东莞市中考数学试卷及答案

合集下载

广东省东莞市中考数学试卷含详解

广东省东莞市中考数学试卷含详解

2021 年广东省东莞市中考数学试卷一、选择题〔本大题共10 小题,每题 3 分,共 30 分〕1. 5 的相反数是〔〕A.B.5C.﹣D.﹣ 52.“一带一路〞建议提出三年以来,广东公司到“一带一路〞国家投资愈来愈开朗,据商务部门公布的数据显示,2021 年广东省对沿线国家的实质投资额超出00 美元,将00 用科学记数法表示为〔〕A.× 109B.× 1010C. 4×109D.4×10103.∠ A=70°,那么∠ A 的补角为〔〕A.110°B.70°C.30°D.20°k 的值为〔〕4.假如 2 是方程x2﹣3x+k=0 的一个根,那么常数A. 1B.2C.﹣ 1 D.﹣ 25.在学校举行“阳光少年,励志青春〞的演讲竞赛中,五位评委给选手小明的均分分别为:90,85,90,80,95,那么这组数据的众数是〔〕A. 95 B.90 C. 85D. 806.以下所述图形中,既是轴对称图形又是中心对称图形的是〔〕A.等边三角形 B .平行四边形 C .正五边形D.圆8.以下运算正确的选项是〔〕A. a+2a=3a2B. a3 ?a2=a5 C.〔 a4〕2=a6D.a4 +a2=a4DAC的大小为〔〕9.如图,四边形ABCD内接于⊙ O,DA=DC,∠ CBE=50°,那么∠A.130°B.100°C.65°D.50°10.如图,正方形 ABCD,点 E 是 BC边的中点, DE与 AC订交于点 F,连结 BF,以下结论:①S△ABF=S△ADF;② S△CDF=4S△CEF;③ S△ADF=2S△CEF;④ S△ADF=2S△CDF,此中正确的选项是〔〕A.①③B.②③C.①④D.②④二、填空题〔本大题共 6 小题,每题 4 分,共 24 分〕11.分解因式: a2 +a=.n=.12.一个n 边形的内角和是720°,那么a+b0.〔填“>〞,“<〞13.实数a,b 在数轴上的对应点的地点以下列图,那么或“ =〞〕14.在一个不透明的盒子中,有五个完好同样的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.8a+6b﹣3 的值为.15.4a+3b=1,那么整式16.如图,矩形纸片 ABCD中,AB=5,BC=3,先按图〔 2〕操作:将矩形纸片 ABCD沿过点 A 的直线折叠,使点 D落在边 AB上的点 E 处,折痕为 AF;再按图〔 3〕操作,沿过点 F 的直线折叠,使点 C落在 EF上的点 H 处,折痕为 FG,那么 A、H两点间的距离为.三、解答题〔本大题共 3 小题,每题 6 分,共 18 分〕17.计算: | ﹣7| ﹣〔 1﹣π〕0+〔〕﹣1.19.学校团委组织志愿者到图书室整理一批新进的图书.假定男生每人整理30 本,女生每人整理 20 本,共能整理 680 本;假定男生每人整理 50 本,女生每人整理 40 本,共能整理 1240 本.求男生、女生志愿者各有多少人四、解答题〔本大题共 3 小题,每题 7 分,共 21 分〕20.如图,在△ ABC中,∠ A>∠ B.〔1〕作边 AB的垂直均分线DE,与 AB,BC分别订交于点 D,E〔用尺规作图,保留作图印迹,不要求写作法〕;〔2〕在〔 1〕的条件下,连结AE,假定∠ B=50°,求∠ AEC的度数.21.以下列图,四边形ABCD, ADEF都是菱形,∠ BAD=∠FAD,∠ BAD为锐角.〔1〕求证: AD⊥BF;〔2〕假定 BF=BC,求∠ ADC的度数.22.某校为认识九年级学生的体重状况,随机抽取了九年级局部学生进行检查,将抽取学生体重频数散布表组边体重〔千人数克〕A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016〔1〕填空:① m=〔直接写出结果〕;②在扇形统计图中, C 组所在扇形的圆心角的度数等于〔2〕假如该校九年级有1000 名学生,请估量九年级体重低于度;60 千克的学生大概有多少人五、解答题〔本大题共 3 小题,每题 9 分,共 27 分〕23.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b 交 x 轴于点 P 是抛物线上在第一象限内的一点,直线BP与 y 轴订交于点A〔1,0〕,B〔3,0〕两点,C.〔1〕求抛物线y=﹣x2+ax+b 的分析式;〔2〕当点 P 是线段 BC的中点时,求点P 的坐标;〔3〕在〔 2〕的条件下,求sin ∠OCB的值.2021 年参照答案与试题分析一、选择题〔本大题共10 小题,每题 3 分,共 30 分〕1. 5 的相反数是〔〕A. B.5C.﹣D.﹣ 5【考点】 14:相反数.【剖析】依据相反数的观点解答即可.【解答】解:依据相反数的定义有: 5 的相反数是﹣ 5.应选: D.2.“一带一路〞建议提出三年以来,广东公司到“一带一路〞国家投资愈来愈开朗,据商务部门公布的数据显示, 2021 年广东省对沿线国家的实质投资额超出00 美元,将 00 用科学记数法表示为〔〕A.× 109B.× 1010C. 4×109 D.4×1010【考点】 1I :科学记数法—表示较大的数.【剖析】科学记数法的表示形式为 a× 10n的形式,此中1≤ |a| <10, n 为整数.确立 n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值大于10 时, n 是正数;当原数的绝对值小于 1 时, n 是负数.【解答】解: 00=4×109.应选: C.3.∠ A=70°,那么∠ A 的补角为〔〕A.110° B.70°C.30°D.20°【考点】 IL :余角和补角.【剖析】由∠ A 的度数求出其补角即可.【解答】解:∵∠ A=70°,∴∠ A 的补角为 110°,应选 A4.假如 2 是方程 x2﹣3x+k=0 的一个根,那么常数 k 的值为〔〕A.1 B.2 C.﹣ 1 D.﹣ 2【考点】 A3:一元二次方程的解.【剖析】把 x=2 代入方程列出对于k 的新方程,经过解方程来求k 的值.【解答】解:∵ 2 是一元二次方程x2﹣ 3x+k=0 的一个根,∴22﹣3×2+k=0,解得, k=2.应选: B.5.在学校举行“阳光少年,励志青春〞的演讲竞赛中,五位评委给选手小明的均分分别为:90,85,90,80,95,那么这组数据的众数是〔〕A. 95 B.90 C. 85D. 80【考点】 W5:众数.【剖析】众数指一组数据中出现次数最多的数据,依据众数的定义就能够求解.【解答】解:数据 90 出现了两次,次数最多,因此这组数据的众数是90.应选 B.6.以下所述图形中,既是轴对称图形又是中心对称图形的是〔〕A.等边三角形 B .平行四边形 C .正五边形D.圆【考点】 R5:中心对称图形; P3:轴对称图形.【剖析】依据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.应选 D.7.如图,在同一平面直角坐标系中,直线y=k1x〔 k1≠0〕与双曲线 y=〔k2≠0〕订交于 A, B 两点,点 A 的坐标为〔 1,2〕,那么点 B 的坐标为〔〕A.〔﹣ 1,﹣ 2〕B.〔﹣ 2,﹣ 1〕C.〔﹣ 1,﹣ 1〕D.〔﹣ 2,﹣ 2〕【考点】 G8:反比率函数与一次函数的交点问题.【剖析】反比率函数的图象是中心对称图形,那么经过原点的直线的两个交点必定对于原点对称.【解答】解:∵点 A 与 B 对于原点对称,∴B 点的坐标为〔﹣ 1,﹣ 2〕.应选: A.8.以下运算正确的选项是〔〕A. a+2a=3a2B. a3 ?a2=a5 C.〔 a4〕2=a6D.a4 +a2=a4【考点】 47:幂的乘方与积的乘方;35:归并同类项; 46:同底数幂的乘法.【剖析】依据整式的加法和幂的运算法那么逐个判断即可.【解答】解: A、a+2a=3a,此选项错误;B、 a3 ?a2=a5,此选项正确;C、〔 a4〕2=a8,此选项错误;D、 a4与 a2不是同类项,不可以归并,此选项错误;应选: B.9.如图,四边形ABCD内接于⊙ O,DA=DC,∠ CBE=50°,那么∠ DAC的大小为〔〕A.130°B.100°C.65°D.50°【考点】 M6:圆内接四边形的性质.【剖析】先依据补角的性质求出∠ ABC的度数,再由圆内接四边形的性质求出∠ ADC的度数,由等腰三角形的性质求得∠ DAC的度数.【解答】解:∵∠ CBE=50°,∴∠ ABC=180°﹣∠ CBE=180°﹣ 50°=130°,∵四边形 ABCD为⊙ O的内接四边形,∴∠ D=180°﹣∠ ABC=180°﹣ 130°=50°,∵DA=DC,∴∠ DAC==65°,应选 C.10.如图,正方形 ABCD,点 E 是 BC边的中点, DE与 AC订交于点 F,连结 BF,以下结论:①S△ABF=S△ADF;② S△CDF=4S△CEF;③ S△ADF=2S△CEF;④ S△ADF=2S△CDF,此中正确的选项是〔〕A.①③B.②③C.①④D.②④【考点】 LE:正方形的性质.【剖析】由△ AFD≌△ AFB,即可推出 S△ABF=S△ADF,故①正确,由BE=EC=BC=AD,AD∥EC,推出===,可得 S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.【解答】解:∵四边形 ABCD是正方形,∴AD∥ CB,AD=BC=AB,∠ FAD=∠FAB,在△ AFD和△ AFB中,,∴△ AFD≌△ AFB,∴S△ABF=S△ADF,故①正确,∵BE=EC=BC=AD,AD∥EC,∴===,∴S△CDF=2S△CEF,S△ADF=4S△CEF, S△ADF=2S△CDF,故②③错误④正确,应选 C.二、填空题〔本大题共 6 小题,每题 4 分,共 24 分〕11.分解因式: a2 +a= a〔a+1〕.【考点】 53:因式分解﹣提公因式法.【剖析】直接提取公因式分解因式得出即可.【解答】解: a2+a=a〔a+1〕.故答案为: a〔a+1〕.12.一个 n 边形的内角和是720°,那么 n= 6.【考点】 L3:多边形内角与外角.【剖析】多边形的内角和能够表示成〔n﹣2〕?180°,依此列方程可求解.【解答】解:设所求正 n 边形边数为 n,那么〔 n﹣2〕?180°=720°,解得 n=6.13.实数 a,b 在数轴上的对应点的地点以下列图,那么a+b<0.〔填“>〞,“<〞或“ =〞〕【考点】 2A:实数大小比较; 29:实数与数轴.【剖析】第一依据数轴判断出 a、b 的符号和两者绝对值的大小,依据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值〞来解答即可.【解答】解:∵ a 在原点左侧, b 在原点右侧,∴a<0<b,∵a 走开原点的距离比 b 走开原点的距离大,∴|a| >|b| ,∴a+b<0.故答案为:<.14.在一个不透明的盒子中,有五个完好同样的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【考点】 X4:概率公式.【剖析】确立出偶数有 2 个,而后依据概率公式列式计算即可得解.【解答】解:∵ 5 个小球中,标号为偶数的有2、4 这 2 个,∴摸出的小球标号为偶数的概率是,故答案为:15. 4a+3b=1,那么整式 8a+6b﹣3 的值为﹣1.【考点】 33:代数式求值.【剖析】先求出 8a+6b 的值,而后整体代入进行计算即可得解.【解答】解:∵ 4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣ 1.16.如图,矩形纸片 ABCD中,AB=5,BC=3,先按图〔 2〕操作:将矩形纸片 ABCD沿过点 A的直线折叠,使点 D落在边 AB上的点 E 处,折痕为 AF;再按图〔 3〕操作,沿过点 F 的直线折叠,使点 C落在 EF上的点 H 处,折痕为 FG,那么 A、H两点间的距离为.【考点】 PB:翻折变换〔折叠问题〕;LB:矩形的性质.【剖析】如图 3 中,连结 AH.由题意可知在 Rt△AEH中, AE=AD=3,EH=EF﹣ HF=3﹣ 2=1,依据 AH=,计算即可.【解答】解:如图 3 中,连结 AH.由题意可知在 Rt△AEH中, AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.东莞市虎门铧师培训中心咨询 0769-8598 8066三、解答题〔本大题共 3 小题,每题 6 分,共 18 分〕17.计算: | ﹣7| ﹣〔 1﹣π〕0+〔〕﹣1.【考点】 2C:实数的运算; 6E:零指数幂; 6F:负整数指数幂.【剖析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式 =7﹣ 1+3=9.18.先化简,再求值:〔 +〕?〔 x2﹣4〕,此中 x=.【考点】 6D:分式的化简求值.【剖析】先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.【解答】解:原式 =[+] ?〔 x+2〕〔 x﹣2〕=?〔x+2〕〔 x﹣ 2〕=2x,当 x=时,原式 =2.19.学校团委组织志愿者到图书室整理一批新进的图书.假定男生每人整理30 本,女生每人整理 20 本,共能整理 680 本;假定男生每人整理 50 本,女生每人整理 40 本,共能整理 1240 本.求男生、女生志愿者各有多少人【考点】 9A:二元一次方程组的应用.【剖析】设男生志愿者有 x 人,女生志愿者有 y 人,依据“假定男生每人整理 30 本,女生每人整理 20 本,共能整理680 本;假定男生每人整理50 本,女生每人整理40 本,共能整理1240本〞,即可得出对于x、 y 的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x 人,女生志愿者有y 人,依据题意得:,解得:.答:男生志愿者有12 人,女生志愿者有16 人.四、解答题〔本大题共 3 小题,每题 7 分,共 21 分〕20.如图,在△ ABC中,∠ A>∠ B.〔1〕作边AB的垂直均分线DE,与AB,BC分别订交于点D,E〔用尺规作图,保留作图印迹,〔2〕在〔 1〕的条件下,连结AE,假定∠ B=50°,求∠ AEC的度数.【考点】 N2:作图—根本作图; KG:线段垂直均分线的性质.【剖析】〔1〕依据题意作出图形即可;〔2〕因为 DE是 AB的垂直均分线,获得 AE=BE,依据等腰三角形的性质获得∠EAB=∠B=50°,由三角形的外角的性质即可获得结论.【解答】解:〔 1〕以下列图;〔2〕∵ DE是 AB的垂直均分线,∴AE=BE,∴∠ EAB=∠B=50°,∴∠ AEC=∠EAB+∠B=100°.21.以下列图,四边形 ABCD, ADEF都是菱形,∠ BAD=∠FAD,∠ BAD为锐角.〔1〕求证: AD⊥BF;〔2〕假定 BF=BC,求∠ ADC的度数.【考点】 L8:菱形的性质.【剖析】〔 1〕连结 DB、DF.依据菱形四边相等得出 AB=AD=FA,再利用 SAS证明△ BAD≌△FAD,得出 DB=DF,那么 D 在线段 BF的垂直均分线上,又 AB=AF,即 A 在线段 BF的垂直均分线上,从而证明 AD⊥BF;〔2〕设 AD⊥BF于 H,作 DG⊥ BC于 G,证明 DG=CD.在直角△ CDG中得出∠ C=30°,再依据平行线的性质即可求出∠ ADC=180°﹣∠ C=150°.【解答】〔1〕证明:如图,连结DB、 DF.∵四边形 ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△ BAD与△ FAD中,,∴△ BAD≌△ FAD,∴DB=DF,∴D 在线段 BF 的垂直均分线上,∵AB=AF,∴A 在线段 BF 的垂直均分线上,∴AD是线段 BF的垂直均分线,∴AD⊥ BF;〔2〕如图,设 AD⊥BF于 H,作 DG⊥ BC于 G,那么四边形 BGDH是矩形,∴DG=BH=BF.∵BF=BC, BC=CD,∴DG=CD.在直角△ CDG中,∵∠ CGD=90°, DG=CD,∴∠ C=30°,∵BC∥ AD,∴∠ ADC=180°﹣∠ C=150°.22.某校为认识九年级学生的体重状况,随机抽取了九年级局部学生进行检查,将抽取学生的体重状况绘制以下不完好的统计图表,如图表所示,请依据图标信息回复以下问题:体重频数散布表组边体重〔千人数克〕A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016〔1〕填空:① m= 52〔直接写出结果〕;②在扇形统计图中, C 组所在扇形的圆心角的度数等于144度;〔2〕假如该校九年级有1000 名学生,请估量九年级体重低于60 千克的学生大概有多少人【考点】 VB:扇形统计图; V5:用样本预计整体; V7:频数〔率〕散布表.【剖析】〔1〕①依据 D 组的人数及百分比进行计算即可获得m的值;②依据 C组的百分比即可获得所在扇形的圆心角的度数;〔2〕依据体重低于60 千克的学生的百分比乘上九年级学生总数,即可获得九年级体重低于60千克的学生数目.【解答】解:〔 1〕①检查的人数为: 40÷20%=200〔人〕,∴m=200﹣ 12﹣80﹣ 40﹣16=52;②C 组所在扇形的圆心角的度数为×360°=144°;故答案为:52, 144;〔2〕九年级体重低于60 千克的学生大概有× 1000=720〔人〕.五、解答题〔本大题共 3 小题,每题 9 分,共 27 分〕223.如图,在平面直角坐标系中,抛物线y=﹣x +ax+b 交 x 轴于A〔1,0〕,B〔3,0〕两点,点 P 是抛物线上在第一象限内的一点,直线BP与轴订交于点C.y〔1〕求抛物线 y=﹣x2+ax+b 的分析式;〔2〕当点 P 是线段 BC的中点时,求点P 的坐标;〔3〕在〔 2〕的条件下,求sin ∠OCB的值.【考点】 HA:抛物线与 x 轴的交点; H8:待定系数法求二次函数分析式; T7:解直角三角形.【剖析】〔1〕将点 A、B 代入抛物线 y=﹣ x2 +ax+b,解得 a,b 可得分析式;〔2〕由 C 点横坐标为 0 可得 P 点横坐标,将 P 点横坐标代入〔 1〕中抛物线分析式,易得 P 点坐标;〔3〕由 P 点的坐标可得 C 点坐标,A、B、C的坐标,利用勾股定理可得 BC长,利用 sin ∠OCB= 可得结果.【解答】解:〔 1〕将点 A、 B 代入抛物线 y=﹣x2+ax+b 可得,,解得, a=4,b=﹣3,2∴抛物线的分析式为: y=﹣ x +4x﹣ 3;因此 C点横坐标 x=0,∵点 P 是线段 BC的中点,∴点 P 横坐标 x P==,∵点 P 在抛物线 y=﹣ x2+4x﹣3 上,∴y P=﹣3=,∴点 P 的坐标为〔,〕;〔3〕∵点 P 的坐标为〔,〕,点P 是线段 BC的中点,∴点 C的纵坐标为 2×﹣ 0=,∴点 C的坐标为〔 0,〕,∴BC==,∴s in ∠OCB===.24.如图, AB是⊙ O的直径, AB=4,点 E 为线段 OB上一点〔不与 O,B 重合〕,作 CE⊥ OB,交⊙ O于点 C,垂足为点 E,作直径 CD,过点 C的切线交 DB的延伸线于点 P,AF⊥PC于点 F,连结 CB.〔1〕求证: CB是∠ ECP的均分线;〔2〕求证: CF=CE;〔3〕当 =时,求劣弧的长度〔结果保留π〕【考点】 S9:相像三角形的判断与性质; M2:垂径定理; MC:切线的性质; MN:弧长的计算.【剖析】〔1〕依据等角的余角相等证明即可;〔2〕欲证明 CF=CE,只需证明△ ACF≌△ ACE即可;〔3〕作 BM⊥PF于 M.那么 CE=CM=CF,设 CE=CM=CF=4a,PC=4a,PM=a,利用相像三角形的性质求出 BM,求出 tan ∠BCM的值即可解决问题;【解答】〔1〕证明:∵ OC=OB,∴∠ OCB=∠OBC,∵PF 是⊙ O的切线, CE⊥AB,∴∠ OCP=∠CEB=90°,∴∠ PCB+∠OCB=90°,∠ BCE+∠OBC=90°,∴∠ BCE=∠BCP,∴BC均分∠ PCE.〔2〕证明:连结 AC.∵AB是直径,∴∠ ACB=90°,∴∠ BCP+∠ACF=90°,∠ ACE+∠BCE=90°,∵∠ BCP=∠BCE,∴∠ ACF=∠ACE,∵∠ F=∠AEC=90°, AC=AC,∴△ ACF≌△ ACE,∴CF=CE.东莞市虎门铧师培训中心咨询 0769-8598 8066〔3〕解:作 BM⊥ PF于 M.那么 CE=CM=CF,设 CE=CM=CF=4a,PC=4a,PM=a,∵△ BMC∽△ PMB,∴=,22∴BM=CM?PM=3a,∴BM=a,∴tan ∠BCM==,∴∠ BCM=30°,∴∠ OCB=∠OBC=∠BOC=60°,∴的长 ==π.25.如图,在平面直角坐标系中, O 为原点,四边形 ABCO是矩形,点 A, C 的坐标分别是 A 〔0,2〕和 C〔2,0〕,点 D是对角线 AC上一动点〔不与 A,C 重合〕,连结 BD,作 DE⊥DB,交 x 轴于点 E,以线段 DE, DB为邻边作矩形BDEF.〔1〕填空:点 B 的坐标为〔2,2〕;〔2〕能否存在这样的点 D,使得△ DEC是等腰三角形假定存在,恳求出 AD的长度;假定不存在,请说明原因;〔3〕①求证: = ;②设 AD=x,矩形 BDEF的面积为 y,求 y 对于 x 的函数关系式〔可利用①的结论〕,并求出 y 的最小值.【考点】 SO:相像形综合题.【剖析】〔1〕求出 AB、 BC的长即可解决问题;〔2〕存在.连结BE,取 BE的中点 K,连结 DK、KC.第一证明 B、D、E、C 四点共圆,可得∠DBC=∠DCE,∠ EDC=∠EBC,由 tan ∠ ACO==,推出∠ ACO=30°,∠ ACD=60°由△ DEC 是等腰三角形,察看图象可知,只有 ED=EC,推出∠ DBC=∠ DCE=∠EDC=∠EBC=30°,推出∠DBC=∠ BCD=60°,可得△ DBC是等边三角形,推出 DC=BC=2,由此即可解决问题;〔3〕①由〔 2〕可知, B、 D、 E、 C四点共圆,推出∠ DBC=∠DCE=30°,由此即可解决问题;②作 DH⊥AB于 H.想方法用 x 表示 BD、 DE的长,建立二次函数即可解决问题;【解答】解:〔 1〕∵四边形 AOCB是矩形,∴BC=OA=2,OC=AB=2,∠ BCO=∠BAO=90°,∴B〔2,2〕.故答案为〔 2,2〕.〔2〕存在.原因以下:连结 BE,取 BE的中点 K,连结 DK、KC.∵∠ BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C 四点共圆,∴∠ DBC=∠DCE,∠ EDC=∠ EBC,∵t an ∠ACO==,∴∠ ACO=30°,∠ ACB=60°①如图 1 中,△ DEC是等腰三角形,察看图象可知,只有ED=EC,∴∠ DBC=∠DCE=∠EDC=∠EBC=30°,∴∠ DBC=∠BCD=60°,∴△ DBC是等边三角形,∴DC=BC=2,在 Rt △AOC中,∵∠ ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣ CD=4﹣2=2.∴当 AD=2时,△ DEC是等腰三角形.②如图 2 中,∵△ DCE是等腰三角形,易知 CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ ABD=∠ADB=75°,∴AB=AD=2,综上所述,知足条件的AD的值为 2 或 2.〔3〕①由〔 2〕可知, B、 D、 E、 C四点共圆,∴∠ DBC=∠DCE=30°,∴t an ∠DBE=,∴=.②如图 2 中,作 DH⊥ AB于 H.在 Rt △ADH中,∵ AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在 Rt △BDH中, BD==,∴DE=BD=?,∴矩形 BDEF的面积为 y= []2=〔x2﹣6x+12〕,即 y=x2﹣2x+4,∴y=〔 x﹣ 3〕2 +,∵> 0,∴x=3时,y有最小值。

广东省东莞市中考数学试题及答案

广东省东莞市中考数学试题及答案

广东省东莞市初中毕业生学业考试考试用时100分钟,满分为120分、选择题(本大题 5小题,每小题 3分,共15分)在每小题列出的四个选项中,只有一个是 正确的,请把答题卡上对应题目所选的选项涂黑. 12的倒数是(【答案】A 。

【考点】相似。

【分析】根据形状相同,大小不一定相等的两个图形相似的定义,A 符合将图中的箭头缩小1到原来的一的条件;B 与原图相同;C 将图中的箭头扩大到原来的 2倍;D 只将图中的箭头21长度缩小到原来的 一,宽度没有改变。

故选 A 。

2A . 2B .— 2C.D .【答案】 D 。

【考点】 倒数。

【分析】 根据两个数乘积是1的数互为倒数的定义,直接得出结果。

2 •据中新社北京2010年12月8日电,2010年中国粮食总产量达到 546 400 000吨,用科学记数法表示为( A . 5.464 X 7吨 B . 5.464 X 10吨 C . 5.464 X 10吨 D . 5.464 X 100 吨【答案】B 。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为 10n ,其中1 a <10, n 为整数,表示时关键要正确确定 a 的值以及n 的值。

故选B 。

13 •将左下图中的箭头缩小到原来的,得到的图形是(D .题3图 A .5 •正八边形的每个内角为()A. 120oB. 135oC. 140o【答案】B o【考点】多边形内角和定理。

【分析】根据多边形内角和定理,求出正八边形的内角和为( 1080°* 8=135°。

二、填空题(本大题 5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相 应的位置上.k .6. __________________________________________________________ 已知反比例函数 y —的图象经过(1,— 2),贝U k _________________________________________ .x【答案】—2o【考点】点的坐标与函数的关系。

2020年广东省东莞市中考数学试卷(解析版)

2020年广东省东莞市中考数学试卷(解析版)

2020年东莞市初中毕业生水平考试《数学》参考答案一、选择题:1-5CBDCA 6-10CBDAD二、填空题:12.10 15.5 16.7 17.64(填62亦可) 三、解答题(一)18.解:原式122212=--+⨯-4=-19.解:原式2(1)1(1)(1)x x x x -=⋅--1x =当x =6==20.解:(1)如图,EF 为AB 的垂直平分线;(2)∵EF 为AB 的垂直平分线 ∴152AE AB ==,90AEF ∠=︒∵在Rt ABC ∆中,8AC =,10AB =∴6BC ==∵90C AEF ∠=∠=︒,A A ∠=∠∴AFE ABC ∆∆∽ ∴AEEFAC BC =, 即586EF=∴154EF = 四、解答题(二)21.解:(1)108°(2)(3)∴机会均等的结果有AB 、AC 、AD 、BA 、BC 、BD 、CA 、CB 、CD 、DA 、DB 、DC 等共12种情况,其中所选的项目恰好是A 和B 的情况有2种;∴P (所选的项目恰好是A 和B )21126==. 22.解:(1)设乙厂每天能生产口罩x 万只,则甲厂每天能生产口罩1.5x 万只, 依题意,得:606051.5x x-=, 解得:4x =,经检验,4x =是原方程的解,且符合题意,∴甲厂每天可以生产口罩:1.546⨯=(万只).答:甲、乙厂每天分别可以生产6万和4万只口罩.(3)设应安排两个工厂工作y 天才能完成任务,依题意,得:()64100y +≥,解得:10y ≥.答:至少应安排两个工厂工作10天才能完成任务.23.(1)证明:过点O 作OM BC ⊥,交AD 于点M ,∴MC MB =,90OMA ∠=︒,∵OA OD =,OM AD ⊥,∴MA MD =∴MA MB MD MC -=-,即AB CD =.又∵OA OD =,OB OC =,∴()OAB ODC SSS ∆∆≌.(2)解:连OE ,设半径OE r =,∵O 与AE 相切于点E ,∴90OEA ∠=︒,又∵90EAD ∠=︒,90OMA ∠=︒,∴四边形AEOM 为矩形,∴4OM AE ==,OE AM r ==,在Rt OBM ∆中,222BM OM OB +=,即222(2)4r r -+=,∴5r =.即O 的半径为5.五、解答题(三)24.(1)证明:∵ED 为AC 平移所得,∴//AC ED ,AC ED =,∴四边形ACDE 为平行四边形,∴AE CD =,在Rt ABC ∆中,点E 为斜边AB 的中点,∴AE CE BE ==,∴CD BE =.(2)证明:∵四边形ACDE 为平行四边形,∴//AE CD ,即//CD BE ,又∵CD BE =,∴四边形BECD 为平行四边形,又∵CE BE =,∴四边形BECD 为菱形.(3)解:在菱形BECD 中,点M 为DE 的中点,又10DE AC ==, ∴152ME DE ==, ∵//AC DE ,∴18090CEM ACB ∠=︒-∠=︒,ACE CEM ∠=∠, ∴在Rt CME ∆中,5cos 13ME CEM CE ∠==, 即5cos 13ME ACE CE ∠==, ∴135135CE =⨯=, 在平行四边形ACDE 中,点N 为CE 的中点, ∴1 6.52MN CE ==. 25.解:(1)∵对称轴12(1)b x =-=-⨯-, ∴2b =-,∴223y x x =--+ 当0y =时,2230x x --+=,解得13x =-,21x =, 即(3,0)A -,(1,0)B ,∴1(3)4AB =--=. (2)经过点(3,0)A -和(0,3)C 的直线AC 关系式为3y x =+, ∴点D 的坐标为(,3)m m +.在抛物线上的点E 的坐标为()2,23m m m --+,∴()2223(3)3DE m m m m m =--+-+=--, ∴111222ACE S DE F DE OF DE OA ∆=⋅⋅+⋅⋅=⋅⋅ ()2213933222m m m m =⋅--⋅=--,当9323222m -=-=-⎛⎫⨯- ⎪⎝⎭时,ACE S ∆的最大值是233932722228⎛⎫⎛⎫-⨯--⨯-= ⎪ ⎪⎝⎭⎝⎭, ∴点D 的坐标为33,322⎛⎫--+ ⎪⎝⎭,即33,22⎛⎫- ⎪⎝⎭(3)连EF ,情况一:如图,当//CE AF 时,ADF CDE ∆∆∽, 当3y =时,2233x x --+=,解得10x =,22x =-, ∴点E 的横坐标为-2,即点D 的横坐标为-2, ∴2m =-情况二:∵点(3,0)A -和(0,3)C ,∴OA OC =,即45OAC ∠=︒.如图,当ADF EDC ∆∆∽时,45OAC CED ∠=∠=︒,90AFD DCE ∠=∠=︒, 即EDC ∆为等腰直角三角形,过点C 作CG DE ⊥,即点CG 为等腰Rt EDC ∆的中线, ∴22m DE CG ==-,3DF m =+,∴EF DE DF =+,即22323m m m m --+=-++, 解得1m =,0m =(舍去)综述所述,当1m =-或-2时,ADF ∆与CDE ∆相似.。

2020年广东省东莞市中考数学试卷(解析版).docx

2020年广东省东莞市中考数学试卷(解析版).docx

2020年东莞市初中毕业生水平考试《数学》参考答案一、选择题:1-5CBDCA 6-10CBDAD二、填空题: 11.3 12.10 13.3 14.110°15.5 16.7 17.64(填62亦可) 三、解答题(一)18.解:原式122212=--+⨯-4=-19.解:原式2(1)1(1)(1)x x x x -=⋅--1x =当23x =时,原式323==20.解:(1)如图,EF 为AB 的垂直平分线;(2)∵EF 为AB 的垂直平分线∴152AE AB ==,90AEF ∠=︒∵在Rt ABC ∆中,8AC =,10AB =∴221086BC =-=∵90C AEF ∠=∠=︒,A A ∠=∠∴AFE ABC ∆∆∽∴AE EFAC BC =,即586EF=∴154EF = 四、解答题(二) 21.解:(1)108°(2)(3)∴机会均等的结果有AB 、AC 、AD 、BA 、BC 、BD 、CA 、CB 、CD 、DA 、DB 、DC 等共12种情况,其中所选的项目恰好是A 和B 的情况有2种;∴P (所选的项目恰好是A 和B )21126==. 22.解:(1)设乙厂每天能生产口罩x 万只,则甲厂每天能生产口罩1.5x 万只,依题意,得:606051.5x x-=, 解得:4x =,经检验,4x =是原方程的解,且符合题意,∴甲厂每天可以生产口罩:1.546⨯=(万只).答:甲、乙厂每天分别可以生产6万和4万只口罩.(3)设应安排两个工厂工作y 天才能完成任务,依题意,得:()64100y +≥,解得:10y ≥.答:至少应安排两个工厂工作10天才能完成任务.23.(1)证明:过点O 作OM BC ⊥,交AD 于点M ,∴MC MB =,90OMA ∠=︒,∵OA OD =,OM AD ⊥,∴MA MD =∴MA MB MD MC -=-,即AB CD =.又∵OA OD =,OB OC =,∴()OAB ODC SSS ∆∆≌.(2)解:连OE ,设半径OE r =,∵O 与AE 相切于点E ,∴90OEA ∠=︒,又∵90EAD ∠=︒,90OMA ∠=︒,∴四边形AEOM 为矩形,∴4OM AE ==,OE AM r ==,在Rt OBM ∆中,222BM OM OB +=,即222(2)4r r -+=,∴5r =.即O 的半径为5.五、解答题(三)24.(1)证明:∵ED 为AC 平移所得,∴//AC ED ,AC ED =,∴四边形ACDE 为平行四边形,∴AE CD =,在Rt ABC ∆中,点E 为斜边AB 的中点,∴AE CE BE ==,∴CD BE =.(2)证明:∵四边形ACDE 为平行四边形,∴//AE CD ,即//CD BE ,又∵CD BE =,∴四边形BECD 为平行四边形,又∵CE BE =,∴四边形BECD 为菱形.(3)解:在菱形BECD 中,点M 为DE 的中点,又10DE AC ==, ∴152ME DE ==, ∵//AC DE ,∴18090CEM ACB ∠=︒-∠=︒,ACE CEM ∠=∠,∴在Rt CME ∆中,5cos 13ME CEM CE ∠==, 即5cos 13ME ACE CE ∠==, ∴135135CE =⨯=, 在平行四边形ACDE 中,点N 为CE 的中点, ∴1 6.52MN CE ==. 25.解:(1)∵对称轴12(1)b x =-=-⨯-, ∴2b =-,∴223y x x =--+ 当0y =时,2230x x --+=,解得13x =-,21x =,即(3,0)A -,(1,0)B ,∴1(3)4AB =--=.(2)经过点(3,0)A -和(0,3)C 的直线AC 关系式为3y x =+,∴点D 的坐标为(,3)m m +.在抛物线上的点E 的坐标为()2,23m m m --+,∴()2223(3)3DE m m m m m =--+-+=--, ∴111222ACE S DE F DE OF DE OA ∆=⋅⋅+⋅⋅=⋅⋅ ()2213933222m m m m =⋅--⋅=--,当9323222m-=-=-⎛⎫⨯- ⎪⎝⎭时,ACES∆的最大值是233932722228⎛⎫⎛⎫-⨯--⨯-=⎪ ⎪⎝⎭⎝⎭,∴点D的坐标为33,322⎛⎫--+⎪⎝⎭,即33,22⎛⎫-⎪⎝⎭(3)连EF,情况一:如图,当//CE AF时,ADF CDE∆∆∽,当3y=时,2233x x--+=,解得1x=,22x=-,∴点E的横坐标为-2,即点D的横坐标为-2,∴2m=-情况二:∵点(3,0)A-和(0,3)C,∴OA OC=,即45OAC∠=︒.如图,当ADF EDC∆∆∽时,45OAC CED∠=∠=︒,90AFD DCE∠=∠=︒,即EDC∆为等腰直角三角形,过点C作CG DE⊥,即点CG为等腰Rt EDC∆的中线,∴22mDE CG==-,3DF m=+,∴EF DE DF=+,即22323m m m m--+=-++,解得1m=,0m=(舍去)综述所述,当1m=-或-2时,ADF∆与CDE∆相似.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

2020年广东省东莞市中考数学试卷及答案解析

2020年广东省东莞市中考数学试卷及答案解析

2020年广东省东莞市中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是( )A .﹣9B .9C .19D .−192.(3分)一组数据2,4,3,5,2的中位数是( )A .5B .3.5C .3D .2.53.(3分)在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)4.(3分)若一个多边形的内角和是540°,则该多边形的边数为( )A .4B .5C .6D .75.(3分)若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x ≠﹣26.(3分)已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A .8B .2√2C .16D .47.(3分)把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为( )A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2+38.(3分)不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( ) A .无解 B .x ≤1 C .x ≥﹣1 D .﹣1≤x ≤19.(3分)如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B ′恰好落在AD 边上,则BE 的长度为( )A .1B .√2C .√3D .2 10.(3分)如图,抛物线y =ax 2+bx +c 的对称轴是直线x =1,下列结论:①abc >0;②b 2﹣4ac >0;③8a +c <0;④5a +b +2c >0,正确的有( )A .4个B .3个C .2个D .1个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy ﹣x = .12.(4分)如果单项式3x m y 与﹣5x 3y n 是同类项,那么m +n = .13.(4分)若√a −2+|b +1|=0,则(a +b )2020= .14.(4分)已知x =5﹣y ,xy =2,计算3x +3y ﹣4xy 的值为 .15.(4分)如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则∠EBD 的度数为 .16.(4分)如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m .17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=√2,y=√3.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生必选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如表:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组{ax+2√3y=−10√3,x+y=4与{x−y=2,x+by=15的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.22.(8分)如图1,在四边形ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AÊ上一点,AD =1,BC =2.求tan ∠APE 的值.23.(8分)某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35. (1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社区拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=8x(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=kx(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.(10分)如图,抛物线y=3+√36x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ 相似时,请直接写出所有满足条件的点Q的坐标.2020年广东省东莞市中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是( )A .﹣9B .9C .19D .−19【解答】解:9的相反数是﹣9,故选:A .2.(3分)一组数据2,4,3,5,2的中位数是( )A .5B .3.5C .3D .2.5【解答】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C .3.(3分)在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)【解答】解:点(3,2)关于x 轴对称的点的坐标为(3,﹣2).故选:D .4.(3分)若一个多边形的内角和是540°,则该多边形的边数为( )A .4B .5C .6D .7【解答】解:设多边形的边数是n ,则(n ﹣2)•180°=540°,解得n =5.故选:B .5.(3分)若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x ≠﹣2【解答】解:∵√2x −4在实数范围内有意义,∴2x ﹣4≥0,解得:x ≥2,∴x 的取值范围是:x ≥2.故选:B .6.(3分)已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A .8B .2√2C .16D .4【解答】解:∵D 、E 、F 分别为△ABC 三边的中点,∴DE 、DF 、EF 都是△ABC 的中位线,∴DF =12AC ,DE =12BC ,EF =12AC ,故△DEF 的周长=DE +DF +EF =12(BC +AB +AC )=12×16=8. 故选:A .7.(3分)把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为( )A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2+3【解答】解:二次函数y =(x ﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y =(x ﹣2)2+2.故选:C .8.(3分)不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( ) A .无解 B .x ≤1 C .x ≥﹣1 D .﹣1≤x ≤1【解答】解:解不等式2﹣3x ≥﹣1,得:x ≤1,解不等式x ﹣1≥﹣2(x +2),得:x ≥﹣1,则不等式组的解集为﹣1≤x ≤1,故选:D .9.(3分)如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B ′恰好落在AD 边上,则BE 的长度为( )A.1B.√2C.√3D.2【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.10.(3分)如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=x(y﹣1).【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【解答】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.13.(4分)若√a−2+|b+1|=0,则(a+b)2020=1.【解答】解:∵√a−2≥,|b+1|≥0,√a−2+|b+1|=0,∴a﹣2=0,a=2,b+1=0,b=﹣1,∴(a+b)2020=1.故答案为:1.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【解答】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2 =15﹣8 =7, 故答案为:7.15.(4分)如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则∠EBD 的度数为 45° .【解答】解:∵四边形ABCD 是菱形, ∴AD =AB ,∴∠ABD =∠ADB =12(180°﹣∠A )=75°, 由作图可知,EA =EB , ∴∠ABE =∠A =30°,∴∠EBD =∠ABD ﹣∠ABE =75°﹣30°=45°, 故答案为45°.16.(4分)如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为13m .【解答】解:如图,连接OA ,OB ,OC ,则OB =OA =OC =1m ,因此阴影扇形的半径为1m ,圆心角的度数为120°, 则扇形的弧长为:120π×1180m ,而扇形的弧长相当于围成圆锥的底面周长,因此有: 2πr =120π×1180, 解得,r =13(m ), 故答案为:13.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,MN =4,E 为MN 的中点,点D 到BA ,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为 2√5−2 .【解答】解:如图,连接BE ,BD .由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.(也可以用DE≥BD﹣BE,即DE≥2√5−2确定最小值)故答案为2√5−2.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=√2,y=√3.【解答】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生必选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如表:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【解答】解:(1)x=120﹣(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【解答】证明:∵∠ABE =∠ACD , ∴∠DBF =∠ECF ,在△BDF 和△CEF 中,{∠DBF =∠ECF∠BFD =∠CFE BD =CE ,∴△BDF ≌△CEF (AAS ), ∴BF =CF ,DF =EF , ∴∠FBC =∠FCB , ∴∠ABC =∠ACB , ∴AB =AC ,即△ABC 是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分) 21.(8分)已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.【解答】解:(1)由题意得,关于x ,y 的方程组的相同解,就是方程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =﹣4√3,b =12;(2)该三角形是等腰直角三角形,理由如下:当a =﹣4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2﹣4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.22.(8分)如图1,在四边形ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧AÊ上一点,AD=1,BC=2.求tan∠APE 的值.【解答】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,{∠OEC=∠OBC ∠OCE=∠OCB OC=OC,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图2所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD 是⊙O 的切线, ∴ED =AD =1,EC =BC =2, ∴CD =ED +EC =3,∴DF =√CD 2−CF 2=√32−12=2√2, ∴AB =DF =2√2, ∴OB =√2, ∵CO 平分∠BCD , ∴CO ⊥BE ,∴∠BCH +∠CBH =∠CBH +∠ABE =90°, ∴∠ABE =∠BCH , ∵∠APE =∠ABE , ∴∠APE =∠BCH ,∴tan ∠APE =tan ∠BCH =OBBC =√22.23.(8分)某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【解答】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)解法一:设建A摊位a个,建造这90个摊位的费用为y元,则建B摊位(90﹣a)个,由题意得:y=5a×40+3×30(90﹣a)=110a+8100,∵110>0,∴y随a的增大而增大,∵90﹣a≥3a,解得a≤22.5,∵a为整数,∴当a取最大值22时,费用最大,此时最大费用为:110×22+8100=10520;解法二:设建A摊位a(a为整数)个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B 是反比例函数y =8x(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C .反比例函数y =kx (x >0)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .(1)填空:k = 2 ; (2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.【解答】解:(1)设点B (s ,t ),st =8,则点M (12s ,12t ),则k =12s •12t =14st =2, 故答案为2;(2)连接OD ,则△BDF 的面积=△OBD 的面积=S △BOA ﹣S △OAD =12×8−12×2=3;(3)设点D (m ,2m),则点B (4m ,2m),∵点G 与点O 关于点C 对称,故点G (8m ,0), 则点E (4m ,12m),设直线DE 的表达式为:y =px +n ,将点D 、E 的坐标代入上式得{2m =mp +n 12m=4mp +n 并解得{p =−12m 2n =52m, 直线DE 的表达式为:y =−12m2x +52m ,令y =0,则x =5m ,故点F (5m ,0), 故FG =8m ﹣5m =3m ,而BD =4m ﹣m =3m =FG , 又∵FG ∥BD ,故四边形BDFG 为平行四边形. 25.(10分)如图,抛物线y =3+√36x 2+bx +c 与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,BC =√3CD . (1)求b ,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点Q 的坐标.【解答】解:(1)∵BO =3AO =3, ∴点B (3,0),点A (﹣1,0), ∴抛物线解析式为:y =3+√36(x +1)(x ﹣3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32; (2)如图1,过点D 作DE ⊥AB 于E ,∴CO ∥DE ,∴BC CD =BO OE ,∵BC =√3CD ,BO =3,∴√3=3OE, ∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标为(−√3,√3+1),设直线BD 的函数解析式为:y =kx +m ,由题意可得:{√3+1=−√3k +m 0=3k +m, 解得:{k =−√33m =√3,∴直线BD 的函数解析式为y =−√33x +√3;(3)∵点B (3,0),点A (﹣1,0),点D (−√3,√3+1), ∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1, ∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C (0,√3),∴OC =√3,∵tan ∠CBO =CO BO =√33,∴∠CBO =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2,∴DK =√AD2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N (1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN ,∴PN =2√33,BP =4√33, 当△BAD ∽△BPQ ,∴BP BA =BQ BD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q (1−2√33,0);当△BAD ∽△BQP ,∴BP BD =BQ AB ,∴BQ=4√33×42√3+2=4−4√33,∴点Q(﹣1+4√33,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=√2BN=2√2,当△DAB∽△BPQ,∴BPAD =BQ BD,∴√22√2=2√3+2,∴BQ=2√3+2∴点Q(1﹣2√3,0);当△BAD∽△PQB,∴BPBD =BQAD,∴BQ=2√2×2√22√3+2=2√3−2,∴点Q(5﹣2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(﹣1+4√33,0)或(1﹣2√3,0)或(5﹣2√3,0).。

广东省东莞市初中中考数学试卷习题试卷习题包括答案解析27289

广东省东莞市初中中考数学试卷习题试卷习题包括答案解析27289

--WORD格式 -- 专业资料 -- 可编辑 ---2021年广东省东莞市中考数学试卷一、选择题 (本大题 10 小题,每题 3 分,共 30 分)在每题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3 分)四个实数 0、、﹣、2 中,最小的数是 ()A .0 B.C.﹣ 3.14 D.22.(3 分)据有关部门统计, 2021 年“五一小长假〞期间,广东各大景点共接待游客约 14420000人次,将数 14420000用科学记数法表示为 ()A . 1.442 ×710B. 0.1442 ×7 10C. 1.442 ×810D.0.1442×810 3.(3 分)如图,由 5 个相同正方体组合而成的几何体,它的主视图是 ()A .B.C.D.4.(3 分)数据 1、5、7、4、8 的中位数是 ()A .4 B.5 C.6 D.75.(3 分)以下所述图形中,是轴对称图形但不是中心对称图形的是 ()A .圆B.菱形C.平行四边形 D .等腰三角形6.(3 分)不等式 3x﹣ 1≥ x+3的解集是 ()A . x ≤4 B. x ≥4 C. x ≤2 D. x ≥27.(3 分)在△ ABC 中,点 D 、E 分别为边 AB、AC 的中点,那么----WORD格式 -- 专业资料 -- 可编辑 ---△ADE 与△ ABC 的面积之比为 ()A .B.C. D .8.(3 分)如图, AB∥CD,那么∠DEC=100°,∠C=40°,那么B∠的大小是 ()A . 30 ° B. 40 °C. 50 °D. 60 °9.(3 分)关于 x 的一元二次方程x2﹣3x+m=0 有两个不相等的实数根,那么实数 m 的取值范围是 ()A .m< B. m≤ C.m> D. m≥10.(3 分)如图,点 P 是菱形 ABCD 边上的一动点,它从点A 出发沿在 A→ B→ C→D路径匀速运动到点 D,设△ PAD 的面积为 y,P 点的运动时间为 x,那么 y 关于 x 的函数图象大致为 ()A .B.C.D.二、填空题 (共 6 小题,每题 3 分,总分值 18 分)11.(3 分)同圆中,所对的圆心角是100 °,那么所对的圆周角是.12.(3 分)分解因式: x2﹣2x+1=.13.(3 分)一个正数的平方根分别是 x+1 和 x﹣5,那么 x=.----WORD格式 -- 专业资料 -- 可编辑 ---15.(3 分)如,矩形 ABCD 中,BC=4,CD=2 ,以 AD 直径的半 O 与 BC 相切于点 E,接 BD ,阴影局部的面.(果保存π)16.(3 分)如,等△ OA 1B1,点 A1在双曲 y= (x>0)上,点 B1的坐(2,0). B1作 B1A2∥OA 1交双曲于点 A 2, A 2作 A2B2∥A 1B1交x 于点 B2,得到第二个等△ B1A2B2;B2作 B2A3∥B1A2交双曲于点 A3, A3作 A3B3∥A 2B2交 x 于点 B3,得到第三个等△ B2A3B3;以此推,⋯,点 B6的坐.三、解答17.(6 分)算: | 2|20210+( )﹣118.(6分)先化,再求:?,其中 a=.19.(6分)如, BD 是菱形 ABCD 的角,∠CBD=75°,(1)用尺作法,作 AB 的垂直平分 EF,垂足 E,交 AD 于 F;(不要求写作法,保存作痕迹 )(2)在(1)条件下,接 BF,求∠ DBF 的度数.20.(7 分)某公司购置了一批 A、B 型芯片,其中 A 型芯片的单价比 B 型芯片的单价少 9 元,该公司用 3120 元购置 A 型芯片的条数与用 4200元购置 B 型芯片的条数相等.(1)求该公司购置的A、B 型芯片的单价各是多少元?(2)假设两种芯片共购置了200条,且购置的总费用为6280元,求购置了多少条 A 型芯片?21.(7 分)某企业工会开展“一周工作量完成情况〞调查活动,随机调查了局部员工一周的工作量剩余情况,并将调查结果统计后绘制成如图 1 和图 2 所示的不完整统计图.(1)被调查员工的人数为人:(2)把条形统计图补充完整;(3)假设该企业有员工10000 人,请估计该企业某周的工作量完成情况为“剩少量〞的员工有多少人?22.(7 分)如图,矩形 ABCD 中, AB>AD ,把矩形沿对角线 AC 所在直线折叠,使点 B 落在点 E 处, AE 交 CD 于点 F,连接DE .(1)求证:△ ADE ≌△ CED;(2)求证:△ DEF 是等腰三角形.23.(9 分)如图,顶点为 C(0,﹣ 3)的抛物线 y=ax2+b(a≠0) 与 x轴交于 A,B 两点,直线 y=x+m 过顶点 C 和点 B.(1)求 m 的值;(2)求函数 y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点 M,使得∠ MCB=15°?假设存在,求出点 M 的坐标;假设不存在,请说明理由.24.(9 分)如图,四边形 ABCD 中, AB=AD=CD ,以 AB 为直径的⊙ O 经过点 C,连接 AC、OD 交于点 E.(1)证明: OD ∥BC;(2)假设 tan∠ABC=2,证明: DA 与⊙ O 相切;(3)在(2)条件下,连接 BD 交⊙ O 于点 F,连接 EF,假设 BC=1,求 EF 的长.25.(9 分) Rt△OAB ,∠OAB=90°,∠ABO=30°,斜边OB=4 ,将 Rt△OAB 绕点 O 顺时针旋转 60 °,如图 1,连接 BC.(1)填空:∠ OBC=°;(2)如图 1,连接 AC,作 OP⊥AC,垂足为 P,求 OP 的长度;(3)如图 2,点 M,N 同时从点 O 出发,在△ OCB 边上运动, M 沿O→ C→B路径匀速运动, N 沿 O→ B→C路径匀速运动,当两点相遇时运动停止,点 M 的运动速度为 1.5 单位 / 秒,点N 的运动速度为 1 单位 / 秒,设运动时间为 x 秒,△ OMN 的面积为 y,求当 x 为何值时 y 取得最大值?最大值为多少?2021年广东省东莞市中考数学试卷参考答案与试题解析一、选择题 (本大题 10 小题,每题 3 分,共 30 分)在每题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3 分)四个实数 0、、﹣、2 中,最小的数是 ()A .0 B.C.﹣ 3.14 D.2【考点】 2A:实数大小比拟.菁优网版权所有【分析】正实数都大于 0,负实数都小于 0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比拟大小的方法,可得﹣<0<<2,所以最小的数是﹣.应选: C.2.(3 分)据有关部门统计, 2021 年“五一小长假〞期间,广东各大景点共接待游客约 14420000人次,将数 14420000用科学记数法表示为 ()A . 1.442 ×710B. 0.1442 ×7 10C. 1.442 ×810D.0.1442 ×810【考点】 1I:科学记数法—表示较大的数.菁优网版权所有【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,此题得以解决.【解答】解:14420000=1.442 7,× 10--3.(3 分)如图,由 5 个相同正方体组合而成的几何体,它的主视图是 ()A .B.C.D.【考点】 U2:简单组合体的三视图.菁优网版权所有【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B 中的图形,应选: B.4.(3 分)数据 1、5、7、4、8 的中位数是 ()A .4 B.5 C.6 D.7【考点】 W4:中位数.菁优网版权所有【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为 1、4、5、7、8,那么这组数据的中位数为 5 应选: B.5.(3 分)以下所述图形中,是轴对称图形但不是中心对称图形的是 ()A .圆B.菱形C.平行四边形 D .等腰三角形【考点】 P3:轴对称图形; R5:中心对称图形.菁优网版权所有【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解: A 、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.应选: D .6.(3 分)不等式 3x﹣ 1≥ x+3的解集是 ()A . x ≤4 B. x ≥4 C. x ≤2 D. x ≥2【考点】 C6:解一元一次不等式.菁优网版权所有【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为 1 即可得.【解答】解:移项,得:3x﹣ x ≥ 3+1 ,合并同类项,得:2x ≥ 4,系数化为 1,得:x ≥ 2,应选: D .7.(3 分)在△ ABC 中,点 D 、E 分别为边 AB、AC 的中点,那么△ADE 与△ ABC 的面积之比为 ()A .B.C. D .【考点】 KX :三角形中位线定理; S9:相似三角形的判定与性质.菁优网版权所有【分析】由点D、E 分别为边AB、AC 的中点,可得出DE 为△ABC 的中位线,进而可得出 DE ∥BC 及△ ADE ∽△ ABC,再利用相似三角形的性质即可求出△ADE 与△ABC 的面积之比.【解答】解:∵点 D、E 分别为边 AB、AC 的中点,∴D E 为△ ABC 的中位线,∴D E ∥BC,∴△ ADE ∽△ ABC,2∴=( ) = .8.(3 分)如图, AB∥CD,那么∠DEC=100°,∠C=40°,那么B∠的大小是 ()A . 30 ° B. 40 ° C. 50 ° D. 60 °【考点】 JA:平行线的性质.菁优网版权所有【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠ B= ∠ D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠ D=40°,又∵ AB∥CD,∴∠ B= ∠ D=40°,应选: B.9.(3 分)关于 x 的一元二次方程x2﹣3x+m=0 有两个不相等的实----WORD格式 -- 专业资料 -- 可编辑 ---A .m<B. m≤C.m>D. m≥【考点】 AA :根的判别式.菁优网版权所有【分析】根据一元二次方程的根的判别式,建立关于m 的不等式,求出 m 的取值范围即可.【解答】解:∵关于 x 的一元二次方程 x2﹣3x+m=0 有两个不相等的实数根,∴△ =b 2﹣4ac=(﹣3)2﹣ 4× 1× m>0,应选: A .10.(3 分)如图,点 P 是菱形 ABCD 边上的一动点,它从点A 出发沿在 A→ B→ C→D路径匀速运动到点D,设△ PAD 的面积为 y,P 点的运动时间为x,那么 y 关于 x 的函数图象大致为 ()A .B.C.D.【考点】 E7:动点问题的函数图象.菁优网版权所有【分析】设菱形的高为 h,即是一个定值,再分点 P 在 AB 上,在BC 上和在 CD 上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当 P 在 AB 边上时,如图 1,设菱形的高为 h,y= AP?h,∵A P 随 x 的增大而增大, h 不变,∴y 随 x 的增大而增大,应选项 C 不正确;②当 P 在边 BC 上时,如图 2,y= AD?h,AD 和 h 都不变,∴在这个过程中, y 不变,应选项 A 不正确;③当 P 在边 CD 上时,如图 3,y= PD?h,∵P D 随 x 的增大而减小, h 不变,∴y 随 x 的增大而减小,∵P点从点 A 出发沿在 A→ B→ C→D路径匀速运动到点 D ,∴P 在三条线段上运动的时间相同,应选项 D 不正确;应选: B.二、填空题 (共 6 小题,每题 3 分,总分值 18 分)11.(3 分)同圆中,所对的圆心角是100 °,那么所对的圆周角是50 °.【考点】 M5:圆周角定理.菁优网版权所有【分析】直接利用圆周角定理求解.【解答】解:弧 AB 所对的圆心角是100 °,那么弧 AB 所对的圆周角为 50 °.故答案为 50 °.12.(3 分)分解因式: x2﹣2x+1= (x﹣1)2.【考点】 54:因式分解﹣运用公式法.菁优网版权所有【分析】直接利用完全平方公式分解因式即可.【解答】解: x2﹣2x+1=(x﹣1)2.13.(3 分)一个正数的平方根分别是 x+1 和 x﹣5,那么 x=2 .【考点】 21:平方根.菁优网版权所有【分析】根据正数的两个平方根互为相反数列出关于 x 的方程,解之可得.【解答】解:根据题意知x+1+x ﹣ 5=0,解得: x=2,故答案为: 2.14.(3 分)+|b ﹣1|=0 ,那么 a+1= 2.【考点】 16:非负数的性质:绝对值;23:非负数的性质:算术平方根.菁优网版权所有【分析】直接利用非负数的性质结合绝对值的性质得出a,b 的--值进而得出答案.【解答】解:∵+|b ﹣1|=0 ,∴b﹣1=0,a﹣b=0,解得: b=1,a=1,故a+1=2.故答案为: 2.15.(3 分)如图,矩形 ABCD 中,BC=4,CD=2 ,以 AD 为直径的半圆 O 与 BC 相切于点 E,连接 BD,那么阴影局部的面积为π .(结果保存π)【考点】 LB:矩形的性质; MC:切线的性质; MO :扇形面积的计算.菁优网版权所有【分析】连接 OE ,如图,利用切线的性质得 OD=2 ,OE ⊥BC,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD﹣S 扇形EOD计算由弧 DE 、线段 EC、CD 所围成的面积,然后利用三角形的面积减去刚刚计算的面积即可得到阴影局部的面积.【解答】解:连接OE,如图,∵以 AD 为直径的半圆 O 与 BC 相切于点 E,∴O D=2 ,OE⊥BC,易得四边形 OECD 为正方形,∴由弧 DE 、线段 EC、CD 所围成的面积 =S 正方形OECD﹣S 扇形EOD =22﹣=4﹣π,∴阴影局部的面 = × 2× 4 (4π)=π.故答案π.16.(3 分)如,等△ OA 1B1,点 A1在双曲 y= (x>0)上,点 B1的坐(2,0). B1作 B1A2∥OA 1交双曲于点 A 2, A 2作 A2B2∥A 1B1交x 于点 B2,得到第二个等△ B1A2B2;B2作 B2A3∥B1A2交双曲于点 A3, A3作 A3B3∥A 2B2交 x 于点 B3,得到第三个等△ B2A3B3;以此推,⋯,点 B6的坐(2,0).【考点】 G6:反比例函数象上点的坐特征; KK :等三角形的性.菁网版所有【分析】根据等三角形的性以及反比例函数象上点的坐特征分求出 B2、B3、B4的坐,得出律,而求出点 B6的坐.【解答】解:如,作 A2C⊥x 于点 C, B1C=a, A2C= a, OC=OB 1+B1C=2+a,A 2(2+a, a).∵点 A2在双曲 y= (x>0)上,∴(2+a)? a=,--WORD格式 -- 专业资料 -- 可编辑 ---解得 a=1,或 a=1(舍去 ),∴OB2=OB 1+2B 1C=2+22=2 ,∴点 B2的坐 (2,0);作 A3D⊥x 于点 D , B2D=b , A3D=b,OD=OB 2+B 2D=2 +b ,A2(2+b ,b).∵点 A3在双曲 y=(x>0)上,∴(2 +b)? b= ,解得 b=+ ,或 b=(舍去 ),∴OB3=OB 2+2B 2D=22+2 =2,∴点 B3的坐 (2,0);同理可得点 B4的坐 (2 ,0)即 (4,0);⋯,∴点 B n的坐 (2,0),∴点 B6的坐 (2,0).故答案 (2 ,0).三、解答17.(6 分)算: | 2|20210+( )﹣1【考点】2C:数的运算; 6E:零指数;6F:整数指数.菁网版所有【分析】直接利用指数的性以及零指数的性、--WORD格式 -- 专业资料 -- 可编辑 ---值的性质进而化简得出答案.【解答】解:原式 =2﹣1+2=3 .18.(6 分)先化简,再求值:?,其中a=.【考点】 6D:分式的化简求值.菁优网版权所有【分析】原式先因式分解,再约分即可化简,继而将 a 的值代入计算.【解答】解:原式 =?=2a,当 a=时,原式 =2 × =.19.(6 分)如图, BD 是菱形 ABCD 的对角线,∠CBD=75°,(1)请用尺规作图法,作 AB 的垂直平分线 EF,垂足为 E,交 AD 于 F;(不要求写作法,保存作图痕迹 )(2)在(1)条件下,连接 BF,求∠ DBF 的度数.【考点】 KG :线段垂直平分线的性质; L8:菱形的性质; N2:作图—根本作图.菁优网版权所有【分析】 (1)分别以 A、B 为圆心,大于 AB 长为半径画弧,过两弧的交点作直线即可;(2)根据∠ DBF= ∠ABD ﹣∠ ABF 计算即可;--WORD格式 -- 专业资料 -- 可编辑 ---【解答】解: (1)如下图,直线EF 即为所求;(2)∵四边形 ABCD 是菱形,∴∠ ABD= ∠DBC= ∠ ABC=75°,DC∥AB,∠ A=∠C.∴∠ ABC=150 °,∠ABC+ ∠ C=180 °,∴∠ C= ∠ A=30 °,∵E F 垂直平分线段 AB,∴AF=FB ,∴∠ A= ∠ FBA=30 °,∴∠ DBF= ∠ABD ﹣∠ FBE=45 °.20.(7 分)某公司购置了一批 A、B 型芯片,其中 A 型芯片的单价比 B 型芯片的单价少 9 元,该公司用 3120 元购置 A 型芯片的条数与用 4200元购置 B 型芯片的条数相等.(1)求该公司购置的A、B 型芯片的单价各是多少元?(2)假设两种芯片共购置了200条,且购置的总费用为6280元,求购置了多少条 A 型芯片?【考点】 B7:分式方程的应用.菁优网版权所有【分析】 (1)设 B 型芯片的单价为x 元/ 条,那么 A 型芯片的单价为(x﹣9)元/ 条,根据数量 = 总价÷单价结合用 3120元购置 A 型----WORD格式 -- 专业资料 -- 可编辑 ---于 x 的分式方程,解之经检验后即可得出结论;(2)设购置 a 条 A 型芯片,那么购置 (200﹣a)条 B 型芯片,根据总价=单价×数量,即可得出关于 a 的一元一次方程,解之即可得出结论.【解答】解: (1)设 B 型芯片的单价为 x 元/ 条,那么 A 型芯片的单价为 (x﹣9)元/ 条,根据题意得:=,解得: x=35,经检验, x=35 是原方程的解,∴x﹣9=26.答:A 型芯片的单价为26 元/ 条,B 型芯片的单价为 35 元/ 条.(2)设购置 a 条 A 型芯片,那么购置 (200﹣a)条 B 型芯片,根据题意得: 26a+35(200﹣a)=6280,解得: a=80.答:购置了 80 条 A 型芯片.21.(7 分)某企业工会开展“一周工作量完成情况〞调查活动,随机调查了局部员工一周的工作量剩余情况,并将调查结果统计后绘制成如图 1 和图 2 所示的不完整统计图.(1)被调查员工的人数为800人:(2)把条形统计图补充完整;(3)假设该企业有员工10000 人,请估计该企业某周的工作量完成情况为“剩少量〞的员工有多少人?--WORD格式 -- 专业资料 -- 可编辑 ---【考点】 V5:用样本估计总体; VB :扇形统计图; VC:条形统计图.菁优网版权所有【分析】 (1)由“不剩〞的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量〞的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量〞人数所占百分比可得.【解答】解: (1)被调查员工人数为400 ÷ 50%=800人,故答案为: 800;(2)“剩少量〞的人数为 800﹣ (400+80+40)=280人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量〞的员工有10000 ×=3500 人.22.(7 分)如图,矩形 ABCD 中, AB>AD ,把矩形沿对角线 AC 所在直线折叠,使点 B 落在点 E 处, AE 交 CD 于点 F,连--WORD格式 -- 专业资料 -- 可编辑 ---接DE .(1)求证:△ ADE ≌△ CED;(2)求证:△ DEF 是等腰三角形.【考点】 KD :全等三角形的判定与性质; LB:矩形的性质;PB:翻折变换 (折叠问题 ).菁优网版权所有【分析】(1)根据矩形的性质可得出AD=BC 、AB=CD ,结合折叠的性质可得出AD=CE 、AE=CD ,进而即可证出△ADE ≌△CED(SSS);(2)根据全等三角形的性质可得出∠ DEF= ∠EDF ,利用等边对等角可得出 EF=DF ,由此即可证出△ DEF 是等腰三角形.【解答】证明: (1)∵四边形 ABCD 是矩形,∴A D=BC ,AB=CD .由折叠的性质可得: BC=CE,AB=AE ,∴A D=CE ,AE=CD .在△ ADE 和△ CED 中,,∴△ ADE ≌△ CED(SSS).(2)由(1)得△ ADE ≌△ CED ,∴∠ DEA= ∠EDC ,即∠ DEF= ∠EDF ,∴E F=DF ,∴△ DEF 是等腰三角形.--WORD格式 -- 专业资料 -- 可编辑 ---23.(9 分)如图,顶点为 C(0,﹣ 3)的抛物线 y=ax2+b(a≠0) 与 x 轴交于 A,B 两点,直线 y=x+m 过顶点 C 和点 B.(1)求 m 的值;(2)求函数 y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点 M,使得∠ MCB=15°?假设存在,求出点 M 的坐标;假设不存在,请说明理由.【考点】 HF :二次函数综合题.菁优网版权所有【分析】 (1)把 C(0,﹣ 3)代入直线 y=x+m 中解答即可;(2)把 y=0 代入直线解析式得出点 B 的坐标,再利用待定系数法确定函数关系式即可;(3)分 M 在 BC 上方和下方两种情况进行解答即可.【解答】解: (1)将(0,﹣ 3)代入 y=x+m ,可得: m= ﹣3;(2)将 y=0 代入 y=x﹣3 得: x=3,所以点 B 的坐标为 (3,0),将(0,﹣ 3)、(3,0)代入 y=ax2+b 中,可得:,解得:,所以二次函数的解析式为:y= x2﹣3;(3)存在,分以下两种情况:①假设 M 在 B 上方,设 MC 交 x 轴于点 D ,那么∠ODC=45° +15 ° =60 °,∴OD=OC?tan30 °=,设 DC 为 y=kx﹣3,代入 (,0),可得:k=,联立两个方程可得:,解得:,,所以 M1(3,6);②假设 M 在 B 下方,设 MC 交 x 轴于点 E,那么∠ OEC=45°﹣15 ° =30 °,∴OE=OC?tan60 ° =3 ,设 EC 为 y=kx﹣3,代入 (3,0)可得:k=,联立两个方程可得:,解得:,,所以 M2(,﹣ 2),综上所述 M 的坐标为 (3,6)或(,﹣ 2).24.(9 分)如图,四边形 ABCD 中, AB=AD=CD ,以 AB 为直径的⊙ O 经过点 C,连接 AC、OD 交于点 E.(1)证明: OD ∥BC;(2)假设 tan∠ABC=2,证明: DA 与⊙ O 相切;(3)在(2)条件下,连接 BD 交⊙ O 于点 F,连接 EF,假设 BC=1,求 EF 的长.【考点】 MR:圆的综合题.菁优网版权所有【分析】 (1)连接 OC,证△ OAD ≌△ OCD 得∠ ADO= ∠CDO ,由AD=CD 知 DE ⊥AC,再由 AB 为直径知 BC⊥AC,从而得OD ∥BC;(2) 根据tan ∠ ABC=2可设BC=a 、那么AC=2a 、AD=AB==,证 OE 为中位线知OE=a、AE=CE=AC=a,进一步求得 DE==2a,再△AOD 中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△ AFD ∽△ BAD 得 DF?BD=AD 2①,再证△ AED ∽△OAD 得 OD?DE=AD 2②,由①②得 DF?BD=OD?DE,即= ,结合∠ EDF= ∠BDO 知△ EDF ∽△ BDO ,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解: (1)连接 OC,在△ OAD 和△ OCD 中,∵,∴△ OAD ≌△ OCD(SSS),∴∠ ADO= ∠CDO ,又AD=CD ,∴DE ⊥AC,∵AB 为⊙ O 的直径,∴∠ ACB=90°,∴∠ ACB=90°,即 BC⊥AC,∴OD ∥BC;(2)∵tan∠ABC= =2,∴设 BC=a、那么 AC=2a,∴AD=AB==,∵O E ∥BC,且 AO=BO ,∴O E= BC= a,AE=CE= AC=a,在△ AED 中, DE==2a,在△AOD中,AO 2+AD 2=()2+(a)2=a2,OD 2=(OE+DE) 2=( a+2a)2=a2,∴AO 2+AD 2=OD 2,∴∠ OAD=90°,那么 DA 与⊙ O 相切;(3)连接 AF,∵A B 是⊙ O 的直径,∴∠AFD= ∠ BAD=90°,∵∠ADF= ∠BDA ,∴△ AFD∽△ BAD ,∴ = ,即 DF?BD=AD 2①,又∵∠ AED= ∠ OAD=90°,∠ ADE= ∠ODA ,∴△ AED ∽△ OAD ,∴= ,即 OD?DE=AD 2②,由①②可得 DF?BD=OD?DE,即 = ,又∵∠ EDF= ∠BDO ,∴△ EDF ∽△ BDO ,∵B C=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴= ,即 = ,解得: EF= .25.(9 分) Rt△OAB ,∠OAB=90°,∠ABO=30°,斜边OB=4 ,将 Rt△OAB 绕点 O 顺时针旋转 60 °,如图 1,连接 BC.(1)填空:∠ OBC= 60°;(2)如图 1,连接 AC,作 OP⊥AC,垂足为 P,求 OP 的长度;(3)如图 2,点 M,N 同时从点 O 出发,在△ OCB 边上运动, M 沿O→ C→B路径匀速运动, N 沿 O→ B→C路径匀速运动,当两点相遇时运动停止,点 M 的运动速度为 1.5 单位 / 秒,点N 的运动速度为 1 单位 / 秒,设运动时间为 x 秒,△ OMN 的面积为 y,求当 x 为何值时 y 取得最大值?最大值为多少?【考点】 RB:几何变换综合题.菁优网版权所有【分析】 (1)只要证明△ OBC 是等边三角形即可;(2)求出△ AOC 的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0< x ≤时, M 在OC 上运动, N 在 OB 上运动,此时过点N 作 NE ⊥OC 且交OC 于点 E.②当< x ≤4时, M 在 BC 上运动, N 在 OB 上运动.③当 4< x ≤时, M、N 都在 BC 上运动,作 OG ⊥BC 于 G.【解答】解: (1)由旋转性质可知: OB=OC ,∠ BOC=60°,∴△ OBC 是等边三角形,∴∠ OBC=60°.故答案为 60.(2)如图 1 中,∵O B=4 ,∠ ABO=30°,∴O A= OB=2 , AB= OA=2 ,∴S△AOC = ?OA?AB= × 2×2 =2,∵△ BOC 是等边三角形,∴∠ OBC=60°,∠ABC= ∠ABO+ ∠ OBC=90°,∴AC==2,∴OP===.(3)①当 0< x ≤时,M 在 OC 上运动,N 在 OB 上运动,此时过点N 作 NE ⊥OC 且交 OC 于点E.那么 NE=ON?sin60 °= x,∴S△OMN = ?OM?NE= × 1.5x ×x,∴y= x2.∴x= 时, y 有最大值,最大值 =.②当< x ≤4时, M 在 BC 上运动, N 在 OB 上运动.作MH ⊥OB 于 H.那么 BM=8 ﹣,MH=BM?sin60 °= (8﹣1.5x),∴y= × ON× MH=﹣x2+2x.当 x= 时, y 取最大值, y<,③当 4< x ≤时, M、N 都在 BC 上运动,作 OG ⊥BC 于 G.MN=12 ﹣,OG=AB=2,∴y= ?MN?OG=12﹣x,当 x=4 时, y 有最大值,最大值 =2,综上所述, y 有最大值,最大值为.。

2020年广东省东莞中考数学试卷(附答案与解析)

2020年广东省东莞中考数学试卷(附答案与解析)

绝密★启用前2020年广东省东莞市中考试卷数 学一、选择题(本大题共10小题,每小题3分,共30分)1.下列实数中,最小的是( )A .0B .1-C.D .12.美国约翰斯·霍普金斯大学实时统计数据显示,截至北京时间5月10日8时,全球新冠肺炎确诊病例超4 000 000例.其中4 000 000科学记数法可以表示为 ( )A .70.410⨯B .6410⨯C .7410⨯ D .54010⨯ 3.若分式11x +有意义,则x 的取值范围是( )A .1x -<B .1x -≤C .1x ->D .1x -≠ 4.下列立体图形中,侧面展开图是扇形的是( )ABC D5.下列四个不等式的解集在数轴上表示如下图的是( )A .12x +≤B .12x +<C .12x +>D .12x +≥6.如下图,AC 是矩形ABCD 的对角线,且2AC AD =,那么CAD ∠的度数是( )A .30°B .45°C .60°D .75° 7.一组数据2,3,4,2,5的众数和中位数分别是( )A .2,2B .2,3C .2,4D .5,4 8.计算62a a ÷的结果是( ) A .3 B .4C .3aD .4a9.如下图,已知AB CD CE ∥,平分ACD ∠,且°120A ∠=,则1=∠( )A .30°B .40°C .45°D .60°10.如下图,一次函数1y x =+和2y x =与反比例函数2y x=的交点分别为点A B 、和C ,下列结论中,正确的个数是( )①点A 与点B 关于原点对称;②OA OC =;③点A 的坐标是()12,;④ABC △是直角三角形. A .1 B .2C .3D .4二、填空题(本大题共7小题,每小题4分,共28分)11.________.12.若正n 边形的一个外角等于36°,则n =________.13.若等边ABC △的边长AB 为2,则该三角形的高为________.14.如下图,四边形ABCD 是O 的内接四边形,若°70A ∠=,则C ∠的度数是________.15.一个不透明的袋子里装有除颜色不同其他都相同的红球、黄球和蓝球,其中红球有2个,黄球有1个,从中任意摸出1球是红球的概率为14,则蓝球的个数是________. 16.已知方程组24417x y x y +=⎧⎨-=⎩,则x y -=________.-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________17.如下图,等腰121121OA A OA A A ==Rt △,,以2OA 为直角边作23OA A Rt △,再以3OA 为直角边作34OA A Rt △,以此规律作等腰89OA A Rt △,则89OA A △的面积是________.三、解答题(本大题共8小题)18.()0°22cos 60 3.14π-+--.19.先化简,再求值:()22211x x x x x-+÷--,其中x =20.如下图,在ABC Rt △中,°90810C AC AB ∠===,,.(1)用尺规作图作AB 的垂直平分线EF ,交AB 于点E ,交AC 于点F (保留作图痕迹,不要求写作法、证明). (2)在(1)的条件下,求EF 的长度.21.因受疫情影响,东莞市2020年体育中考方案有较大变化,由原来的必考加选考,调整为“七选二”,其中男生可以从A (篮球1分钟对墙双手传接球)、B (投掷实心球)、C (足球25米绕杆)、D (立定跳远)、E (1 000米跑步)、F (排球1分钟对墙传球)、G (1分钟踢毽球)等七个项目中选考两项.据统计,某校初三男生都在“A ”“B ”“C ”“D ”四个项目中选择了两项作为自己的体育中考项目.根据学生选择情况,进行了数据整理,并绘制成如下统计图,请结合图中信息,解答下列问题:(1)扇形统计图中C 所对应的圆心角的度数是________. (2)请补全条形统计图.(3)为了学生能考出好成绩,该校安排每位体育老师负责指导A B C D 、、、项目中的两项,若张老师随机选两项作为自己的指导项目,请用列表法或画树状图的方法求所选的项目恰好是A 和B 的概率.22.某地有甲、乙两家口罩厂,已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且乙厂单独完成60万只口罩的生产比甲厂单独完成多用5天. (1)求甲、乙厂每天分别可以生产多少万只口罩?(2)该地委托甲、乙两厂尽快完成100万只口罩的生产任务,问两厂同时生产至少需要多少天才能完成生产任务?23.如下图,°90EAD O ∠=,与AD 相交于B C 、,与AE 相切于点E ,已知OA OD =.(1)求证:OAB ODC △≌△.(2)若24AB AE ==,,求O 的半径.24.如图,ABC Rt △中,°90ACB ∠=,点E 为斜边AB 的中点,将线段AC 平移至ED 交BC 于点M ,连接CD CE BD 、、.(1)求证:CD BE =.(2)求证:四边形BECD 为菱形。

东莞中考数学试题及答案

东莞中考数学试题及答案

东莞中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333...D. 2/3答案:B2. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 16D. 14答案:B3. 函数y=2x+3的图象与x轴的交点坐标是?A. (3,0)B. (0,3)C. (-3/2,0)D. (0,-3)答案:C4. 下列哪个选项是二次函数y=ax^2+bx+c(a≠0)的对称轴?A. x=bB. x=-cC. x=-b/2aD. x=a答案:C5. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A6. 一个圆的半径是5,那么这个圆的面积是多少?A. 25πB. 50πC. 100πD. 25答案:C7. 如果一个角的补角是120°,那么这个角的度数是多少?A. 60°B. 30°C. 120°D. 150°答案:B8. 一个长方体的长、宽、高分别是2、3、4,那么这个长方体的体积是多少?A. 24B. 36C. 12D. 18答案:A9. 一个数的绝对值是5,那么这个数可以是?A. 5或-5B. 5或0C. 0或-5D. 只有5答案:A10. 一个正比例函数y=kx(k≠0)的图象经过点(2,6),那么k的值是多少?A. 3B. 6C. 2D. 1/2答案:A二、填空题(每题3分,共15分)11. 如果一个数的平方是25,那么这个数是___________。

答案:±512. 一个直角三角形的两条直角边长分别是3和4,那么这个三角形的斜边长是___________。

答案:513. 函数y=x^2-4x+4的最小值是___________。

答案:014. 一个数的立方是-8,那么这个数是___________。

答案:-215. 一个扇形的圆心角是60°,半径是4,那么这个扇形的面积是___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

★ 机密·启用前2008年广东省初中毕业生学业考试数 学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号,姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.21-的值是 A .21-B .21C .2-D .22.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递路线全长约40820米,用科学计数法表示火炬传递路程是 A .2102.408⨯米 B .31082.40⨯米 C .410082.4⨯米 D .5104082.0⨯米 3.下列式子中是完全平方式的是A .22b ab a ++ B .222++a aC .222b b a +-D .122++a a4.下列图形中是轴对称图形的是5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位数是A .28B .C .29D .二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.2- 的相反数是__________;7.经过点A (1,2)的反比例函数解析式是_____ _____; 8.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是____________; 9.如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°, 则∠AN M= °;10.如图2,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °. 三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本题满分6分)计算 :01)2008(260cosπ-++-ο. 12.(本题满分6分)解不等式x x <-64,并将不等式的解集表示在数轴上. 13.(本题满分6分)如图3,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长. 14.(本题满分6分)已知直线1l :54+-=x y 和直线2l ::421-=x y ,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15.(本题满分6分)如图4,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。

四、解答题(二)(本大题4小题,每小题7分,共28分) 16.(本题满分7分)在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的倍,求这两种车的速度。

17.(本题满分7分)一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个.若从中任意摸出一个球,这个球是白球的概率为.(1)求口袋中红球的个数.(2)小明认为口袋中共有三种颜色的球,所以从袋中任意摸出一球,摸到红球、白球或黄A M NBC 图1O B DCA图2 ABC图3图4球的概率都是31,你认为对吗请你用列表或画树状图的方法说明理由. 18.(本题满分7分)如图5,在△ABC 中,BC>AC , 点D 在BC 上,且DC =AC,∠ACB 的平分线CF 交AD 于F ,点E 是AB 的中点,连结EF. (1)求证:EF ∥BC.(2)若四边形BDFE 的面积为6,求△ABD 的面积. 19.(本题满分7分)如图6,梯形ABCD 是拦水坝的横断面图,(图中3:1=i 是指坡面的铅直高度DE 与水平宽度CE 的比),∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD 的面积.(结果保留三位有效数字.参考数据:3≈,2≈)五、解答题(三)(本大题3小题,每小题9分,共27分) 20.(本题满分9分)(1)解方程求出两个解1x 、2x ,并计算两个解的和与积,填人下表方程1x .2x关于x 的方程 (a 、b 、c 为常数, 且04,02≥-≠ac b a )(2)观察表格中方程两个解的和、两个解的积与原方程的系数之间的关系有什么规律写出你的结论.21.(本题满分9分)(1)如图7,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小; (2)如图8,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小. 22.(本题满分9分)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边 AB 重合,直角边不重合,已知AB=8,BC=AD=4,AC 与BD 相交于点E ,连结CD .(1)填空:如图9,AC= ,BD= ;四边形ABCD 是 梯形.(2)请写出图9中所有的相似三角形(不含全等三角形).(3)如图10,若以AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴建立如图10的平面直角坐标系,保持ΔABD 不动,将ΔABC 向x 轴的正方向平移到ΔFGH 的位置,FH 与BD 相交于点P ,设AF=t ,ΔFBP 面积为S ,求S 与t 之间的函数关系式,并写出t 的取值值范围.A DBE 图6i =1:3CC BO D 图7 A B A O D CE图82008年广东省初中毕业生学业考试数学参考答案一、选择题(每小题3分); ; ; ; . 二、填空题(每小题4分) ; 7.2y x=; 8.9+; ; .三、解答题(一)(每小题6分)11.解: 原式12.解:移项,得 4x-x<6,………………1分 合并,得 3x<6,…………………2分 ∴不等式的解集为 x<2,…………4分其解集在数轴上表示如下:……………………6分13.解:(1)作图正确得2分(不保留痕迹的得1分)…………2分 (2)在△ABC 中,AB=AC ,AD 是△ABC 的中线,∴AD ⊥BC ,…………………………………………………3分 118422BD CD BC ===⨯=.…………………………4分 在Rt △ABD 中,AB =10,BD =4,222AD BD AB +=,……5分 AD ∴==…………………6分14.解:由题意得,45,14.2y x y x =-+⎧⎪⎨=-⎪⎩ ……………………………………1分 解得,2,3.x y =⎧⎨=-⎩ …………………………………………3分∴ 直线1l 和直线2l 的交点坐标是(2,-3).……………4分 交点(2,-3)落在平面直角坐标系的第四象限上.……6分 15.解:设小正方形的边长为xcm . …………………………1分 由题意得,2108480%108x ⨯-=⨯⨯.……………3分 解得,122, 2x x ==-. ………………………………4分 经检验,12x =符合题意,22x =-不符合题意舍去. ∴ 2x =.…………………………………………………5分 答:截去的小正方形的边长为2cm . ……………………6分DC A E图图10四、解答题(二)(每小题7分)16.解:设抢修车的速度为x 千米/时,则吉普车的速度为1.5x 千米/时.…………1分 由题意得,1515151.560x x -=. ……………………………………………………3分 解得,20x =.……………………………………………………………………5分经检验,20x =是原方程的解,并且20, 1.530x x ==都符合题意.…………6分 答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.……………7分 17.解:(1)设红球的个数为x ,………………………………1分由题意得,20.521x=++ ………………………………2分解得, 1x =.答:口袋中红球的个数是1. ………………………………3分 (2)小明的认为不对. ………………………………………4分 树状图如下:…………6分21()42P ==白,1()4P =黄,∴1()4P =红.∴小明的认为不对. ………………………………………7分 18.(1)证明:CF ACB ∠Q 平分,∴ 12∠=∠.……………………1分 又∵ DC AC =,∴ CF 是△ACD 的中线,∴ 点F 是AD 的中点.…………2分 ∵ 点E 是AB 的中点, ∴ EF ∥BD,即 EF ∥BC. …………………………3分 (2)解:由(1)知,EF ∥BD , ∴ △AEF ∽△ABD , ∴2()AEF ABD S AE S AB∆∆=.……………………………………4分 又∵ 12AE AB =, 6AEF ABD ABD BDFE S S S S ∆∆∆=-=-四边形,………………5分 ∴261()2ABD ABD S S ∆∆-= ,………………………………………6分红黄白2白1开始21FEDCBA∴ 8ABD S ∆=,∴ ABD ∆的面积为8. ………………………………………7分 19.解:过点A 作AF ⊥BC ,垂足为点F. 在Rt △ABF 中,∠B=60°,AB=6,∴ sin AF AB B =∠= 3=.…………………2分 ∵ AD ∥BC,AF ⊥BC,DE ⊥BC, ∴ 四边形AFED 是矩形, ∴DE AF ==,4FE AD ==.……………………………………3分在Rt △CDE中,ED i EC ==, ∴9EC ===,∴ 34916BC BF FE EC =++=++=.………………………………5分 ∴ 1()2ABCD S AD BC DE =+g 梯形 52.0≈.答:拦水坝的横断面ABCD 的面积约为面积单位.……………………7分 五、解答题(三)(每小题9分) 20.(1)3,3-, 0, 29-;…………………………2分32, 0, 32, 0;…………………………4分 2, 1, 3, 2;…………………………6分 b a -, ca.…………………………7分 (2)已知:1x 和2x 是方程20 (0)ax bx c a ++=≠的两个根,那么,12b x x a +=-, 12cx x a⋅=.……………………………………9分 21.解:(1)如图7.∵ △BOC 和△ABO 都是等边三角形, 且点O 是线段AD 的中点,∴ OD=OC=OB=OA,∠1=∠2=60°, ……1分 ∴ ∠4=∠5.又∵∠4+∠5=∠2=60°,∴ ∠4=30°.…………………………2分F EB同理,∠6=30°.…………………………3分 ∵ ∠AEB=∠4+∠6,∴ ∠AEB=60°.………………………4分 (2)如图8. ∵ △BOC 和△ABO 都是等边三角形, ∴ OD=OC, OB=OA,∠1=∠2=60°,………5分 又∵OD=OA,∴ OD =OB ,OA =OC ,∴ ∠4=∠5,∠6=∠7. …………………6分 ∵ ∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC. …………………………………7分 ∵ ∠4+∠5+∠DOB=180°, ∠6+∠7+∠AOC=180°, ∴ 2∠5=2∠6,∴ ∠5=∠6.………………………………………………8分 又∵ ∠AEB=∠8-∠5, ∠8=∠2+∠6, ∴ ∠AEB =∠2+∠5-∠5=∠2,∴ ∠AEB =60°.…………………………………………9分 22.解:(1)1分等腰;…………………………2分(2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)①△DCE 、△ABE 与△ACD 或△BDC 两两相似,分别是:△DCE ∽△ABE ,△DCE ∽△ACD ,△DCE ∽△BDC ,△ABE ∽△ACD ,△ABE ∽△BDC ;(有5对)②△ABD ∽△EAD ,△ABD ∽△EBC ;(有2对) ③△BAC ∽△EAD ,△BAC ∽△EBC ;(有2对)所以,一共有9对相似三角形.…………………………………………5分(3)由题意知,FP ∥AE , ∴ ∠1=∠PFB ,又∵ ∠1=∠2=30°, ∴ ∠PFB =∠2=30°,∴ FP =BP (6)过点P 作PK ⊥FB 于点K ,则FK BK =∵ AF =t ,AB =8, ∴ FB =8-t ,1(8)2BK t =-. 在Rt △BPK 中,1tan 22PK BK =⋅∠=∴ △FBP 的面积11(8))22S FB PK t t =⋅⋅=⋅--, 图88765421EO DC BA3∴ S 与t 之间的函数关系式为:2(8)12S t =-,或24123S t =-…………………………………8分 t 的取值范围为:08t ≤<. …………………………………………………………9分。

相关文档
最新文档