课时跟踪训练57

合集下载

课时跟踪训练53

课时跟踪训练53

课时跟踪训练53课时跟踪训练(五十三)[基础巩固]一、选择题1.(2019·广东汕头质检)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A.45B.35 C .-35 D .-45[解析] ∵抛物线C :y 2=4x 的焦点为F ,∴点F 的坐标为(1,0).又∵直线y =2x -4与C 交于A ,B 两点,∴A ,B 两点坐标分别为(1,-2),(4,4),则FA →=(0,-2),FB →=(3,4),∴cos ∠AFB =FA →·FB →|FA →||FB →|=-810=-45.故选D.[答案] D2.(2019·北京东城期末)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们的横坐标之和等于3,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在[解析] 过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,若直线AB 的斜率不存在,则横坐标之和等于2,不符合题意.设直线AB 的斜率为k ,则直线AB 的方程为y =k (x -1),代入抛物线方程y 2=4x ,得k 2x 2-2(k 2+2)x +k 2=0.∵A ,B 两点的横坐标同理MF 平分∠OFA ,所以∠NFM =90°.故选B. [答案] B5.(2019·黑龙江七台河期末)已知抛物线C :y 2=-8x 的焦点为F ,直线l :x =1,点A 是l 上的一动点,直线AF 与抛物线C 的一个交点为B .若FA →=-3FB →,则|AB |=( )A .20B .16C .10D .5[解析] 由抛物线C :y 2=-8x ,得F (-2,0).设A (1,a ),B (m ,n ),且n 2=-8m .∵FA →=-3FB →,∴1+2=-3(m +2),解得m =-3,∴n =±2 6.∵a =-3n ,∴a =±66,∴|AB |=(1+3)2+(26+66)2=20.故选A. [答案] A6.(2019·湖北襄阳月考)已知抛物线y =12x 2的焦点为F ,准线为l ,M 在l 上,线段MF 与抛物线交于N 点,若|MN |=2|NF |,则|MF |=( )A .2B .3 C. 2 D. 3 [解析]如图,过N 作准线的垂线NH ,垂足为H . 根据抛物线的定义可知|NH |=|NF |, 在△NHM 中,|NM |=2|NH |,则∠NMH =45°.在△MFK 中,∠FMK =45°, 所以|MF |=2|FK |.而|FK |=1. 所以|MF |= 2.故选C. [答案] C7.已知抛物线y 2=2px (p >0)的准线与曲线x 2+y 2-4x -5=0相切,则p 的值为__________.[解析] 曲线的标准方程为(x -2)2+y 2=9,其表示圆心为(2,0),半径为3的圆,又抛物线的准线方程为x =-p2,∴由抛物线的准线与圆相切得2+p2=3,解得p =2.[答案] 2 二、填空题8.(2019·武汉模拟)抛物线y 2=4x 的焦点为F ,倾斜角等于45°的直线过F 交该抛物线于A ,B 两点,则|AB |=__________.[解析] 由抛物线焦点弦的性质,得|AB |=2psin 2α=2×2sin 245°=8.[答案] 89.(2019·黑龙江绥化期末)设抛物线y 2=16x 的焦点为F ,经过点P ( 1,0)的直线l 与抛物线交于A ,B 两点,且2BP →=PA →,则|AF |+2|BF |=________.[解析] 设A (x 1,y 1),B (x 2,y 2).∵P (1,0),∴BP →=(1-x 2,-y 2),PA →=(x 1-1,y 1). ∵2BP →=PA →,∴2(1-x 2,-y 2)=(x 1-1,y 1), ∴x 1+2x 2=3,-2y 2=y 1.将A (x 1,y 1),B (x 2,y 2)代入抛物线方程y 2=16x ,得y 21=16x 1,y 22=16x 2.又∵-2y 2=y 1,∴4x 2=x 1.又∵x 1+2x 2=3,解得x 2=12,x 1=2.∴|AF |+2|BF |=x 1+4+2(x 2+4)=2+4+2×⎝ ⎛⎭⎪⎫12+4=15. [答案] 15 三、解答题10.(2019·河北沧州百校联盟)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线上一点P 的横坐标为2,|PF |=3.(1)求抛物线C 的方程;(2)过点F 且倾斜角为30°的直线交抛物线C 于A ,B 两点,O 为坐标原点,求△OAB 的面积.[解] (1)由抛物线定义可知,|PF |=2+p2=3,∴p =2,∴抛物线C 的方程为y 2=4x .(2)由y 2=4x ,得F (1,0),∴过点F 且倾斜角为30°的直线方程为y =33(x -1).联立y 2=4x ,消去x 得y 2-43y -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=43,y 1y 2=-4. ∴S △OAB =S △OAF +S △OFB =12|y 1-y 2|=12×48+16=4.[能力提升]11.(2019·辽宁沈阳二中期中)抛物线C :y 2=4x 的焦点为F ,斜率为k 的直线l 与抛物线C 交于M ,N 两点.若线段MN 的垂直平分线与x 轴交点的横坐标为a (a >0),n =|MF |+|NF |,则2a -n =( )A .2B .3C .4D .5[解析] 由题意得F (1,0),准线方程为x =-1.线段MN 的中点坐标为(x 0,y 0).由抛物线的定义,得n =|MF |+|NF |=x M +1+x N +1=x M +x N +2=2x 0+2.因为线段MN 的垂直平分线方程为y -y 0=-1k (x -x 0),令y =0,得x =ky 0+x 0,即a =ky 0+x 0.由点差法可得ky 0=2,所以x 0=a -2,所以2a -n =2x 0+4-(2x 0+2)=2.故选A.[答案] A12.(2019·北京昌平期末)已知△ABC 的三个顶点均在抛物线y 2=x 上,边AC 的中线BM ∥x 轴,|BM |=2,则△ABC 的面积为________.[解析] 根据题意设A (a 2,a ),B (b 2,b ),C (c 2,c ),不妨设a >c .∵M 为边AC 的中点,∴M ⎝ ⎛⎭⎪⎪⎫a 2+c 22,a +c 2. 又∵BM ∥x 轴,∴b =a +c2.∴|BM |=⎪⎪⎪⎪⎪⎪⎪⎪a 2+c 22-b 2=⎪⎪⎪⎪⎪⎪⎪⎪a 2+c 22-(a +c )24=2, ∴(a -c )2=8,∴a -c =2 2.作AH ⊥BM 交BM 的延长线于H ,故S △ABC =2S △ABM =2×12|BM |·|AN |=2|a -b |=2⎪⎪⎪⎪⎪⎪⎪⎪a -a +c 2=a -c =2 2. [答案] 2 213.(2019·福建厦门期中)设抛物线C :y 2=4x ,F 为C 的焦点,过点F 的直线l 与C 相交于A ,B 两点.(1)若l 的斜率为1,求|AB |的大小; (2)求证:OA →·OB →是一个定值.[解] (1)∵直线l 的斜率为1且过点F (1,0), ∴直线l 的方程为y =x -1.设A (x 1,y 1),B (x 2,y 2),联立⎩⎨⎧y =x -1,y 2=4x ,消去y 得x 2-6x +1=0.Δ>0,∴x 1+x 2=6,x 1x 2=1,∴|AB |=x 1+x 2+p =8.(2)证明:设直线l 的方程为x =ky +1,联立⎩⎨⎧x =ky +1,y 2=4x ,消去x 得y 2-4ky -4=0,Δ>0.设A =(x 1,y 1),B =(x 2,y 2),则y 1+y 2=4k ,y 1y 2=-4, OA →=(x 1,y 1),OB →=(x 2,y 2).∴OA →·OB →=x 1x 2+y 1y 2=(ky 1+1)(ky 2+1)+y 1y 2=k 2y 1y 2+k (y 1+y 2)+1+y 1y 2=-4k 2+4k 2+1-4=-3.∴OA →·OB →=-3是一个定值.14.已知抛物线y 2=2px (p >0),过点C (-2,0)的直线l 交抛物线于A 、B 两点,坐标原点为O ,OA →·OB →=12.(1)求抛物线的方程;(2)当以AB 为直径的圆与y 轴相切时,求直线l 的方程. [解] (1)设l :x =my -2,代入y 2=2px , 得y 2-2pmy +4p =0.(*) 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=4p ,则x 1x 2=y 21y 224p2=4.因为OA →·OB →=12,所以x 1x 2+y 1y 2=12,即4+4p =12, 得p =2,抛物线的方程为y 2=4x . (2)(1)中(*)式可化为y 2-4my +8=0, y 1+y 2=4m ,y 1y 2=8. 设AB 的中点为M ,则|AB |=2x M =x 1+x 2=m (y 1+y 2)-4=4m 2-4,① 又|AB |=1+m 2|y 1-y 2|=(1+m 2)(16m 2-32),②由①②得(1+m 2)(16m 2-32)=(4m 2-4)2, 解得m 2=3,m =±3.所以直线l 的方程为x +3y +2=0或x -3y +2=0.[延伸拓展]已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两点.当直线l 的斜率是12时,AC →=4AB →.(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围. [解] (1)设B (x 1,y 1),C (x 2,y 2),当直线l 的斜率是12时,l 的方程为y =12(x +4),即x =2y -4.由⎩⎨⎧x 2=2py ,x =2y -4得2y 2-(8+p )y +8=0,∴⎩⎪⎨⎪⎧y 1y 2=4, ①y 1+y 2=8+p 2. ②又∵AC →=4AB →,∴y 2=4y 1,③由①②③及p >0得:y 1=1,y 2=4,p =2,则抛物线G 的方程为x 2=4y .第 11 页 (2)设l :y =k (x +4),BC 的中点坐标为(x 0,y 0),由⎩⎨⎧ x 2=4y ,y =k (x +4)得x 2-4kx -16k =0,④∴x 0=x C +x B 2=2k ,y 0=k (x 0+4)=2k 2+4k . ∴线段BC 的中垂线方程为y -2k 2-4k =-1k (x -2k ),∴线段BC 的中垂线在y 轴上的截距为:b =2k 2+4k +2=2(k +1)2,对于方程④,由Δ=16k 2+64k >0得:k >0或k <-4. ∴b ∈(2,+∞).。

2018_2019学年高中语文课时跟踪检测(七)张中丞传后叙(含解析)苏教版

2018_2019学年高中语文课时跟踪检测(七)张中丞传后叙(含解析)苏教版

张中丞传后叙(时间:40分钟分值:57分)一、基础达标(25分,选择题每小题3分)1.对下列各句中加点词的解释,不正确的一项是( )A.不为.许远立传为:替,给B.竟.与巡俱守死,成功名竟:竟然C.外无待.而犹死守待:依靠,后援D.观者见其然,从而尤.之尤:怪罪解析:选B B项,竟:终于,最终。

2.下列句子中不含通假字的一项是( )A.人之将死,其藏腑必有先受其病者B.吾归破贼,必灭贺兰,此矢所以志也C.及巡起事,嵩常在围中D.初守睢阳时,士卒仅万人解析:选D A项,“藏腑”同“脏腑”;B项,“志”同“识”;C项,“常”同“尝”。

3.下列句中加点词语的意义与现代汉语基本相同的一项是( )A.不能通知..语曰..二父志 B.霁云慷慨C.阳阳如平常..为云泣下.. D.一座大惊,皆感激解析:选C A项,古义:透彻地了解;今义:传达,使知道。

B项,古义:情绪激昂;今义:大方。

D项,古义:感动愤激;今义:因对方的好意或帮助而对他产生的好感。

4.下列对课文中词语的相关内容的解说,不正确的一项是( )A.“张中丞”,中丞,张巡的官衔。

古代对人的称呼,可以用官职命名,再如,王维又称为“王右丞”。

B.“庙”,古代供祀祖宗的地方。

古代对庙的规模有严格的等级限制:天子七庙,卿五庙,大夫三庙,士一庙。

C.“县尉”,即县令,是县中的长官,负责统筹全县之政务。

D.“州”,中国先秦时代的地理区域划分单位,东汉以后开始作为行政区划。

三皇五帝时代即有九州,即彼时将天下分为九个“州”。

解析:选C “县尉”不是县令。

县令是一县之长官,负责统筹全县之政务;而县尉是具体负责执行办事的官员。

5.下列对原文有关内容的赏析,不正确的一项是( )A.张巡、许远在内外无援的情况下,坚守孤城,虽最终被俘被杀,但他们的精神是可贵的。

“守一城,捍天下”充分肯定了他们的功绩。

B.韩愈认为许远所镇守的那部分城池先被攻破是情有可原的,因为许远的材智本来就在张巡之下,况且当时处在“国亡主灭”的危急时刻。

2018最新试题资料-《红高粱》——罗汉大爷课时跟踪检测(十八)(附答案)

2018最新试题资料-《红高粱》——罗汉大爷课时跟踪检测(十八)(附答案)

《红高粱》——罗汉大爷课时跟踪检测(十八)(附答案)
5 c 时跟踪检测(十八) 《红高粱》——罗汉大爷
(时间40分钟满分57分)
一、基础巩固(12分,每小题3分)
1.下列词语中加点字的读音,完全正确的一项是( )
A.生疮(chuāng) 瓜窖(ià)
劫掠一空(ié) 相形见绌(zhuō)
B.魁首(uí) 愕然(è)
踉踉跄跄(liàng qiàng) 淅淅沥沥(xī lì)
c.痉挛(lán) 嘶哑(ǎ)
流水潺潺(chán) 气噎咽喉(ē)
D.漾溢(àng) 灼热(shuó)
树碑立传(bēi) 烽火岁月(fēng)
解析A项,“绌”读chù;c项,“挛”读luán;D项,“灼”读zhuó。

答案B
2.下列各组词语中没有错别字的一项是( )
A.瓜瓤兴奋异常通谍风流韵事
B.咕噜疯疯颠颠恍惚胆战心惊
c.聚拢尸横遍野掺杂鬼鬼祟祟
D.闪烁武艺高强累赘粗广豪烈
解析A项,谍—牒;B项,颠颠—癫癫;D项,广—犷。

答案c
3.下列各项中,没有语病的一项是( )
A.越越多的基层干部认识到,关注民生是干部称职的一个重要标准;否则,不关注民生,就很难说是一个称职的干部。

B.位于贵州省平塘县的500米口径球面射电望远镜的主体圈梁合龙,这标志着世界上最大的天望远镜进入全面的设备安装。

第四章4.2.3 二项分布与超几何分布

第四章4.2.3 二项分布与超几何分布

跟踪训练1 (多选)下列随机变量X服从二项散布的是
√A.投掷一枚均匀的骰子5次,X表示点数为6出现的次数
B.某射手射中目标的概率为p,设每次射击是相互独立的,X为从开始射
击到击中目标所需要的射击次数
√C.实力相等的甲、乙两选手进行了5局乒乓球比赛,X表示甲获胜的次数 √D.某星期内,每次下载某网站数据被病毒感染的概率为0.3,X表示下载n
27 000.
因此η的散布列为
η0
1
2
3
P
343 441 189 1 000 1 000 1 000
27 1 000
(3)若从这10件产品中随机连续抽取3次,每次抽取1件.每次抽取后都不 放回,设取到一等品的件数为X,求: ①X的散布列;
解 若每次抽取后都不放回,则随机抽取3次可看成随机抽取1次但1次
2 7×6
=M7M×-6 1,
2
整理得 M2-M-6=0,
解得M=3或M=-2(舍去).即7个学生中,甲班有3人.
(2)设所选2名学生中甲班的学生数为X,求X的散布列,并求所选2人中 甲班学生数不少于1人的概率.
解 由题意知X服从参数N=7,M=3,n=2的超几何散布,其中X的所
有可能取值为0,1,2.
反思 感悟
二项散布问题的注意点 (1)判断一个随机变量是否服从二项散布,关键有两点:一是对 峙性,即一次实验中,事件产生与否两者必有其一;二是重复 性,即实验是独立重复地进行了n次. (2)二项散布,当X服从二项散布时,应弄清X~B(n,p)中的实 验次数n与成功概率p.
(3)对于公式 P(X=k)=Cknpk(1-p)n-k(k=0,1,2,…,n)必须在满足 “独立重复试验”时才能运用,否则不能应用该公式.

古典概型

古典概型

排队人数
0
1
2
3
4 5人及5人以上
概率
0.1
0.16
0.3
0.3 0.1
0.04
至少2人排队等候的概率是 0.74 .
在以上四个题目的随机试验中,分析事件的构成,思考: • 所有可能的试验结果有哪些? • 每一个结果记为一个随机事件,这些事件间是什么关系?
在以上四个题目的随机试验中,分析事件的构成,思考: • 所有可能的试验结果有哪些? • 每一个结果记为一个随机事件,这些事件间是什么关系?
例3 同时掷两枚骰子,计算向上的点数之和为5的概率
反思 1.古典概型概率求解步骤: 第一步 确定等可能基本事件总数n; 第二步 确定所求事件包含的基本事件数m 第三步 P(A) m 第四步 作答 n
2.使用古典概型概率公式应注意: (1)首先确定是否为古典概型(验证基本事件是否是等可能
的); (2)其次确定所求事件包含的基本事件有哪些。
例1 从字母a,b,c,d中任意取出两个不同字 母的试验中,有哪些基本事件?
解:所求基本事件共有6个:{a,b},{a,c},{a,d},{b,c},{b,d},{c,d}
思考:1.从字母a,b,c,d中任意取出两个不同字母的试验中, 取出的字母中含有“a”的概率为 0.5 .
2.抛掷一枚质地均匀的硬币,出现正面向上的概率为 0.5 .
1.抛掷一枚质地均匀的硬币,设事件A表示正面向上,事件B表示反面 向上,则P(AUB)= 1 .
2.盒子里有大小相同的9个黑球和1个白球,从中任取一个,取到白球的 概率是 0.1 .
3.投掷一枚质地均匀的骰子,向上的点数为奇数的概率是 0.5 .
4.据统计,某储蓄所一个窗口等候的人数及相应的概率下表:

课时跟踪训练50

课时跟踪训练50

课时跟踪训练(五十)[根底稳固]一、选择题1.(2021·辽宁师大附中期中)过点M (-2,0)的直线m 与椭圆x 22+y 2=1交于P 1,P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,那么k 1k 2的值为( )A .2B .-2 C.12 D .-12[解析] 由过点M (-2,0)的直线m 的方程为y -0=k 1(x +2),代入椭圆的方程,化简得(2k 21+1)x 2+8k 21x +8k 21-2=0,设P 1(x 1,y 1),P 2(x 2,y 2),∴x 1+x 2=-8k 212k 21+1,∴P 的横坐标为-4k 212k 21+1,P 的纵坐标为k 1⎝ ⎛⎭⎪⎫-4k 212k 21+1+2=2k 12k 21+1,即点P ⎝ ⎛⎭⎪⎫-4k 212k 21+1,2k 12k 21+1,∴直线OP 的斜率k 2=-12k 1,∴k 1k 2=-12.应选D.[答案] D2.如图,F (c,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,A ,B 为椭圆的上、下顶点,P 为直线AF 与椭圆的交点,那么直线PB 的斜率k PB =( )A.c a 2B.b a 2C.b +c a 2D.bca 2[解析] 直线AF 的方程为x c +y b =1,把y =-b c x +b 代入x 2a 2+y 2b 2=1,得a 2+c 2a 2c 2x 2-2c x =0,∴x P =2a 2ca 2+c 2,y P =c 2b -a 2b a 2+c 2,∴k PB =c 2b -a 2ba 2+c 2+b 2a 2ca 2+c 2=bca 2. [答案] D3.(2021·河北唐山统考)平行四边形ABCD 内接于椭圆x 24+y 22=1,直线AB 的斜率k 1=1,那么直线AD 的斜率k 2=( )A.12 B .-12 C .-14 D .-2[解析] 解法一:设AB 的中点为G ,由椭圆与平行四边形的对称性知O 为平行四边形ABCD 的对角线的交点,那么GO ∥AD .设A (x 1,y 1),B (x 2,y 2),那么有⎩⎪⎨⎪⎧x 214+y 212=1,x 224+y 222=1,两式相减是(x 1-x 2)(x 1+x 2)4=-(y 1-y 2)(y 1+y 2)2,整理得x 1+x 22(y 1+y 2)=-y 1-y 2x 1-x 2=-k 1=-1,即y 1+y 2x 1+x 2=-12.又G ⎝ ⎛⎭⎪⎪⎫x 1+x 22,y 1+y 22,所以k OG =y 1+y 22-0x 1+x 22-0=-12, 即k 2=-12,应选B.解法二:设直线AB 的方程为y =x +t ,A (x 1,y 1),B (x 2,y 2),利用椭圆与平行四边形的对称性可得D (-x 2,-y 2).那么直线AD 的斜率k 2=y 1+y 2x 1+x 2=x 1+x 2+2t x 1+x 2=1+2tx 1+x 2.联立⎩⎨⎧y =x +t ,x 2+2y 2-4=0,消去y得3x 2+4tx +2t 2-4=0,那么x 1+x 2=-4t3,∴k 2=1+2t -43t =-12.应选B.[答案] B 二、解答题4.(2021·河北涞水波峰中学、高碑店三中联考)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且椭圆C 与圆M :x 2+(y -3)2=4的公共弦长为4.(1)求椭圆C 的方程;(2)O 为坐标原点,过椭圆C 的右顶点A 作直线l 与圆x 2+y 2=85相切并交椭圆C 于另一点B ,求OA →·OB →的值.[解] (1)∵椭圆C 与圆M 的公共弦长为4,∴椭圆C 经过点(±2,3),∴4a 2+9b 2=1,又c a =12,a 2=b 2+c 2,解得a 2=16,b 2=12,∴椭圆C 的方程为x 216+y 212=1.(2)右顶点A (4,0),∵直线l 与圆x 2+y 2=85相切,设直线l 的方程为y =k (x -4),∴|4k |1+k 2=85,∴9k 2=1,∴k =±13.联立y =±13(x -4)与x 216+y 212=1,消去y ,得31x 2-32x -368=0.设B (x 0,y 0),那么由根与系数的关系得4x 0=-36831,∴OA →·OB →=4x 0=-36831.5.(2021·吉林长春外国语学校期中)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上任意一点,且|PF 1|+|PF 2|=22,它的焦距为2.(1)求椭圆C 的方程.(2)是否存在正实数t ,使直线x -y +t =0与椭圆C 交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=56上?假设存在,求出t 的值;假设不存在,请说明理由.[解] (1)∵F 1,F 2为椭圆的左、右焦点,P 是椭圆上任意一点,且|PF 1|+|PF 2|=22,∴a = 2.∵2c =2,∴c =1,∴b =a 2-c 2=1,∴椭圆C 的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x -y +t =0,x 22+y 2=1,化简得3x 2+4tx +2t 2-2=0.①由①知x 1+x 2=-4t 3,∴y 1+y 2=x 1+x 2+2t =2t3. ∵线段AB 的中点在圆x 2+y 2=56上,∴⎝ ⎛⎭⎪⎫-2t 32+⎝ ⎛⎭⎪⎫t 32=56,解得t =62(负值舍去), 故存在t =62满足题意.6.椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12. (1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,假设AM →=2MB →,求直线l 的方程.[解] (1)设椭圆方程为x 2a 2+y 2b 2=1(a >0,b >0),因为c =1,c a =12,所以a =2,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)由题意可知直线l 的斜率存在,设直线l 的方程为y =kx +1,那么由⎩⎪⎨⎪⎧y =kx +1,x 24+y 23=1得(3+4k 2)x 2+8kx -8=0,且Δ=192k 2+96>0.设A (x 1,y 1),B (x 2,y 2),那么由AM →=2MB →得x 1=-2x 2.又⎩⎪⎨⎪⎧x 1+x 2=-8k 3+4k 2,x 1·x 2=-83+4k 2,所以⎩⎪⎨⎪⎧-x 2=-8k 3+4k 2,-2x 22=-83+4k 2,消去x 2,得⎝ ⎛⎭⎪⎪⎫8k 3+4k 22=43+4k 2,解得k 2=14,k =±12. 所以直线l 的方程为y =±12x +1,即x -2y +2=0或x +2y -2=0.[才能提升]7.(2021·河南考前预测)椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点是F 1,F 2,且|F 1F 2|=2,离心率为12.(1)求椭圆C 的方程;(2)假设过椭圆右焦点F 2的直线l 交椭圆于A ,B 两点,求|AF 2|·|F 2B |的取值范围.[解] (1)因为椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =12,2c =2,解得a =2,b = 3.所以椭圆C 的标准方程为x 24+y 23=1.(2)因为F 2(1,0),所以①当直线l 的斜率不存在时,A ⎝ ⎛⎭⎪⎫1,32,B ⎝ ⎛⎭⎪⎫1,-32,那么|AF 2|·|F 2B |=94. ②当直线l 的斜率存在时,直线l 的方程可设为y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1消去y ,得(3+4k 2)x 2-8k 2x +4k 2-12=0.(*)设A (x 1,y 1),B (x 2,y 2),那么x 1,x 2是方程(*)的两个根,所以x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2. 所以|AF 2|=(x 1-1)2+y 21=1+k 2·|x 1-1|, |F 2B |=(x 2-1)2+y 22=1+k 2·|x 2-1|,所以|AF 2|·|F 2B |=(1+k 2)·|x 1x 2-(x 1+x 2)+1|=(1+k 2)·⎪⎪⎪⎪⎪⎪4k 2-123+4k 2-8k 23+4k 2+1 =(1+k 2)·⎪⎪⎪⎪⎪⎪-93+4k 2 =(1+k 2)·93+4k2=94⎝⎛⎭⎪⎪⎫1+13+4k 2.当k 2=0时,|AF 2|·|F 2B |取最大值3,所以|AF 2|·|F 2B |的取值范围为⎝ ⎛⎦⎥⎤94,3. 由①②知|AF 2|·|F 2B |的取值范围为⎣⎢⎡⎦⎥⎤94,3. 8.(2021·河北百校联盟期中)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,假设四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.[解] (1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),那么x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1.由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1解得⎩⎨⎧x =433,y =-33或⎩⎨⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n ⎝ ⎛⎭⎪⎫-533<n <3, 设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y 23=1,得3x 2+4nx +2n 2-6=0.于是x 3+x 4=-4n3,x 3·x 4=2n 2-63. 因为直线CD 的斜率为1, 所以|CD |=2|x 4-x 3|=439-n 2.由,四边形ACBD 的面积 S =12|CD |·|AB |=8699-n 2.当n =0时,S 获得最大值,最大值为863. 所以四边形ACBD 面积的最大值为863.9.设焦点在x 轴上的椭圆M 的方程为x 24+y 2b 2=1(b >0),其离心率为22.(1)求椭圆M 的方程;(2)假设直线l 过点P (0,4),那么直线l 何时与椭圆M 相交? [解] (1)因为椭圆M 的离心率为22, 所以4-b 24=⎝ ⎛⎭⎪⎫222,得b 2=2.所以椭圆M 的方程为x 24+y 22=1.(2)①过点P (0,4)的直线l 垂直于x 轴时,直线l 与椭圆M 相交. ②过点P (0,4)的直线l 与x 轴不垂直时,可设直线l 的方程为y =kx +4.由⎩⎪⎨⎪⎧y =kx +4,x 24+y 22=1,消去y ,得(1+2k 2)x 2+16kx +28=0.因为直线l 与椭圆M 相交,所以Δ=(16k )2-4(1+2k 2)×28=16(2k 2-7)>0, 解得k <-142或k >142.综上,当直线l 垂直于x 轴或直线l 的斜率的取值范围为⎝ ⎛⎭⎪⎫-∞,-142∪⎝ ⎛⎭⎪⎫142,+∞时,直线l 与椭圆M 相交. 10.(2021·广东惠州调研)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,椭圆短轴的一个端点与两个焦点构成的三角形的面积为523.(1)求椭圆C 的方程;(2)动直线y =k (x +1)与椭圆C 相交于A ,B 两点.①假设线段AB 中点的横坐标为-12,求斜率k 的值;②点M ⎝ ⎛⎭⎪⎫-73,0,求证:MA →·MB →为定值. [解] (1)x 2a 2+y 2b 2=1(a >b >0)满足a 2=b 2+c 2,又c a =63,12×b ×2c =523,解得a 2=5,b 2=53,那么椭圆方程为x 25+3y 25=1.(2)设A (x 1,y 1),B (x 2,y 2).①将y =k (x +1)代入x 25+3y 25=1,得(1+3k 2)x 2+6k 2x +3k 2-5=0,∴Δ=48k 2+20>0,x 1+x 2=-6k 23k 2+1, ∵AB 中点的横坐标为-12,∴-3k 23k 2+1=-1,解得k =±33. ②证明:由①知x 1+x 2=-6k 23k 2+1,x 1x 2=3k 2-53k 2+1, ∴MA →·MB →=⎝ ⎛⎭⎪⎫x 1+73,y 1·⎝ ⎛⎭⎪⎫x 2+73,y 2 =⎝ ⎛⎭⎪⎫x 1+73⎝ ⎛⎭⎪⎫x 2+73+y 1y 2 =⎝ ⎛⎭⎪⎫x 1+73⎝ ⎛⎭⎪⎫x 2+73+k 2(x 1+1)(x 2+1) =(1+k 2)x 1x 2+⎝ ⎛⎭⎪⎫73+k 2(x 1+x 2)+499+k 2 =(1+k 2)3k 2-53k 2+1+⎝ ⎛⎭⎪⎫73+k 2⎝ ⎛⎭⎪⎪⎫-6k 23k 2+1+499+k 2 =-3k 4-16k 2-53k 2+1+499+k 2 =49(定值).。

(全国通用)高三物理一轮复习 第四章 曲线运动 万有引力与航天 第4节 万有引力定律及其应用课时跟踪

万有引力定律与其应用对点训练:开普勒行星运动定律与万有引力定律1.(2016·某某黄浦区期末)关于万有引力定律,如下说法正确的答案是( ) A .牛顿提出了万有引力定律,并测定了引力常量的数值 B .万有引力定律只适用于天体之间C .万有引力的发现,揭示了自然界一种根本相互作用的规律D .地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳的万有引力大小是一样的解析:选C 牛顿提出了万有引力定律,卡文迪许测定了引力常量的数值,万有引力定律适用于任何物体之间,万有引力的发现,揭示了自然界一种根本相互作用的规律,选项A 、B 错误C 正确;地球绕太阳在椭圆轨道上运行,在近日点和远日点受到太阳的万有引力大小是不一样的,选项D 错误。

2.对于环绕地球做圆周运动的卫星来说,它们绕地球做圆周运动的周期会随着轨道半径的变化而变化,某同学根据测得的不同卫星做圆周运动的半径r 与周期T 关系作出如图1所示图像,如此可求得地球质量为(引力常量为G )( )图1A .4π2a Gb B .4π2bGaC .Ga4π2b D .Gb4π2a解析:选A 由GMm r 2=m 4π2T 2·r 可得r 3T 2=GM 4π2,结合图线可得,a b =GM 4π2,故M =4π2aGb,A正确。

3.一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是他在地球上所受万有引力的( )A .0.25倍B .0.5倍C .2.0倍D .4.0倍解析:选C 由F 引=GMm r2=12GM 0m ⎝ ⎛⎭⎪⎫r 022=2GM 0mr 02=2F 地,故C 项正确。

4.(2016·福州二模)北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,该系统将由35颗卫星组成,卫星的轨道有三种:地球同步轨道、中地球轨道和倾斜轨道。

高一语文课时跟踪训练:第一单元第3课《小雅·采薇》(北师大版必修2)

一、语段阅读阅读文本选段,完成1~4题。

致橡树舒婷我如果爱你——绝不像攀援的凌霄花,借你的高枝炫耀自己;我如果爱你——绝不学痴情的鸟儿,为绿阴重复单调的歌曲;也不止像泉源,,长年送来清凉的慰藉;也不止像险峰,增加你的高度,衬托你的威仪。

甚至日光。

甚至春雨。

不,这些都还不够!我必须是你近旁的一株木棉,作为树的形象和你站在一起。

根,紧握在地下,叶,相触在云里。

每一阵风吹过,我们都互相致意,但没有人,听懂我们的言语。

你有你的铜枝铁干,像刀,像剑,也像戟;我有我红硕的花朵,像沉重的叹息,又像英勇的火炬。

我们分担寒潮、风雷、霹雳;我们共享雾霭、流岚、虹霓。

仿佛永远分离,却又终身相依。

这才是伟大的爱情,坚贞就在这里:爱——不仅爱你伟岸的身躯,也爱你坚持的位置,足下的土地。

1977年3月27日1.作者否定了哪几种爱情观?为什么?答:________________________________________________________________________ 答案:否定:(1)极力攀附。

(2)单方痴恋。

(3)一味奉献。

因为爱的双方没有平等、独立可言。

2.作者向往的真正的爱情是什么样的?答:________________________________________________________________________ 答案:(1)平等独立。

(2)心心相印。

(3)祸福与共。

(4)相知相依3.橡树、木棉分别象征什么?答:________________________________________________________________________ 答案:橡树:男性的阳刚气概。

伟岸挺拔,刚强不屈,锋芒锐利。

木棉:女性的柔韧气质。

健康活泼,深沉博大,坚韧不屈。

4.这首诗在结构上有何特点?诗人的感情有何变化?答:________________________________________________________________________ 答案:结构上:诗人按照先破后立的艺术构思,在诗的开头首先否定了种种世俗的爱情观;接着在强调独立平等的基础上,提出了理想的爱情。

数学教案 人教a版选修2_3 同步练习-第1章计数原理第2节跟踪训练含解析

第1课时 排列与排列数公式[A 组 学业达标]1.4·5·6·…·(n-1)·n 等于( ) A .A 4n B .A n -4n C .n !-4!D .A n -3n解析:因为A mn =n(n -1)(n -2)…(n-m +1),所以A n -3n =n(n -1)(n -2)…[n-(n -3)+1]=n·(n-1)·(n-2)·…·6·5·4.答案:D2.将5本不同的数学用书放在同一层书架上,则不同的放法有( ) A .50种 B .60种 C .120种D .90种解析:5本书进行全排列,A 55=120种. 答案:C3.有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有( )A .12种B .24种C .48种D .120种解析:∵同学甲只能在周一值日,∴除同学甲外的4名同学将在周二至周五值日,∴5名同学值日顺序的编排方案共有A 44=24(种).答案:B4.已知A 2n +1-A 2n =10,则n 的值为( ) A .4 B .5 C .6D .7解析:因为A 2n +1-A 2n =10,则(n +1)n -n(n -1)=10,整理得2n =10,即n =5. 答案:B5.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( )A .9B .10C .18D .20解析:lg a -lg b =lg a b ,从1,3,5,7,9中任取两个数分别记为a ,b ,共有A 25=20种,其中lg 13=lg3 9,lg31=lg93,故其可得到18种结果.答案:C6.计算A67-A56A45=________.解析:因为A67=7×6×A45,A56=6×A45,所以原式=36A45A45=36.答案:367.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)解析:根据题意,得A240=1 560,故全班共写了1 560条毕业留言.答案:1 5608.8种不同的菜种,任选4种种在不同土质的4块地上,有________种不同的种法.(用数字作答) 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地上,则本题即为从8个不同元素中任选4个元素的排列问题.所以不同的种法共有A48=8×7×6×5=1 680(种).答案:1 6809.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,则一共可以表示多少种不同的信号.解析:第1类,挂1面旗表示信号,有A13种不同方法;第2类,挂2面旗表示信号,有A23种不同方法;第3类,挂3面旗表示信号,有A33种不同方法.根据分类加法计数原理,可以表示的信号共有A13+A23+A33=3+3×2+3×2×1=15(种).10.一条铁路线原有n个车站,为了适应客运需要,新增加了2个车站,客运车票增加了58种,问原有多少个车站?现有多少车站?解析:由题意可知,原有车票的种数是A2n种,现有车票的种数是A2n+2种,∴A2n+2-A2n=58,即(n+2)(n+1)-n(n-1)=58.解得n=14.故原有14个车站,现有16个车站.[B组能力提升]11.将3张不同的电影票全部分给10个人,每人至多一张,则不同的分法种数是( )A.1 260 B.120C.240 D.720解析:相当于3个元素安排在10个位置上,共有A310=720种分法,故选D.答案:D12.下列各式中与排列数A mn 相等的是( ) A.n !n -m +1!B .n(n -1)(n -2)…(n-m) C.nA mn -1n -m +1 D .A 1n A m -1n -1 解析:∵A mn =n !n -m !,而A 1n ·A m -1n -1=n·n -1![n -1-m -1]!=n !n -m !,∴A m n =A 1n ·A m -1n -1.答案:D13.满足不等式A 7nA 5n>12的n 的最小值为________.解析:由排列数公式得n !n -5!n -7!n !>12,即(n -5)(n -6)>12,解得n >9或n <2.又n≥7,所以n >9,又n ∈N *,所以n 的最小值为10. 答案:1014.四张卡片上分别标有数字“2”“0”“1”“1”,则由这四张卡片可组成不同的四位数的个数为________.解析:这四张卡片可组成的四位数是2011、2101、2110、1021、1012、1102、1120、1201、1210共9个. 答案:915.根据要求完成下列各题. (1)计算:A 59+A 49A 610-A 510;(2)解方程 :3A x8=4A x -19.解析:(1)原式=5A 49+A 495A 510-A 510=6A 494A 510=6A 4940A 49=640=320. (2)由排列数公式,原方程可化为3×8!8-x !=4×9!10-x !,化简得3=4×910-x 9-x,即x 2-19x +78=0,解得x 1=6,x 2=13. 因为x≤8,所以原方程的解是x =6.16.(1)求由1,2,3,4这四个数字组成的首位数字是1,且恰有三个相同数字的四位数的个数. (2)从0,1,2,3这四个数字中,每次取出3个不同的数字排成一个三位数,写出其中大于200的所有三位数.解析:(1)本题要求首位数字是1,且恰有三个相同的数字,用树形图表示为:由此可知共有12个.(2)大于200的三位数的首位是2或3,于是大于200的三位数有:201,203,210,213,230,231,301,302,310,312,320,321.第2课时排列的综合应用[A组学业达标]1.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法有( ) A.60种B.48种C.36种D.24种解析:把A,B视为一人,且B排在A的右边,则本题相当于4人的全排列,故有A44=24种排法.答案:D2.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ) A.192种B.216种C.240种D.288种解析:根据甲、乙的位置要求分类解决,分两类.第一类,甲在最左端,有A55=5×4×3×2×1=120(种)方法;第二类,乙在最左端,有4A44=4×4×3×2×1=96(种)方法.所以共有120+96=216(种)方法.答案:B3.5名男生与5名女生排成一排,男生甲与男生乙之间有且只有2名女生,且女生不排在两端,这样的排列种数为( )A.5 760 B.57 600C.2 880 D.28 800解析:先选2名女生放在男生甲与男生乙之间,并捆绑在一起看作一个大元素,从大元素和另外的3名男生中选2个排在两端,剩下的和女生全排列,故有A22·A25·A24·A55=57 600(种)排法.故选B.答案:B4.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A.144个B.120个C.96个D.72个解析:当五位数的万位为4时,个位可以是0,2,此时满足条件的偶数共有2A34=48(个);当五位数的万位为5时,个位可以是0,2,4,此时满足条件的偶数共有3A34=72(个).所以比40 000大的偶数共有48+72=120(个).答案:B5.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼­15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有( )A.12种B.18种C.24种D.48种解析:把甲、乙看作1个元素和另一飞机全排列,调整甲、乙,共有A22·A22种方法,再把丙、丁插入到刚才“两个”元素排列产生的3个空位中,有A23种方法,由分步乘法计数原理可得总的方法种数为A22·A22·A23=24.答案:C6.把5件不同产品摆成一排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.解析:先将A,B捆绑在一起,有A22种摆法,再将它们与其他3件产品全排列,有A44种摆法,共有A22A44种摆法.而A,B,C这3件产品在一起,且A,B相邻,A,C相邻有2A33种摆法.故A,B相邻,A,C不相邻的摆法有A22A44-2A33=36(种).答案:367.从班委会的5名成员中选出3名分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种.(用数字作答)解析:文娱委员有3种选法,则安排学习委员、体育委员有A24=12种方法.由分步乘法计数原理知,共有3×12=36种选法.答案:368.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.解析:5张参观券全部分给4人,分给同一人的2张参观券连号,方法数为:1和2,2和3,3和4,4和5,四种连号,其他号码各为一组,分给4人,共有4×A44=96(种).答案:969.分别求出符合下列要求的不同排法的种数.(1)6名学生排3排,前排1人,中排2人,后排3人;(2)6名学生排成一排,甲不在排头也不在排尾;(3)6人排成一排,甲、乙不相邻.解析:(1)分排与直排一一对应,故排法种数为A66=720.(2)甲不能排头尾,让受特殊限制的甲先选位置,有A14种选法,然后其他5人排,有A55种排法,故排法种数为A14A55=480.(3)甲、乙不相邻,第一步除甲、乙外的其余4人先排好;第二步,甲、乙在已排好的4人的左、右及之间的空位中排,共有A44A25=480(种)排法.10.7名班委中有A,B,C三人,有7种不同的职务,现对7名班委进行职务具体分工.(1)若正、副班长两职只能从A,B,C三人中选两人担任,有多少种分工方案?(2)若正、副班长两职至少要选A,B,C三人中的一人担任,有多少种分工方案?解析:(1)先排正、副班长有A23种方法,再安排其余职务有A55种方法,依分步乘法计数原理,知共有A23A55=720(种)分工方案.(2)7人中任意分工方案有A77种,A,B,C三人中无一人任正、副班长的分工方案有A24A55,因此A,B,C三人中至少有一人任正、副班长的方案有A77-A24A55=3 600(种).[B组能力提升]11.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24 B.48C.60 D.72解析:第一步,先排个位,有A13种选择;第二步,排前4位,有A44种选择.由分步乘法计数原理,知有A13·A44=72(个).答案:D12.航天员在进行一项太空实验时,先后要实施6个程序,其中程序B和C都与程序D不相邻,则实验顺序的编排方法共有( )A.216种B.288种C.180种D.144种解析:当B,C相邻,且与D不相邻时,有A33A24A22=144种方法;当B,C不相邻,且都与D不相邻时,有A33A34=144种方法,故共有288种编排方法.答案:B13.将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答).解析:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.当C在左边第1个位置时,有A55种,当C在左边第2个位置时有A24·A33种,当C在左边第3个位置时,有A23·A33+A22·A33种.这三种情况的和为240种,乘以2得480.则不同的排法共有480种.答案:48014.在某艺术馆中展出5件艺术作品,其中不同的书法作品2件,不同的绘画作品2件,标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则展出这5件作品的不同方案有________种.解析:把2件书法作品当作一个元素,与其他3件艺术品进行全排列,有2A44=48种方案.其中,2件绘画作品相邻,有2×2A33=24种方案,则该艺术馆展出这5件作品的不同方案有48-24=24种.答案:2415.某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的节目编排方法有多少种?(1)一个唱歌节目开头,另一个放在最后压台;(2)2个唱歌节目互不相邻;(3)2个唱歌节目相邻且3个舞蹈节目不相邻.解析:(1)先排唱歌节目有A22种排法,再排其他节目有A66种排法,所以共有A22·A66=1 440种排法.(2)先排3个舞蹈节目,3个曲艺节目有A66种排法,再从其中7个空(包括两端)中选2个排唱歌节目,有A27种插入方法,所以共有A66·A27=30 240种排法.(3)把2个相邻的唱歌节目看作一个元素,与3个曲艺节目排列共A44种排法,再将3个舞蹈节目插入,共有A35种插入方法,最后将2个唱歌节目互换位置,有A22种排法,故所求排法共有A44·A35·A22=2 880种排法.16.从1到9这9个数字中取出不同的5个数进行排列.问:(1)奇数的位置上是奇数的有多少种排法?(2)取出的奇数必须排在奇数位置上有多少种排法?解析:(1)奇数共5个,奇数位置共有3个;偶数共有4个,偶数位置有2个.第一步先在奇数位置上排上奇数共有A35种排法;第二步再排偶数位置,有4个偶数和余下的2个奇数可以排,排法为A26种,由分步乘法计数原理知,排法种数为A35·A26=1 800.(2)因为偶数位置上不能排奇数,故先排偶数位,排法为A24种,余下的2个偶数与5个奇数全可排在奇数位置上,排法为A37种,由分步乘法计数原理知,排法种数为A24·A37=2 520种.第1课时 组合与组合数公式[A 组 学业达标]1.给出下列问题:①从甲、乙、丙3名同学中选出2名分别去参加两个乡镇的社会调查,有多少种不同的选法? ②有4张电影票,要在7人中确定4人去观看,有多少种不同的选法?③某人射击8枪,击中4枪,且命中的4枪均为2枪连中,则不同的结果有多少种? 其中属于组合问题的个数为( ) A .0 B .1 C .2D .3解析:①与顺序有关,是排列问题;②③均与顺序无关,是组合问题. 答案:C2.计算:C 28+C 38+C 29=( ) A .120 B .240 C .60D .480解析:C 28+C 38+C 29=7×82×1+6×7×83×2×1+8×92×1=120.答案:A3.某校开设A 类选修课3门,B 类选修课5门,一位同学要从中选3门.若要求两类课程中各至少选1门,则不同的选法共有( )A .15种B .30种C .45种D .90种解析:分两类,A 类选修课选1门,B 类选修课选2门,或者A 类选修课选2门,B 类选修课选1门,因此,共有C 13·C 25+C 23·C 15=45(种)选法.答案:C4.方程C x14=C 2x -414的解集为( ) A .{4} B .{14} C .{4,6}D .{14,2}解析:由题意知⎩⎪⎨⎪⎧x =2x -4,2x -4≤14,x≤14,或⎩⎪⎨⎪⎧x =14-2x -4,2x -4≤14,x≤14,解得x =4或6.答案:C5.异面直线a ,b 上分别有4个点和5个点,由这9个点可以确定的平面个数是( ) A .20 B .9 C .C 39D .C 24C 15+C 25C 14解析:分两类:第一类,在直线a 上任取一点,与直线b 可确定C 14个平面;第二类,在直线b 上任取一点,与直线a 可确定C 15个平面.故可确定C 14+C 15=9个不同的平面.答案:B6.某班级要从4名男生、2名女生中派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为________.解析:法一:分类完成.第1类,选派1名女生、3名男生,有C 12·C 34种选派方案;第2类,选派2名女生、2名男生,有C 22·C 24种选派方案.故共有C 12·C 34+C 22·C 24=14(种)不同的选派方案.法二:6人中选派4人的组合数为C 46,其中都选男生的组合数为C 44,所以至少有1名女生的选派方案有C 46-C 44=14(种).答案:147.有4名男医生、3名女医生,从中选出2名男医生、1名女医生组成1个医疗小组,则不同的选法共有________种.解析:从4名男医生中选2人,有C 24种选法,从3名女医生中选1人,有C 13种选法.由分步乘法计数原理知,所求选法种数为C 24C 13=18.答案:188.不等式C 2n -n <5的解集为________. 解析:由C 2n -n <5,得n n -12-n <5,∴n 2-3n -10<0. 解得-2<n <5.由题设条件知n≥2,且n ∈N *, ∴n =2,3,4.故原不等式的解集为{2,3,4}. 答案:{2,3,4}9.(1)解方程:A 3m =6C 4m ; (2)解不等式:C x -18>3C x8. 解析:(1)原方程等价于 m(m -1)(m -2)=6×mm -1m -2m -34×3×2×1,∴4=m -3,解得m =7.(2)由已知得⎩⎪⎨⎪⎧x -1≤8,x≤8,∴x≤8,且x ∈N *,∵C x -18>3C x8,∴8!x -1!9-x !>3×8!x !8-x !.即19-x >3x ,∴x >3(9-x),解得x >274, ∴x =7,8.∴原不等式的解集为{7,8}.10.某餐厅供应饭菜,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上不同的选择,则餐厅至少还需准备多少不同的素菜品种?解析:设餐厅至少还需准备x 种不同的素菜.由题意,得C 25·C 2x ≥200,从而有C 2x ≥20,即x(x -1)≥40.又x≥2且x ∈N *,所以x 的最小值为7.故餐厅至少还需准备7种不同的素菜.[B 组 能力提升]11.从8名女生和4名男生中,抽取3名学生参加某档电视节目,若按性别比例分层抽样,则不同的抽取方法数为( )A .224B .112C .56D .28 解析:由分层抽样知,应从8名女生中抽取2名,从4名男生中抽取1名,所以抽取2名女生和1名男生的方法数为C 28C 14=112.答案:B12.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有( )A .72种B .84种C .120种D .168种 解析:需关掉3盏不相邻的灯,即将这3盏灯插入9盏亮着的灯形成的10个空当中,所以关灯方案共有C 310=120(种).答案:C13.方程C x 17-C x 16=C 2x +216的解集是________.解析:因为C x 17=C x 16+C x -116,所以C x -116=C 2x +216,由组合数公式的性质,得x -1=2x +2或x -1+2x +2=16,解得x 1=-3(舍去),x 2=5.答案:{5}14.从4台甲型电视机和5台乙型电视机中任意取出3台,其中至少有甲型和乙型电视机各1台,则不同的取法有________种.解析:根据结果分类:第一类,两台甲型机,有C 24·C 15=30(种);第二类,两台乙型机,有C 14·C 25=40(种).根据分类加法计数原理,共有C 24·C 15+C 14·C 25=70(种)不同的取法.答案:7015.已知C 4n ,C 5n ,C 6n 成等差数列,求C 12n 的值.解析:由已知得2C 5n =C 4n +C 6n ,所以2·n !5!n -5!=n !4!n -4!+n !6!n -6!, 整理得n 2-21n +98=0,解得n =7或n =14,要求C 12n 的值,故n≥12,所以n =14,于是C 1214=C 214=14×132×1=91. 16.由13个人组成的课外活动小组,其中5个人只会跳舞,5个人只会唱歌,3个人既会唱歌也会跳舞,若从中选出4个会跳舞和4个会唱歌的人去演节目,共有多少种不同的选法?解析:设既会唱歌也会跳舞的人为“多面手”第一类,选会唱歌的4人无多面手:有C 45C 48=350;第二类,选会唱歌的4人中有一个多面手:有C 35C 13C 47=1 050;第三类,选会唱歌的4人中有2个多面手:有C 25C 23C 46=450;第四类,选会唱歌的4人中有3个多面手:有C 15C 33C 45=25.由分类加法计数原理,共有350+1 050+450+25=1 875种.第2课时组合的综合应用[A组学业达标]1.某中学从4名男生和3名女生中推荐4人参加某高校自主招生考试,若这4人中必须既有男生又有女生,则不同的选法共有( )A.140种B.120种C.35种D.34种解析:从7人中选4人共有C47=35(种)方法.又4名全是男生的选法有C44=1(种).故选4人既有男生又有女生的选法种数为35-1=34.答案:D2.平面内有4个红点,6个蓝点,其中只有一个红点和两个蓝点共线,其余任三点不共线,过这十个点中的任两点所确定的直线中,至少过一红点的直线的条数是( )A.28 B.29C.30 D.27解析:可分两类:第一类,红点连蓝点有C14C16-1=23(条);第二类,红点连红点有C24=6(条),所以共有29条.故选B.答案:B3.某科技小组有6名学生,现从中选出3人去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为( )A.2 B.3C.4 D.5解析:设男生人数为x,则女生有(6-x)人.依题意:C36-C3x=16.解得x=4,故女生有2人.答案:A4.有5本不同的教科书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是( )A.24 B.48C.72 D.96解析:据题意可先摆放2本语文书,当1本物理书在2本语文书之间时,只需将2本数学书插在前3本书形成的4个空中即可.此时共有A22A24种摆放方法;当1本物理书放在2本语文书一侧时,共有A22A12C12C13种不同的摆放方法.由分类加法计数原理可得共有A22A24+A22A12C12C13=48种摆放方法.答案:B5.将标号分别为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中将标号为1,2的卡片放入同一信封中,则不同的放法共有( )A.12种B.18种C.36种D.54种解析:先将1,2捆绑后放入信封中,有C13种方法,再将剩余的4张卡片放入另外两个信封中,有C24C22种方法,所以共有C13C24C22=18种方法.答案:B6.从7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排3人,则不同的安排方案共有________种.(用数字作答)解析:C67C36C33A22·A22=140.答案:1407.某校开设9门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有________种不同的选修方案.(用数字作答)解析:分两类:①A、B、C均不选,有C46=15.②A、B、C中选一门,有C13C36=60.∴共有15+60=75种不同选修方案.答案:758.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有________种.(用数字作答)解析:①不选甲、乙,则N1=A44=24(种).②只选甲,则N2=C34C13A33=72(种).③只选乙,则N3=C34C13A33=72(种).④选甲、乙,则N4=C24A23A22=72(种).故N=N1+N2+N3+N4=240(种).答案:2409.某市工商局对35件商品进行抽样检查,鉴定结果有15件假货,现从35件商品中选取3件.(1)恰有2件假货在内的不同取法有多少种?(2)至少有2件假货在内的不同取法有多少种?(3)至多有2件假货在内的不同取法有多少种?解析:(1)从20件真货中选取1件,从15件假货中选取2件,有C120C215=2 100种不同的取法.所以恰有2件假货在内的不同取法有2 100种.(2)选取2件假货有C120C215种,选取3件假货有C315种,共有C120C215+C315=2 555种不同的取法.(3)任意选取3件的种数为C335,因此符合题意的选取方式有C335-C315=6 090(种).所以至多有2件假货在内的不同的取法有6 090种.10.6本不同的书,分给甲、乙、丙三人,每人至少一本,有多少不同的分法.解析:先分组再分配分三类:第一类,“2,2,2”类(先平均分组再分配)C26C24C22·A33=90(种)A33第二类,“1,2,3”类(先非平均分组再分配)C16C25C33·A33=360(种)第三类,“1,1,4”类(先部分平均分组,再分配)C16C15C44·A33=90(种)A22共有90+360+90=540(种).[B组能力提升]11.如果把个位数是1,且恰好有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有( )A.9个B.3个C.12个D.6个解析:当重复数字是1时,有C13·C13个“好数”;当重复数字不是1时,有C13个“好数”.由分类加法计数原理,得“好数”有C13·C13+C13=12个.答案:C12.现有12张不同的卡片,其中红色、黄色、蓝色、绿色卡片各三张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同的取法种数为( )A.135 B.172C.189 D.162解析:不考虑特殊情况,共有C312种取法,取三张相同颜色的卡片,有4种取法,只取两张红色卡片(另一张非红色),共有C23C19种取法.所求取法种数为C312-4-C23C19=189.答案:C13.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1,2号中至少有1名新队员的排法有________种.解析:当入选的3名队员为2名老队员1名新队员时,有C13C12A22=12种排法;当入选的3名队员为2名新队员1名老队员时,有C12C23A33=36种排法.故共有12+36=48种排法.答案:4814.现有6张风景区门票分配给6位游客,若其中A,B风景区门票各2张,C,D风景区门票各1张,则不同的分配方案共有________种.(用数字作答).解析:从6位游客中选2人去A风景区,有C26种方法,从余下4位游客中选2人去B风景区,有C24种方法,余下2人去C,D风景区,有A22种方法,所以分配方案共有C26C24A22=180(种).答案:18015.从1到6这6个数字中,取2个偶数和2个奇数组成没有重复数字的四位数.试问:(1)能组成多少个不同的四位数?(2)四位数中,2个偶数排在一起的有几个?(3)2个偶数不相邻的四位数有几个?(所得结果均用数值表示).解析:(1)易知四位数共有C23C23A44=216(个).(2)上述四位数中,偶数排在一起的有C23C23A33A22=108(个).(3)由(1)(2)知两个偶数不相邻的四位数有216-108=108(个).16.10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现下列结果:(1)4只鞋子没有成双的;(2)4只鞋子恰有两双;(3)4只鞋子有2只成双,另2只不成双.解析:(1)从10双鞋子中选取4双,有C410种不同选法,每双鞋子中各取一只,分别有2种取法,根据分步乘法计数原理,选取种数为N=C410×24=3 360(种).(2)从10双鞋子中选2双有C210种取法,即有45种不同取法.(3)先选取一双有C110种选法,再从9双鞋中选取2双有C29种选法,每双鞋只取一只各有2种取法,根据分步乘法计数原理,不同取法为N=C110C29×22=1 440种.。

课时跟踪训练47

课时跟踪训练(四十七)[根底稳固]一、选择题1.点A (1,-1),B (-1,1),那么以线段AB 为直径的圆的方程是( )A .x 2+y 2=2B .x 2+y 2= 2C .x 2+y 2=1D .x 2+y 2=4[解析] AB 的中点坐标为(0,0), |AB |=[1-(-1)]2+(-1-1)2=22,∴圆的方程为x 2+y 2=2. [答案] A2.(2021·豫北名校4月联考)圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( )A .(x -3)2+(y -1)2=4B .(x -2)2+(y -2)2=4C .x 2+(y -2)2=4D .(x -1)2+(y -3)2=4[解析] 设圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(a ,b ),那么有⎩⎪⎨⎪⎧b a -2·33=-1,b 2=33·a +22,解得a =1,b =3,从而所求圆的方程为(x -1)2+(y -3)2=4.应选D.[答案] D3.(2021·湖南长沙二模)圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2间隔 的最大值是( )A .1+ 2B .2C .1+22 D .2+2 2[解析] 将圆的方程化为(x -1)2+(y -1)2=1,圆心坐标为(1,1),半径为1,那么圆心到直线x -y =2的间隔 d =|1-1-2|2=2,故圆上的点到直线x -y =2间隔 的最大值为d +1=2+1,选A.[答案] A4.假设曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第二象限内,那么a 的取值范围为( )A .(-∞,-2)B .(-∞,-1)C .(1,+∞)D .(2,+∞)[解析] 曲线C 的方程可以化为(x +a )2+(y -2a )2=4,那么该方程表示圆心为(-a,2a ),半径等于2的圆.因为圆上的点均在第二象限,所以a >2. [答案] D5.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1[解析] 设圆上任一点坐标为(x 0,y 0),那么x 20+y 20=4,连线中点坐标为(x ,y ),那么⎩⎨⎧2x =x 0+4,2y =y 0-2⇒⎩⎨⎧x 0=2x -4,y 0=2y +2,代入x 20+y 20=4中得(x -2)2+(y +1)2=1.[答案] A6.(2021·福建厦门4月联考)假设a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,那么方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( )A .0B .1C .2D .3[解析] 方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,∴仅当a =0时,方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,应选B.[答案] B 二、填空题7.直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,那么圆C 上各点到l 的间隔 的最小值为__________.[解析] 由题意得C 上各点到直线l 的间隔 的最小值等于圆心(1,1)到直线l 的间隔 减去半径,即|1-1+4|2-2= 2.[答案]28.点P (x ,y )在圆x 2+(y -1)2=1上运动,那么y -1x -2的最大值为________.[解析] 设y -1x -2=k ,那么k 表示点P (x ,y )与点(2,1)连线的斜率.当该直线与圆相切时,k 获得最大值与最小值.由|2k |k 2+1=1,解得k =±33. 故y -1x -2的最大值为33. [答案] 339.圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A (0,-4),B (0,-2),那么圆C 的方程为________.[解析] 圆心是AB 的垂直平分线和2x -y -7=0的交点,那么圆心为E (2,-3),r =|EA |=4+1=5,那么圆的方程为(x -2)2+(y +3)2=r 2=5.[答案] (x -2)2+(y +3)2=5 三、解答题10.(2021·江西南昌二中检测)在平面直角坐标系xOy 中,经过函数f (x )=x 2-x -6的图象与两坐标轴交点的圆记为圆C .(1)求圆C 的方程;(2)求经过圆心C 且在坐标轴上截距相等的直线l 的方程. [解] (1)设圆的方程为x 2+y 2+Dx +Ey +F =0,函数f (x )=x 2-x -6的图象与两坐标轴交点为(0,-6),(-2,0),(3,0),由⎩⎪⎨⎪⎧36-6E +F =0,4-2D +F =0,9+3D +F =0,解得⎩⎪⎨⎪⎧D =-1,E =5,F =-6,所以圆C 的方程为x 2+y 2-x +5y -6=0.(2)由(1)知圆心坐标为⎝ ⎛⎭⎪⎫12,-52,假设直线经过原点,那么直线l的方程为5x +y =0;假设直线不过原点,设直线l 的方程为x +y =a ,那么a =12-52=-2,即直线l 的方程为x +y +2=0.综上可得,直线l 的方程为5x +y =0或x +y +2=0.[才能提升]11.(2021·大连统考)圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,那么|PM |+|PN |的最小值为( )A .52-4 B.17-1 C .6-2 2 D.17[解析] 两圆的圆心均在第一象限,先求|PC 1|+|PC 2|的最小值,作点C 1关于x 轴的对称点C ′1(2,-3),那么(|PC 1|+|PC 2|)min =|C ′1C 2|=52,所以(|PM |+|PN |)min =52-(1+3)=52-4.[答案] A12.(2021·山西运城模拟)两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,那么△ABC 面积的最小值是( )A .3- 2B .3+ 2C .3-22 D.3-22[解析] l AB :x -y +2=0,圆心(1,0)到l 的间隔 d =|3|2=32,∴AB 边上的高的最小值为32-1.∴S △min =12×(22)×⎝ ⎛⎭⎪⎫32-1=3- 2.∴选A. [答案] A13.(2021·广州市高三综合测试)假设一个圆的圆心是抛物线x 2=4y 的焦点,且该圆与直线y =x +3相切,那么该圆的标准方程是__________________.[解析] 抛物线x 2=4y 的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x 2+(y -1)2=r 2(r >0),因为该圆与直线y =x +3相切,所以r =|-1+3|2=2,故该圆的标准方程是x 2+(y -1)2=2.[答案] x 2+(y -1)2=214.(2021·江苏卷)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上.假设P A →·PB →≤20,那么点P 的横坐标的取值范围是________.[解析] 此题考察平面向量数量积及其应用,圆的方程的应用及圆与圆的相交.解法一:设P (x ,y ),那么由P A →·PB →≤20可得,(-12-x )(-x )+(-y )(6-y )≤20, 即(x +6)2+(y -3)2≤65,所以P 为圆(x +6)2+(y -3)2=65上或其内部一点. 又点P 在圆x 2+y 2=50上,联立得⎩⎨⎧x 2+y 2=50,(x +6)2+(y -3)2=65,解得⎩⎨⎧x =1,y =7或⎩⎨⎧x =-5,y =-5,即P 为圆x 2+y 2=50的劣弧MN 上的一点(如图), 易知-52≤x ≤1.解法二:设P (x ,y ),那么由P A →·PB →≤20,可得(-12-x )(-x )+(-y )(6-y )≤20,即x 2+12x +y 2-6y ≤20, 由于点P 在圆x 2+y 2=50上, 故12x -6y +30≤0,即2x -y +5≤0,∴点P 为圆x 2+y 2=50上且满足2x -y +5≤0的点,即P 为圆x 2+y 2=50的劣弧MN 上的一点(如图).同解法一,可得N (1,7),M (-5,-5), 易知-52≤x ≤1. [答案] [-52,1]15.点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.[解] (1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4.设M (x ,y ),那么CM →=(x ,y -4),MP →=(2-x,2-y ). 由题设知CM →·MP →=0, 故x (2-x )+(y -4)(2-y )=0, 即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上, 又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13, 故l 的方程为y =-13x +83.又|OM |=|OP |=22,O 到l 的间隔 为4105,|PM |=4105,所以△POM 的面积为12×4105×4105=165.16.(2021·吉林省实验中学模拟)圆M 过C (1,-1),D (-1,1)两点,且圆心M 在直线x +y -2=0上.(1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A ,PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.[解] (1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0),根据题意得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0,解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)由题意知,四边形P AMB 的面积为S =S △P AM +S △PBM =12(|AM |·|P A |+|BM |·|PB |).又|AM |=|BM |=2,|P A |=|PB |,所以S =2|P A |,而|P A |2=|PM |2-|AM |2=|PM |2-4,所以S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值,即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,所以|PM |min =3,所以四边形P AMB 面积的最小值为2|PM |2-4=2 5.[延伸拓展]1.假设过点(1,2)总可以作两条直线与圆x 2+y 2+kx +2y +k 2-15=0相切,那么实数k 的取值范围是__________.[解析] 由k 2+4-4(k 2-15)>0, 得-833<k <833.由题意可知,点(1,2)在圆的外部, 所以1+4+k +4+k 2-15>0, 得k <-3或k >2.所以k 的取值范围是⎝ ⎛⎭⎪⎫-833,-3∪⎝ ⎛⎭⎪⎫2,833. [答案] ⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833 2.(2021·山西运城二模)圆C 截y 轴所得的弦长为2,圆心C 到直线l :x -2y =0的间隔 为55,且圆C 被x 轴分成的两段弧长之比为3∶1,那么圆C 的方程为________.[解析] 设圆C 的方程为(x -a )2+(y -b )2=r 2,那么点C 到x 轴,y轴的间隔 分别为|b |,|a |.由题意可知⎩⎪⎨⎪⎧r 2=2b 2,r 2=a 2+1,|a -2b |5=55,∴⎩⎪⎨⎪⎧ a =-1,b =-1,r 2=2或⎩⎪⎨⎪⎧a =1,b =1,r 2=2.故所求圆C 的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2.[答案](x+1)2+(y+1)2=2或(x-1)2+(y-1)2=2第 11 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪训练(五十七)
一、选择题
1.(2015·兰州诊断)复数z =(1+i)2的实部是( )
A .2
B .1
C .0
D .-1
[解析] 因为z =(1+i)2=2i ,所以该复数的实部是0,故选C.
[答案] C
2.若复数z =m +i 1-i
(i 为虚数单位)为实数,则实数m =( ) A .0
B .-1
C .-1或1
D .1
[解析] z =m +i 1-i =(m +i )(1+i )(1-i )(1+i )
=m -1+(m +1)i 2,因为z 为实数,所以m +1=0,即m =-1.故选B.
[答案] B
3.若i 为虚数单位,图中复平面上的点Z 表示复数z ,则表示复数z 1+i
的点是( )
A .E
B .F
C .G
D .H
[解析] 由点Z (3,1)的坐标可知z =3+i ,故
z 1+i =3+i 1+i =2-i ,因此表示复数z 1+i
的点是H .故选D. [答案] D
4.(2015·云南师大附中适应性考试)复数z 满足(z +2)(1+i 3)=2(i 为虚数单
位),则z =( )
A .1-i
B .1+i
C .-1-i
D .-1+i [解析] 由题知,z =-2+
21-i =-1+i ,故选D. [答案] D
5.(2015·新课标全国卷Ⅱ)若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( )
A .-1
B .0
C .1
D .2
[解析] 由于(2+a i)(a -2i)=4a +(a 2-4)i =-4i ,所以⎩⎨⎧4a =0,a 2-4=-4,
解得a =0.故选B.
[答案] B
6.(2015·湖北卷)i 为虚数单位,i 607的共轭复数为( )
A .i
B .-i
C .1
D .-1
[解析] i 607=i 4×151·i 3=-i ,又-i 的共轭复数为i ,
故选A.
[答案] A
7.(2015·云南统一检测)已知i 为虚数单位,z i =2i -z ,则复数z 在复平面内对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
[解析] 由题意得z (i +1)=2i ⇒z =
2i 1+i =1+i ,所以z 在复平面内对应的点位于第一象限.故选A.
[答案] A
8.设z 1,z 2是复数,则下列命题中的假命题是( )
A .若|z 1-z 2|=0,则z 1=z 2
B .若z 1=z 2,则z 1=z 2
C .若|z 1|=|z 2|,则z 2·z 1=z 1·z 2
D .若|z 1|=|z 2|,则z 21=z 22
[解析] 依据复数概念和运算,逐一进行推理判断.对于A ,|z 1-z 2|=0⇒z 1=z 2⇒z 1=z 2,是真命题;对于B ,C 易判断是真命题;对于D ,若z 1=2,z 2=1+3i ,则|z 1|=|z 2|,但z 21=4,z 22=-2+23i ,是假命题.故选D.
[答案] D
9.已知复数z 满足|z |-z =2-4i ,则z =( )
A .3+4i
B .3-4i
C .-3+4i
D .-3-4i
[解析] 解法一:设z =x +y i(x ,y ∈R ),则x 2+y 2-(x -y i)=2-4i ,所以⎩⎨⎧x 2+y 2-x =2,y =-4,
解得⎩⎨⎧x =3,y =-4,因而z =3-4i ,故选B. 解法二:观察可知,四个选项中的复数的模均为5,代入|z |-z =2-4i 得,z =3+4i ,故z =3-4i ,故选B.
[答案] B
10.若复数1+3i 与复数-3+i 在复平面内对应的点分别为A 、B ,O 为坐标原点,则∠AOB 等于( ) A.π6
B .π4 C.π3 D .π2
[解析] 由题意知,A (1,3)、B (-3,1),所以OA →=(1,3)、OB →
=(-3,1),则OA →·OB →=1×(-3)+3×1=0,故∠AOB =π2.故选D.
[答案] D
11.(2016·南昌调研)已知复数z =1+i(i 是虚数单位),若z +a z 为纯虚数,则
|a +z |=( )
A .1
B . 2 C. 3 D .2
[解析] ∵z +a z =1+i +a 1+i
=1+i +a (1-i )2=⎝ ⎛⎭⎪⎫1+a 2+(2-a )i 2为纯虚数,∴a =-2,则a +z =-2+1+i =-1+i ,则|a +z |=|-1+i|=2,故选B.
[答案] B
12.设x ,m 均为复数,若x 2=m ,则称复数x 是复数m 的平方根,那么复数3-4i(i 是虚数单位)的平方根为( )
A .2-i 或-2+i
B .2+i 或-2-i
C .2+i 或2-i
D .-2+i 或-2-i
[解析] 解法一:设3-4i 的平方根为a +b i(a ,b ∈R ),则(a +b i)2=3-4i ,
整理得⎩⎨⎧a 2-b 2=3,2ab =-4,解得⎩⎨⎧a =2,b =-1或⎩⎨⎧a =-2,b =1.
所以复数3-4i 的平方根为2-i 或-2+i.故选A.
解法二:由于3-4i =[±(2-i)]2,所以复数3-4i 的平方根为2-i 或-2+i ,故选A.
[答案] A
二、填空题
13.若复数z 满足i ·(3+z )=-1(其中i 为虚数单位),则z =__________.
[解析] ∵i(3+z )=-1,∴z +3=-1i =i ⇒z =-3+i.
[答案] -3+i
14.复数z 满足(3-4i)z =5+10i ,则|z |=__________.
[解析] 由(3-4i)z =5+10i 知,|3-4i|·|z |=|5+10i|,即5|z |=55,解得|z |= 5.
[答案] 5
15.(2015·江苏卷)设复数z 满足z 2=3+4i(i 是虚数单位),则z 的模为__________.
[解析] 设复数z =a +b i ,a ,b ∈R ,则z 2=a 2-b 2+2ab i =3+4i ,a ,b ∈R ,则⎩⎨⎧a 2-b 2=3,2ab =4,a ,b ∈R ,解得⎩⎨⎧a =2,b =1,或⎩⎨⎧a =-2,b =-1,
则z =±(2+i),故|z |= 5. [答案] 5
16.投掷两颗骰子,其向上的点数分别为m 和n ,则复数(m +n i)2为纯虚数
的概率为__________.
[解析]投掷两颗骰子共有36种结果.因为(m+n i)2=m2-n2+2mn i,所以要使复数(m+n i)2为纯虚数,则有m2-n2=0,故m=n,共有6种结果,所以复
数(m+n i)2为纯虚数的概率为6
36=
1
6.
[答案]1 6。

相关文档
最新文档