝分子筛SAPO-n
结构:骨架由PO4+, AlO4-, SiO4四面体组成,已确定的有13种三维的 微孔型骨架结构,孔径在0.3~0.8nm之间,孔容约0.18~0.48cm3/g,它们具 有从六元环到十二元环的孔道
酸性:Si元素的引入,使SAPO系列的分子筛形成带负电性的骨架, 因而晶内具有可交换的阳离子,并且具有质子酸性,按合成条件及含Si 量的不同,可呈现中强酸到强酸的性质,SAPO分子筛上同时存在有B酸 和L酸中心
多元环 4 5 6 8 10 12 18
最大自由直径 / nm 0.16 0.15 0.28 0.43 0.63 0.80 1.50
Fig. Some 8-ring conformations for hydrated forms zeolites
zeolite A
chabazite
erionite
Si/Al: X型沸石的Si/Al=1.1~1.5 ,Y型沸石的Si/Al>1.5
Table: The cation sites and their designation in X, Y, and faujasite
位置名称 数 目
在结构中的位置
S1
16 六方柱笼中心
S2
32 笼中,距六方柱笼的六元环中心约0.1nm
晶胞组成为: (C12H28N+)(OH) (H2O)x[Al12P12 O48 ] 孔道:具有平行于[001]方向的一维十二元环孔道体系,径约为0.73nm, 酸性:AlPO4-5分子筛的表面能量不均匀,存在范围很宽的分布,强酸点
少,大多数是较弱的酸性中心,B酸和L酸同时存在,以L酸为主
(a) a view of the 4-6-12 layer structure
• ZSM-11(MEL):
结构特点:ZSM-11也存在像MFI中由Pentasil链构成的波状的网层, 与MFI不同的是,相邻的层之间不是以对称中心相关,而是以镜面相关, 由此而产生出平行于a和b方向的十元环直孔道。孔径约为0.53 0.54nm
• 分子筛(BEA):
理想晶胞组成:Nan [Aln Si64-n O128 ] 结构特点:由两个结构不同,但却紧密相关的多形体A和B的混晶组成, 具有高度晶格缺陷 多形体A:手性对映体,结构单元层以RRRR或LLLL连接 多形体B:非手性,结构单元层以RLRL连接 孔道:三维的孔道体系,沿a和b 方向具有十二元环直孔道,孔径约为 0.73 0.60nm;沿c方向具有扭曲的十 二元环孔道,孔径约为0.56 0.56nm
AlPO4-8
Cloverite