高中数学必修一和必修二综合测试B

合集下载

(人教版B版)高中数学必修第二册 第五章综合测试试卷01及答案

(人教版B版)高中数学必修第二册 第五章综合测试试卷01及答案

第五章综合测试一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图是容量为100的样本数据质量的频率分布直方图,已知样本质量均在[5,20]内,其分组为[5,10),[10,15),[15,20],则样本质量落在[15,20]内的频数为()A.10B.20C.30D.402.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.83.把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.以上都不对4.根据某跑步团体每月跑步的平均里程(单位:公里)的数据绘制了如图所示的折线图.根据折线图,下列结论正确的是()A.月跑步平均里程的中位数为6月份对应的里程数B.月跑步平均里程逐月增加C.月跑步平均里程高峰期大致在8、9月D.1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳5.在掷一个骰子的试验中,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一U发生的概率为()次试验中,事件A BA .13B .12C .23D .566.某示范农场的鱼塘放养鱼苗8万条,根据这几年的经验知道,鱼苗的成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼2.5 kg ,第二网捞出25条,称得平均每条鱼2.2 kg ,第三网捞出35条,称得平均每条鱼2.8 kg ,估计这时鱼塘中鱼的总质量为( )A .192 280 kgB .202 280 kgC .182 280 kgD .172 280 kg7.为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为()A .①③B .①④C .②③D .②④8.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A .100,10B .100,20C .200,10D .200,209.甲、乙、丙三人参加一次考试,他们合格的概率分别为23,34,25,那么三人中恰有两人合格的概率是( )A .25B .715C .1130D .1610.如图所示,小王与小张二人参加某射击比赛的预赛的五次测试成绩的折线图,设小王与小张成绩的样本平均数分别为A X 和B X ,方差分别为2A s 和2B s ,则()A .AB X X <,22A B s s >B .A B X X <,22A Bs s <C .A B X X >,22A B s s >D .A B X X >,22A Bs s <11.袋子中有四个小球,分别写有“美”“丽”“中”“国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到时停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中”“国”“美”“丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232321230023123021132220001231131133231031320122130233由此可以估计,恰好第三次停止的概率为( )A .19B .318C .29D .51812.有能力互异的3人应聘同一公司,他们按照报名顺序依次接受面试,经理决定“不录用第一个接受面试的人,如果第二个接受面试的人比第一个人能力强,就录用第二个人,否则就录用第三个人”,记该公司录用到能力最强的人的概率为p ,录用到能力中等的人的概率为q ,则(),p q =()A .11,66æöç÷èøB .11,26æöç÷èøC .11,24æöç÷èøD .11,23æöç÷èø二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.某单位青年、中年、老年职员的人数之比为11: 8: 6,从中抽取200名职员作为样本,则应抽取青年职员的人数为__________.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.15.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨),一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值为__________.16.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为1白1黑的概率等于__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.[10分]为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图所示.(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为1x ,2x ,估计12x x -的值.18.[12分]为了调查某市市民对出行的满意程度,研究人员随机抽取了1 000名市民进行调查,并将满意程度以分数的形式统计成如图所示的频率分布直方图,其中4a b =.(1)求a,b的值;(2)求被调查的市民的满意程度的平均数、众数、中位数;(3)若按照分层抽样从[50,60),[60,70)中随机抽取8人,应如何抽取?19.[12分]某地区有小学21所,中学14所,大学7所。

人教版A版高中数学必修第一册 第二章综合测试01试题试卷含答案 答案在前

人教版A版高中数学必修第一册 第二章综合测试01试题试卷含答案 答案在前

第二章综合测试答案解析一、 1.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误.故选D . 2.【答案】D【解析】2=()=a b +-+-+(.+ ,a ∴,b 必须满足的条件是0a ≥,0b ≥,且a b ≠.故选D .3.【答案】A【解析】当=0k 时,不等式2680kx kx k -++≥化为80≥,恒成立,当0k <时,不等式2680kx kx k -++≥不能恒成立,当0k >时,要使不等式2680kx kx k -++≥对任意x ∈R 恒成立,需22=36480k k k ∆-+()≤,解得01k ≤≤,故01k <≤.综上,k 的取值范围是01k ≤≤.故选A . 4.【答案】A【解析】由311x +<,得3101x -+<,201x x -++,解得1x -<或2x >.因为“x k >”是“311x +”的充分不必要条件,所以2k ≥.5.【答案】B【解析】不等式2x ax b +<可化为20x ax b --<,其解集是{}|13x x <<,那么由根与系数的关系得13=13=a b +⎧⎨-⎩⨯,,解得=4=3a b ⎧⎨-⎩,,所以4=3=81a b -().故选B . 6.【答案】D【解析】选项A ,c 为实数,∴取=0c ,此时22=ac bc ,故选项A 不成立;选项B ,11=b a a b ab--,0a b <<,0b a ∴->,0ab >,0b a ab -∴,即11a b>,故选项B 不成立;选项C ,0a b <<,∴取=2a -,=1b -,则11==22b a --,2==21a b --,∴此时b aa b ,故选项C 不成立;选项D ,0a b <<,2=0a ab a a b ∴--()>,2=0ab b b a b --()>,22a ab b ∴>>,故选项D 正确.7.【答案】D【解析】210x a x a -++ ()<,10x x a ∴--()()<,当1a >时,1x a <<,此时解集中的整数为2,3,4,故45a <≤.当1a <时,1a x <<,此时解集中的整数为2-,1-,0,故32a --≤<.故a 的取值范围是32a --≤<或45a <≤.故选D . 8.【答案】B【解析】不等式210x ax ++≥对一切02x <<恒成立,1a x x∴--≥在02x <<时恒成立.11=2x x x x ---+-- ((当且仅当=1x 时取等号),2a ∴-≥,∴实数a 的最小值是2-.故选B . 9.【答案】A【解析】由题知{}=20N -,,则{}=0M N .故选A . 10.【答案】C【解析】2x >,20x ∴->.11==222=422y x x x x ∴+-+++--()≥,当且仅当12=2x x --,即=3x 时等号成立.=3a ∴. 11.【答案】B【解析】由已知及三角形三边关系得3a b c a a b c a c b +⎧⎪+⎨⎪+⎩<≤,>,>,即1311b ca abc a a c b a a⎧+⎪⎪⎪+⎨⎪⎪+⎪⎩<,>>1311b c a ac b a a ⎧+⎪⎪∴⎨⎪--⎪⎩<≤,<,两式相加得024c a ⨯<<.c a ∴的取值范围为02ca<<.12.【答案】D【解析】 二次三项式220ax x b ++≥对一切实数x 恒成立,0a ∴>,且=440ab ∆-≤,1ab ∴≥.又0x ∃∈R ,使2002=0ax x b ++成立,则=0∆,=1ab ∴,又a b >,0a b ∴->.22222==a b a b ab a b a b a b a b +-+∴-+---()(),当且仅当a b -时等号成立.22a b a b+∴-的最小值为D .二、 13.【答案】111a a-+ 【解析】由1a <,得11a -<<.10a ∴+>,10a ->.2111=11a a a +--.2011a - <≤,2111a∴-,111a a∴-+≥.14.【答案】a【解析】不等式22210x ax -+≥对一切实数x 都成立,则2=44210a ∆-⨯⨯≤,解得a ,∴实数a 的取值范围是a .15.【答案】3【解析】若①②成立,则cd ab ab a b --((),即bc ad --<,bc ad ∴>,即③成立;若①③成立,则bc ad ab ab>,即c d a b >,c d a b ∴--<,即②成立;若②③成立,则由②得c d a b >,即0bc adab->, ③成立,0bc ad ∴->,0ab ∴>,即①成立.故可组成3个正确命题.16.【答案】42x -<< 【解析】不等式2162ab x x b a ++<对任意0a >,0b >恒成立,等价于2162a bx x b a++min <().因为16a b b a +≥(当且仅当=4a b 时等号成立).所以228x x +<,解得42x -<<. 三、17.【答案】(1)当=0a 时,31=0x +只有一解,满足题意;当0a ≠时,=94=0a ∆-,9=4a . 所以满足题意的实数a 的值为0或94.(5分)(2)若A 中只有一个元素,则由(1)知实数a 的值为0或94. 若=A ∅,则=940a ∆-<,解得94a >.所以满足题意的实数a 的取值范围为=0a 或94a ≥.(10分) 18.【答案】(1)2560x x --+ <,2560x x ∴+->,160x x ∴-+()()>,解得6x -<或1x >,∴不等式2560x x --+<的解集是{|6x x -<或}1x >.(4分)(2)当0a <时,=2y a x a x --()()的图象开口向下,与x 轴的交点的横坐标为1=x a ,2=2x ,且2a <,20a x a x ∴--()()>的解集为{}|2x a x <<.(6分)当=0a 时,2=0a x a x --()(),20a x a x ∴--()()>无解.(8分)当0a >时,抛物线=2y a x a x --()()的图象开口向上,与x 轴的交点的横坐标为=x a ,=2x .当=2a 时,原不等式化为2220x -()>,解得2x ≠.当2a >时,解得2x <或x a >. 当2a <时,解得x a <或2x >.(10分)综上,当0a <时,原不等式的解集是{}|2x a x <<; 当=0a 时,原不等式的解集是∅;当02a <<时,原不等式的解集是{|x x a <或}2x >; 当=2a 时,原不等式的解集是{}|2x x ≠;当2a >时,原不等式的解集是{|2x x <或}x a >.(12分)19.【答案】23=12y x x -+, 配方得237=416y x -+(). 因为324x ≤≤,所以min 7=16y ,max =2y .所以7216y ≤.所以7=|216A y y ⎧⎫⎨⎬⎩⎭≤≤.(6分) 由21x m +≥,得21x m -≥, 所以{}2=|1B x x m -≥.(8分) 因为p 是q 的充分条件, 所以A B ⊆. 所以27116m -≤,(10分) 解得实数m 的取值范围是34m ≥或34m -≤.(12分) 20.【答案】(1)由题意知{}=|03A x x ≤≤,{}=|24B x x ≤≤, 则{}=|23A B x x ≤≤.(3分) (2)因为=A B A ,所以B A ⊆.①当=B ∅,即23a a +>,3a >时,B A ⊆成立,符合题意.(8分)②当=B ∅,即23a a +≤,3a ≤时, 由B A ⊆,有0233a a ⎧⎨+⎩≤,≤,解得=0a .综上,实数a 的取值范围为=0a 或3a >.(12分)21.【答案】(1)a 、b 为正实数,且11a b+.11a b ∴+(当且仅当=a b 时等号成立), 即12ab ≥.(3分)2221122=a b ab +⨯ ≥≥(当且仅当=a b 时等号成立),22a b ∴+的最小值为1.(6分)(2)11a b+,a b ∴+.234a b ab - ()≥(), 2344a b ab ab ∴+-()≥(),即2344ab ab -()≥(), 2210ab ab -+()≤, 210ab -()≤,a 、b 为正实数,=1ab ∴.(12分)22.【答案】(1)当=0a 时,原不等式可化为10-<,所以x ∈R .当0a <时,解得1a x a +>. 当0a >时,解得1a x a+<.综上,当=0a 时,原不等式的解集为R ; 当0a <时,原不等式的解集为1|a x x a +⎧⎫⎨⎬⎩⎭>; 当0a >时,原不等式的解集为1|a x x a +⎧⎫⎨⎬⎩⎭<.(6分) (2)由21ax a x x a -+--()≤,得21ax x x -+≤.因为0x >,所以211=1x x a x x x-++-≤, 因为2y x x a --≤在0+∞(,)上恒成立, 所以11a x x+-≤在0+∞(,)上恒成立. 令1=1t x x+-,只需min a t ≤, 因为0x >,所以1=11=1t x x +-≥,当且仅当=1x 时等式成立. 所以a 的取值范围是1a ≤.(12分)第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( ) A .若ac bc >,则a b >B .若22a b >,则a b >C .若a b >,0c <,则a c b c ++<D ,则a b <2.若++,则a ,b 必须满足的条件是( ) A .0a b >> B .0a b <<C .a b >D .0a ≥,0b ≥,且a b ≠3.已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A .01k ≤≤ B .01k <≤ C .0k <或1k >D .0k ≤或1k ≥4.已知“x k >”是“311x +<”的充分不必要条件,则k 的取值范围是( ) A .2k ≥B .1k ≥C .2k >D .1k -≤5.如果关于x 的不等式2x ax b +<的解集是{}|13x x <<,那么a b 等于( ) A .81-B .81C .64-D .646.若a ,b ,c 为实数,且0a b <<,则下列命题正确的是( ) A .22ac bc <B .11a b<C .b aab>D .22a ab b >> 7.关于x 的不等式210x a x a -++()<的解集中恰有3个整数,则a 的取值范围是( )A .45a <<B .32a --<<或45a <<C .45a <≤D .32a --≤<或45a <≤8.若不等式210x ax ++≥对一切02x <<恒成立,则实数a 的最小值是( ) A .0B .2-C .52-D .3-9.已知全集=U R ,则下列能正确表示集合{}=012M ,,和{}2=|+2=0N x x x 关系的Venn 图是( )A BCD10.若函数1=22y x x x +-(>)在=x a 处取最小值,则a 等于( )A .1+B .1或3C .3D .411.已知ABC △的三边长分别为a ,b ,c ,且满足3b c a +≤,则ca 的取值范围为( ) A .1c a>B .02c a<<C .13c a <<D .03c a<<12.已知a b >,二次三项式220ax x b ++≥对一切实数x 恒成立,又0x ∃∈R ,使202=0ax x b ++成立,则22a b a b+-的最小值为( )A .1BC .2D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已经1a <,则11a+与1a -的大小关系为________. 14.若不等式22210x ax -+≥对一切实数x 都成立,则实数a 的取值范围是________.15.已知三个不等式:①0ab >,②c da b--<,③bc ad >.以其中两个作为条件,余下一个作为结论,则可以组成________个正确命题. 16.若不等式2162a bx x b a++<的对任意0a >,0b >恒成立,则实数x 的取值范围是________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{2=|31=0A x ax x ++,}x ∈R ,(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围.18.(本小题满分12分)解下列不等式. (1)2560x x --+<;(2)20a x a x --()()>.19.(本小题满分12分)已知集合23=|=12A y y x x ⎧-+⎨⎩,324x ⎫⎬⎭≤≤,{}2=|1B x x m +≥.p x A ∈:,q x B ∈:,并且p 是q 的充分条件,求实数m 的取值范围.20.(本小题满分12分)已知集合{}2=|30A x x x -≤,{=|23B x a x a +≤≤,}a ∈R .(1)当=1a 时,求A B ;(2)若=A B A ,求实数a 的取值范围.21.(本小题满分12分)设a 、b 为正实数,且11a b+. (1)求22a b +的最小值;(2)若234a b ab -()≥(),求ab 的值.22.(本小题满分12分)已知函数=1y ax a -+().(1)求关于x 的不等式0y <的解集;(2)若当0x >时,2y x x a --≤恒成立,求a 的取值范围.。

新教材人教B版高中数学选择性必修第一册各章综合测验及模块测验含答案解析

新教材人教B版高中数学选择性必修第一册各章综合测验及模块测验含答案解析

人教B 选择性必修第一册综合测验第一章 空间向量与立体几何............................................................................................ 1 第二章 平面解析几何 .................................................................................................... 15 模块综合测验 . (28)第一章 空间向量与立体几何一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平行六面体ABCD-A'B'C'D'中,向量AB '⃗⃗⃗⃗⃗⃗ 、AD '⃗⃗⃗⃗⃗⃗ 、BD ⃗⃗⃗⃗⃗⃗ 是( ) A.有相同起点的向量 B .等长的向量C.共面向量 D .不共面向量AB '⃗⃗⃗⃗⃗⃗ 、AD '⃗⃗⃗⃗⃗⃗ 、BD⃗⃗⃗⃗⃗⃗ 显然不是有相同起点的向量,A 不正确; 由该平行六面体不是正方体可知,这三个向量不是等长的向量,B 不正确. 又∵AD '⃗⃗⃗⃗⃗⃗ −AB '⃗⃗⃗⃗⃗⃗ =B 'D '⃗⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ , ∴AB '⃗⃗⃗⃗⃗⃗ ,AD '⃗⃗⃗⃗⃗⃗ ,BD⃗⃗⃗⃗⃗⃗ 共面,C 正确,D 不正确. 2.已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( ) A.a ∥c ,b ∥c B.a ∥b ,a ⊥c C.a ∥c ,a ⊥b D.以上都不对a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),∴a ·b =-4+0+4=0,∴a ⊥b .∵-4-2=-6-3=21,∴a ∥c .3.在长方体ABCD-A 1B 1C 1D 1中,BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ = ( ) A.D 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ B.D 1B ⃗⃗⃗⃗⃗⃗⃗ C.DB 1⃗⃗⃗⃗⃗⃗⃗⃗ D.BD 1⃗⃗⃗⃗⃗⃗⃗⃗,长方体ABCD-A 1B 1C 1D 1中,BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )+DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =BD 1⃗⃗⃗⃗⃗⃗⃗⃗ .4.如图所示,已知空间四边形ABCD ,连接AC ,BD.M ,G 分别是BC ,CD 的中点,则AB ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ 等于 ( )A.AD ⃗⃗⃗⃗⃗B.GA ⃗⃗⃗⃗⃗C.AG ⃗⃗⃗⃗⃗D.MG ⃗⃗⃗⃗⃗⃗M ,G 分别是BC ,CD 的中点,∴12BC ⃗⃗⃗⃗⃗ =BM ⃗⃗⃗⃗⃗⃗ ,12BD ⃗⃗⃗⃗⃗⃗ =MG ⃗⃗⃗⃗⃗⃗ .∴AB ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ +MG ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +MG ⃗⃗⃗⃗⃗⃗ =AG⃗⃗⃗⃗⃗ . 5.在四棱锥P-ABCD 中,AB ⃗⃗⃗⃗⃗ =(4,-2,3),AD ⃗⃗⃗⃗⃗ =(-4,1,0),AP ⃗⃗⃗⃗⃗ =(-6,2,-8),则这个四棱锥的高h 等于 ( )A.1 B .2C.13D .26ABCD 的法向量为n =(x ,y ,z ),则{n ·AB ⃗⃗⃗⃗⃗ =0,n ·AD ⃗⃗⃗⃗⃗ =0,即{4x -2y +3z =0,-4x +y =0.不妨令x=3,则y=12,z=4,可得n =(3,12,4), 四棱锥的高h=|AP ⃗⃗⃗⃗⃗ ·n ||n |=2613=2.6.已知两不重合的平面α与平面ABC ,若平面α的法向量为n 1=(2,-3,1),AB ⃗⃗⃗⃗⃗ =(1,0,-2),AC ⃗⃗⃗⃗⃗ =(1,1,1),则( ) A.平面α∥平面ABC B.平面α⊥平面ABCC.平面α、平面ABC 相交但不垂直D.以上均有可能,n 1·AB ⃗⃗⃗⃗⃗ =2×1+(-3)×0+1×(-2)=0,得n 1⊥AB ⃗⃗⃗⃗⃗ ,n 1·AC ⃗⃗⃗⃗⃗ =2×1+(-3)×1+1×1=0,得n 1⊥AC⃗⃗⃗⃗⃗ , 所以n 1⊥平面ABC ,所以平面α的法向量与平面ABC 的法向量共线,则平面α∥平面ABC.7.直线AB 与直二面角α-l-β的两个面分别交于A ,B 两点,且A ,B 都不在棱l 上,设直线AB 与α,β所成的角分别为θ和φ,则θ+φ的取值范围是( ) A.0°<θ+φ<90° B.0°<θ+φ≤90° C.90°<θ+φ<180° D.θ+φ=90°,分别过点A ,B 向平面β,α作垂线,垂足为A 1,B 1,连接BA 1,AB 1.由已知α⊥β,所以AA 1⊥β,BB 1⊥α,因此∠BAB 1=θ,∠ABA 1=φ.由最小角定理得∠BAA 1≥θ,而∠BAA 1+φ=90°,故θ+φ=θ+90°-∠BAA 1≤90°,当AB ⊥l 时,θ+φ=90°,应选B .8.长方体A 1A 2A 3A 4-B 1B 2B 3B 4的底面为边长为1的正方形,高为2,则集合{x|x=A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A i B j ⃗⃗⃗⃗⃗⃗⃗⃗ ,i ∈{1,2,3,4},j ∈{1,2,3,4}}中元素的个数为( )A.1 B .2 C .3 D .4长方体A 1A 2A 3A 4-B 1B 2B 3B 4的底面为边长为1的正方形,高为2,∴建立如图的空间直角坐标系, 则A 1(1,1,0),A 2(0,1,0),A 3(0,0,0),A 4(1,0,0), B 1(1,1,2),B 2(0,1,2),B 3(0,0,2),B 4(1,0,2), 则A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,2),与A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,2)相等的向量为A 2B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 3B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 4B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4, 与A 1B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-1,2)相等的向量为A 2B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4, 与A 4B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,2)相等的向量为A 3B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 4B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4,与A 2B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,2)相等的向量为A 3B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 2B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3,与A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,2)相等的向量为A 4B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,体对角线向量为A 1B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,-1,2),此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,A 2B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,-1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 2B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3,A 3B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 3B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3, A 4B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 4B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,综上集合{x|x=A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A i B j ⃗⃗⃗⃗⃗⃗⃗⃗ ,i ∈{1,2,3,4},j ∈{1,2,3,4}}={3,4,5},集合中元素的个数为3个.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分. 9.设向量a ,b ,c 可构成空间一个基底,下列选项中正确的是( ) A.若a ⊥b ,b ⊥c ,则a ⊥cB.则a,b,c两两共面,但a,b,c不可能共面C.对空间任一向量p,总存在有序实数组(x,y,z),使p=x a+y b+z cD.则a+b,b+c,c+a一定能构成空间的一个基底a,b,c是空间一个基底,知:在A中,若a⊥b,b⊥c,则a与c相交或平行,故A错误;在B中,a,b,c两两共面,但a,b,c不可能共面,故B正确;在C中,对空间任一向量p,总存在有序实数组(x,y,z),使p=x a+y b+z c,故C正确;在D中,a+b,b+c,c+a一定能构成空间的一个基底,故D正确.10.已知向量a=(1,2,3),b=(3,0,-1),c=(-1,5,-3),下列等式中正确的是()A.(a·b)c=b·cB.(a+b)·c=a·(b+c)C.(a+b+c)2=a2+b2+c2D.|a+b+c|=|a-b-c|左边为向量,右边为实数,显然不相等,不正确;B.左边=(4,2,2)·(-1,5,-3)=0,右边=(1,2,3)·(2,5,-4)=2+10-12=0,∴左边=右边,因此正确.C.a+b+c=(3,7,-1),左边=32+72+(-1)2=59,右边=12+22+32+32+0+(-1)2+(-1)2+52+(-3)2=59,∴左边=右边,因此正确.D.由C可得左边=√59,∵a-b-c=(-1,-3,7),∴|a-b-c|=√59,∴左边=右边,因此正确.故BCD正确.11.在正方体ABCD-A1B1C1D1中,E,F,G,H分别为AB,CC1,A1D1,C1D1的中点,则下列结论正确的是 ()A.A1E⊥AC1B.BF∥平面ADD1A1C.BF⊥DGD.A1E∥CH解析设正方体的棱长为1,以D 为原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A 1(1,0,1),E (1,12,0),C (0,1,0),F (0,1,12),C 1(0,1,1),H 0,12,1,G (12,0,1),A (1,0,0),B (1,1,0),D (0,0,0),则A 1E ⃗⃗⃗⃗⃗⃗⃗ =(0,12,-1),AC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,1,1),BF ⃗⃗⃗⃗⃗ =(-1,0,12),DG ⃗⃗⃗⃗⃗ =(12,0,1),CH ⃗⃗⃗⃗⃗ =(0,-12,1), 所以A 1E ⃗⃗⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗ =-12,所以A 1E 与AC 1不垂直,故A 错误; 显然平面ADD 1A 1的一个法向量v =(0,1,0), 有BF ⃗⃗⃗⃗⃗ ·v =0,所以BF ∥平面ADD 1A 1,故B 正确; BF ⃗⃗⃗⃗⃗ ·DG ⃗⃗⃗⃗⃗ =0,所以BF ⊥DG ,故C 正确; A 1E ⃗⃗⃗⃗⃗⃗⃗ =-CH⃗⃗⃗⃗⃗ ,所以A 1E ∥CH ,故D 正确. 12.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ;②△ACD 是等边三角形;③AB 与平面BCD 所成的角为60°;④AB 与CD 所成的角为60°.其中正确的结论有( ) A.① B.②C.③D.④,建立空间直角坐标系Oxyz ,设正方形ABCD 的边长为√2,则D (1,0,0),B (-1,0,0),C (0,0,1),A (0,1,0),所以AC ⃗⃗⃗⃗⃗ =(0,-1,1),BD ⃗⃗⃗⃗⃗⃗ =(2,0,0),CD ⃗⃗⃗⃗⃗ =(1,0,-1),AD ⃗⃗⃗⃗⃗ =(1,-1,0),AB ⃗⃗⃗⃗⃗ =(-1,-1,0),AC ⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗⃗ =0,故AC ⊥BD ,①正确.又|AC ⃗⃗⃗⃗⃗ |=√2,|CD ⃗⃗⃗⃗⃗ |=√2,|AD ⃗⃗⃗⃗⃗ |=√2, 所以△ACD 为等边三角形,②正确. 对于③,OA ⃗⃗⃗⃗⃗ 为平面BCD 的一个法向量, cos <AB ⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ ||OA⃗⃗⃗⃗⃗⃗ |=√2·√1=√2=-√22.因为直线与平面所成的角∈[0°,90°],所以AB 与平面BCD 所成的角为45°,故③错误.又cos <AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ ||CD⃗⃗⃗⃗⃗⃗ |=√2·√2=-12,因为异面直线所成的角为锐角或直角,所以AB 与CD 所成的角为60°,故④正确. 三、填空题:本题共4小题,每小题5分,共20分.13.在棱长为a 的正四面体中,AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ = . -a 22a 的正四面体中,AB=BC=a ,且AB ⃗⃗⃗⃗⃗ 与BC ⃗⃗⃗⃗⃗ 的夹角为120°,AC ⊥BD.∴AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =a ·a cos120°+0=-a22.14.已知a =(1,2,-y ),b =(x ,1,2),且(a +2b )∥(2a -b ),则xy= .2a +2b =(1+2x ,4,-y+4),2a -b =(2-x ,3,-2y-2),因为(a+2b )∥(2a-b ),所以存在λ∈R 使得1+2x=λ(2-x )且4=3λ且-y+4=λ(-2y-2),所以λ=43,x=12,y=-4,所以xy=-2.15.设PA ⊥Rt △ABC 所在的平面α,∠BAC=90°,PB ,PC 分别与α成45°和30°角,PA=2,则PA 与BC 的距离是 ;点P 到BC 的距离是 . √3 √7AD ⊥BC 于点D ,∵PA ⊥面ABC ,∴PA ⊥AD.∴AD 是PA 与BC 的公垂线.易得AB=2,AC=2√3,BC=4,AD=√3,连接PD ,则PD ⊥BC ,P 到BC 的距离PD=√7. 16.已知向量m =(a ,b ,0),n =(c ,d ,1),其中a 2+b 2=c 2+d 2=1,现有以下命题:①向量n 与z 轴正方向的夹角恒为定值(即与c ,d 无关); ②m ·n 的最大值为√2;③<m ,n >(m ,n 的夹角)的最大值为3π4;④若定义u ×v =|u |·|v |sin <u ,v >,则|m×n |的最大值为√2. 其中正确的命题有 .(写出所有正确命题的序号)取z 轴的正方向单位向量a =(0,0,1),则cos <n ,a >=n ·a|n ||a |=√c 2+d 2+12×1=√2=√22,∴向量n 与z 轴正方向的夹角恒为定值π4,命题正确;②m ·n =ac+bd ≤a 2+c 22+b 2+d 22=a 2+c 2+b 2+d 22=1+12=1,当且仅当a=c ,b=d 时取等号,因此m ·n 的最大值为1,命题错误;③由②可得|m ·n |≤1,∴-1≤m ·n ≤1, ∴cos <m ,n >=m ·n|m ||n | =√a 2+b 2·√c 2+d 2+12≥-1×√2=-√22, ∴<m ,n >的最大值是3π4,命题正确; ④由③可知:-√22≤cos <m ,n >≤√22,∴π4≤<m ,n >≤3π4,√22≤sin <m ,n >≤1,∴m×n =|m|×|n|×sin <m ,n >≤1×√2×1=√2,命题正确.综上可知,正确的命题序号是①③④.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图所示,在四棱锥M-ABCD 中,底面ABCD 是边长为2的正方形,侧棱AM 的长为3,且AM 和AB ,AD 的夹角都是60°,N 是CM 的中点,设a =AB ⃗⃗⃗⃗⃗ ,b =AD ⃗⃗⃗⃗⃗ ,c =AM ⃗⃗⃗⃗⃗⃗ ,试以a ,b ,c 为基向量表示出向量BN⃗⃗⃗⃗⃗⃗ ,并求BN 的长.⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CN ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +12CM ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +12(AM ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=AD ⃗⃗⃗⃗⃗ +12[AM ⃗⃗⃗⃗⃗⃗ -(AD ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )] =-12AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ +12AM ⃗⃗⃗⃗⃗⃗ . 所以BN⃗⃗⃗⃗⃗⃗ =-12a+12b+12c , |BN ⃗⃗⃗⃗⃗⃗ |2=BN⃗⃗⃗⃗⃗⃗ 2=-12a+12b+12c 2 =14(a 2+b 2+c 2-2a ·b-2a ·c+2b ·c )=174. 所以|BN⃗⃗⃗⃗⃗⃗ |=√172,即BN 的长为√172.18.(12分)如图,正三棱柱ABC-A 1B 1C 1中,底面边长为√2. (1)设侧棱长为1,求证:AB 1⊥BC 1;(2)设AB 1与BC 1所成的角为π3,求侧棱的长.1=AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ =BB 1⃗⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ .因为BB 1⊥平面ABC , 所以BB 1⃗⃗⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,BB 1⃗⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0. 又△ABC 为正三角形,所以<AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >=π-<BA ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ >=π-π3=2π3. 因为AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ )·(BB 1⃗⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ) =AB ⃗⃗⃗⃗⃗ ·BB 1⃗⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ 2+BB 1⃗⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |·|BC ⃗⃗⃗⃗⃗ |·cos <AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=-1+1=0, 所以AB 1⊥BC 1.(1)知AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |·|BC ⃗⃗⃗⃗⃗ |·cos <AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=BB 1⃗⃗⃗⃗⃗⃗⃗ 2-1.又|AB 1⃗⃗⃗⃗⃗⃗⃗ |=√AB ⃗⃗⃗⃗⃗ 2+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=√2+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=|BC 1⃗⃗⃗⃗⃗⃗⃗ |,所以cos <AB 1⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ >=BB 1⃗⃗⃗⃗⃗⃗⃗⃗ 2-12+BB 1⃗⃗⃗⃗⃗⃗⃗⃗ 2=12,所以|BB 1⃗⃗⃗⃗⃗⃗⃗ |=2,即侧棱长为2.19.(12分)已知空间中三点A (2,0,-2),B (1,-1,-2),C (3,0,-4),设a =AB ⃗⃗⃗⃗⃗ ,b =AC ⃗⃗⃗⃗⃗ . (1)若|c |=3,且c ∥BC⃗⃗⃗⃗⃗ ,求向量c ; (2)已知向量k a +b 与b 互相垂直,求k 的值; (3)求△ABC 的面积.∵空间中三点A (2,0,-2),B (1,-1,-2),C (3,0,-4),设a =AB ⃗⃗⃗⃗⃗ ,b =AC⃗⃗⃗⃗⃗ , ∴BC⃗⃗⃗⃗⃗ =(3,0,-4)-(1,-1,-2)=(2,1,-2), ∵|c |=3,且c ∥BC⃗⃗⃗⃗⃗ , ∴c =m BC⃗⃗⃗⃗⃗ =m (2,1,-2)=(2m ,m ,-2m ), ∴|c |=√(2m )2+m 2+(-2m )2=3|m|=3,∴m=±1,∴c =(2,1,-2)或c =(-2,-1,2). (2)由题得a =(-1,-1,0),b =(1,0,-2),∴k a +b =k (-1,-1,0)+(1,0,-2)=(1-k ,-k ,-2),∵向量k a +b 与b 互相垂直,∴(k a +b )·b =1-k+4=0,解得k=5.∴k 的值是5. (3)AB ⃗⃗⃗⃗⃗ =(-1,-1,0),AC ⃗⃗⃗⃗⃗ =(1,0,-2),BC ⃗⃗⃗⃗⃗ =(2,1,-2), cos <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |·|AC⃗⃗⃗⃗⃗ |=√2×√5=-√10,sin <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=√1-110=√10,∴S △ABC =12×|AB ⃗⃗⃗⃗⃗ |×|AC ⃗⃗⃗⃗⃗ |×sin <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=12×√2×√5×√10=32.20.(12分)已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)用向量法证明E ,F ,G ,H 四点共面; (2)用向量法证明:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM ⃗⃗⃗⃗⃗⃗ =14(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ ).如图,连接BG ,BD ⃗⃗⃗⃗⃗⃗ =2EH ⃗⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =2BF ⃗⃗⃗⃗⃗ ,则EG ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ +BG ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ +12(BC ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ )=EB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ +EH ⃗⃗⃗⃗⃗⃗ =EF ⃗⃗⃗⃗⃗ +EH⃗⃗⃗⃗⃗⃗ , 由共面向量定理的推论知E 、F 、G 、H 四点共面.(2)因为EH ⃗⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AE ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗=12(AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=12BD⃗⃗⃗⃗⃗⃗ . 所以EH ∥BD ,又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH.(3)连接OM ,OA ,OB ,OC ,OD ,OE ,OG , 由(2)知EH ⃗⃗⃗⃗⃗⃗ =12BD⃗⃗⃗⃗⃗⃗ , 同理FG ⃗⃗⃗⃗⃗ =12BD ⃗⃗⃗⃗⃗⃗ ,所以EH ⃗⃗⃗⃗⃗⃗ =FG⃗⃗⃗⃗⃗ , EH ∥FG ,EH=FG ,所以EG 、FH 交于一点M 且被M 平分,所以OM ⃗⃗⃗⃗⃗⃗ =12(OE ⃗⃗⃗⃗⃗ +OG ⃗⃗⃗⃗⃗ )=1212(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )+12(OC ⃗⃗⃗⃗⃗ +OD⃗⃗⃗⃗⃗⃗ ) =14(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD⃗⃗⃗⃗⃗⃗ ).21.(12分)(2021全国甲,理19)已知直三棱柱ABC-A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB=BC=2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1. (1)证明:BF ⊥DE ;(2)当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小?如图,连接A 1E ,取BC 中点M ,连接B 1M ,EM.∵E ,M 分别为AC ,BC 中点, ∴EM ∥AB.又AB ∥A 1B 1,∴A 1B 1∥EM ,则点A 1,B 1,M ,E 四点共面,故DE ⊂平面A 1B 1ME.又在侧面BCC 1B 1中,△FCB ≌△MBB 1,∴∠FBM=∠MB 1B. 又∠MB 1B+∠B 1MB=90°,∴∠FBM+∠B 1MB=90°,∴BF ⊥MB 1.又BF ⊥A 1B 1,MB 1∩A 1B 1=B 1,MB 1,A 1B 1⊂平面A 1B 1ME ,∴BF ⊥平面A 1B 1ME ,∴BF ⊥DE.(2)∵BF ⊥A 1B 1,∴BF ⊥AB ,∴AF 2=BF 2+AB 2=CF 2+BC 2+AB 2=9. 又AF 2=FC 2+AC 2,∴AC 2=8,则AB ⊥BC.如图,以B 为原点,BC ,BA ,BB 1为x 轴、y 轴、z 轴建立空间直角坐标系,则B (0,0,0),C (2,0,0),A (0,2,0),E (1,1,0),F (2,0,1).则EF ⃗⃗⃗⃗⃗ =(1,-1,1),ED ⃗⃗⃗⃗⃗ =(-1,t-1,2),设DB 1=t ,则D (0,t ,2),0≤t ≤2.则平面BB 1C 1C 的法向量为m =(0,1,0),设平面DEF 的法向量为n =(x ,y ,z ),∴{EF⃗⃗⃗⃗⃗ ·n =0,ED ⃗⃗⃗⃗⃗ ·n =0,即{x -y +z =0,-x +(t -1)y +2z =0,∴n =(1+t ,3,2-t ). 则cos <m ,n >=√(1+t )+32+(2-t )=√2t 2-2t+14.要求最小正弦值,则求最大余弦值.当t=1时二面角的余弦值最大,2时二面角正弦值最小.则B1D=1222.(12分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平AD=1,CD=√3.面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=12(1)求证:平面PBC⊥平面PQB;(2)当PM的长为何值时,平面QMB与平面PDC所成的角的大小为60°?AD,AD∥BC,Q为AD的中点,BC=12∴BC∥QD,BC=QD,∴四边形BCDQ为平行四边形,∴BQ∥CD.∵∠ADC=90°,∴BC⊥BQ.∵PA=PD,AQ=QD,∴PQ⊥AD.又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PQ⊥平面ABCD,∴PQ ⊥BC.又∵PQ∩BQ=Q,∴BC⊥平面PQB.∵BC⊂平面PBC,∴平面PBC⊥平面PQB.(1)可知PQ⊥平面ABCD.如图,以Q为原点,分别以QA,QB,QP所在直线为x轴,y 轴,z轴,建立空间直角坐标系,则Q(0,0,0),D(-1,0,0),P(0,0,√3),B(0,√3,0),C(-1,√3,0),∴QB ⃗⃗⃗⃗⃗ =(0,√3,0),DC ⃗⃗⃗⃗⃗ =(0,√3,0),DP ⃗⃗⃗⃗⃗ =(1,0,√3),PC ⃗⃗⃗⃗⃗ =(-1,√3,-√3), PC=√(-1)2+(√3)2+(-√3)2=√7.设PM ⃗⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ ,则PM ⃗⃗⃗⃗⃗⃗ =(-λ,√3λ,-√3λ),且0≤λ≤1,得M (-λ,√3λ,√3−√3λ),∴QM ⃗⃗⃗⃗⃗⃗ =(-λ,√3λ,√3(1-λ)).设平面MBQ 的法向量为m =(x ,y ,z ),则{QM ⃗⃗⃗⃗⃗⃗ ·m =0,QB ⃗⃗⃗⃗⃗ ·m =0,即{-λx +√3λy +√3(1-λ)z =0,√3y =0.令x=√3,则y=0,z=λ1-λ,∴平面MBQ 的一个法向量为m =√3,0,λ1-λ. 设平面PDC 的法向量为n =(x',y',z'),则{DC ⃗⃗⃗⃗⃗ ·n =0,DP ⃗⃗⃗⃗⃗ ·n =0,即{√3y '=0,x '+√3z '=0.令x'=3,则y'=0,z'=-√3,∴平面PDC 的一个法向量为n =(3,0,-√3).∴平面QMB 与平面PDC 所成的锐二面角的大小为60°, ∴cos60°=|n ·m ||n ||m |=|3√3-√3·λ1-λ|√12·√3+(λ1-λ) 2=12,∴λ=12.∴PM=12PC=√72.即当PM=√72时,平面QMB 与平面PDC 所成的角大小为60°.第二章 平面解析几何一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x-my-2=0的距离,当θ,m 变化时,d 的最大值为 ( ) A.1 B.2C.3D.4cos 2θ+sin 2θ=1,∴P 为单位圆上一点,而直线x-my-2=0过点A (2,0),∴d 的最大值为|OA|+1=2+1=3,故选C .2.已知点P (-2,4)在抛物线y 2=2px (p>0)的准线上,则该抛物线的焦点坐标是( ) A.(0,2) B.(0,4) C.(2,0) D.(4,0)P (-2,4)在抛物线y 2=2px 的准线上,所以-p2=-2,所以p=4,则该抛物线的焦点坐标是(2,0).3.已知直线l 1:x cos 2α+√3y+2=0,若l 1⊥l 2,则l 2倾斜角的取值范围是( ) A.[π3,π2) B.[0,π6] C.[π3,π2] D.[π3,5π6]l 1:x cos 2α+√3y+2=0的斜率k 1=-2√3∈[-√33,0],当cos α=0时,即k 1=0时,k 不存在,此时倾斜角为12π,由l 1⊥l 2,k 1≠0时,可知直线l 2的斜率k=-1k 1≥√3,此时倾斜角的取值范围为[π3,π2).综上可得l 2倾斜角的取值范围为[π3,π2].4.(2021全国乙,文11)设B 是椭圆C :x 25+y 2=1的上顶点,点P 在C 上,则|PB|的最大值为( ) A.52 B.√6 C.√5 D.2方法一)由椭圆方程可得a=√5,b=1,故椭圆的上顶点为B (0,1).设P (x ,y ),则有x 25+y 2=1, 故x 2=5(1-y 2),由椭圆的性质可得-1≤y ≤1.则|PB|2=x 2+(y-1)2=5(1-y 2)+(y-1)2=-4y 2-2y+6=-4y 2+y2+6=-4y+142+254.因为-1≤y ≤1,所以当y=-14时,|PB|2取得最大值,且最大值为254,所以|PB|的最大值为52. (方法二)由题意可设P (√5cos θ,sin θ)(θ∈R ),又B (0,1),则|PB|2=5cos 2θ+(sin θ-1)2=5cos 2θ+sin 2θ-2sin θ+1=-4sin 2θ-2sin θ+6,于是当sin θ=-14时,|PB|2最大,此时|PB|2=-4×116-2×(-14)+6=-14+12+6=254,故|PB|的最大值为52.5.在一个平面上,机器人到与点C (3,-3)的距离为8的地方绕C 点顺时针而行,它在行进过程中到经过点A (-10,0)与B (0,10)的直线的最近距离为( ) A.8√2-8 B.8√2+8C.8√2D.12√2C (3,-3)距离为8的地方绕C 点顺时针而行,在行进过程中保持与点C 的距离不变,∴机器人的运行轨迹方程为(x-3)2+(y+3)2=64,如图所示;∵A (-10,0)与B (0,10),∴直线AB 的方程为x-10+y10=1,即为x-y+10=0, 则圆心C 到直线AB 的距离为d=√1+1=8√2>8,∴最近距离为8√2-8.6.设P 是双曲线x 2a 2−y 2b 2=1(a>0,b>0)上的点,F 1,F 2是焦点,双曲线的离心率是43,且∠F 1PF 2=90°,△F 1PF 2的面积是7,则a+b 等于( ) A.3+√7 B.9+√7C.10D.16,不妨设点P 是右支上的一点,|PF 1|=m ,|PF 2|=n ,则{ 12mn =7,m -n =2a ,m 2+n 2=4c 2,c a =43,∴a=3,c=4.∴b=√c 2-a 2=√7.∴a+b=3+√7.7.位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥形可近似地看成抛物线,该桥的高度为h ,跨径为a ,则桥形对应的抛物线的焦点到准线的距离为()A.a 28ℎ B.a 24ℎC.a 22ℎD.a 2ℎ,以桥顶为坐标原点,桥形的对称轴为y 轴建立如图所示的平面直角坐标系,该抛物线方程可写为x 2=-2py (p>0).∵该抛物线经过点(a2,-ℎ),代入抛物线方程可得a 24=2hp ,解得p=a 28ℎ.∴桥形对应的抛物线的焦点到准线的距离即为p=a 28ℎ.8.平面直角坐标系中,设A (-0.98,0.56),B (1.02,2.56),点M 在单位圆上,则使得△MAB 为直角三角形的点M 的个数是( ) A.1 B.2C.3D.4,如图,若△MAB为直角三角形,分3种情况讨论:①∠MAB=90°,则点M在过点A与AB垂直的直线上,设该直线为l1,又由A(-0.98,0.56),B(1.02,2.56),则k AB=2.56-0.561.02-(-0.98)=1,则k l1=-1,直线l1的方程为y-0.56=-(x+0.98),即x+y+0.42=0,此时原点O到直线l1的距离d=√2=21√2100<1,直线l1与单位圆相交,有2个公共点,即有2个符合题意的点M;②∠MBA=90°,则点M在过点B与AB垂直的直线上,设该直线为l2,同理可得,直线l2的方程为y-2.56=-(x-1.02),即x+y-3.58=0,此时原点O到直线l2的距离d=√2=179√2100>1,直线l2与单位圆相离,没有公共点,即没有符合题意的点M;③∠AMB=90°,此时点M在以AB为直径的圆上,又由A(-0.98,0.56),B(1.02,2.56),设AB的中点为C,则C的坐标为(0.02,1.56),|AB|=√4+4=2√2,则以AB为直径的圆的圆心C为(0.02,1.56),半径r=12|AB|=√2,此时|OC|=√(0.02)2+(1.56)2=√2.4340,则有√2-1<|OC|<√2+1,两圆相交,有2个公共点,即有2个符合题意的点M.综合可得,共有4个符合条件的点M.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分.9.已知圆C1:x2+y2=r2,圆C2:(x-a)2+(y-b)2=r2(r>0)交于不同的A(x1,y1),B(x2,y2)两点,下列结论正确的有()A.a(x1-x2)+b(y1-y2)=0B.2ax1+2by1=a2+b2C.x1+x2=aD.y1+y2=2bAB的方程为a2+b2-2ax-2by=0,即2ax+2by=a2+b2,故B正确;分别把A(x1,y1),B(x2,y2)两点代入2ax+2by=a2+b2得2ax1+2by1=a2+b2,2ax2+2by2=a2+b2,两式相减得2a(x1-x2)+2b(y1-y2)=0,即a(x1-x2)+b(y1-y2)=0,故A正确;由圆的性质可知,线段AB与线段C1C2互相平分,∴x1+x2=a,y1+y2=b,故C正确,D错误.10.若P是圆C:(x+3)2+(y-3)2=1上任一点,则点P到直线y=kx-1距离的值可以为()A.4B.6C.3√2+1D.8y=kx-1恒过定点A(0,-1)点,当直线与AC垂直时,点P到直线y=kx-1距离最大,等于AC+r,圆心坐标为(-3,3),所以为√(-3)2+(3+1)2+1=6,当直线与圆有交点时,点P到直线的距离最小为0,所以点P到直线y=kx-1距离的范围为[0,6].11.在平面直角坐标系中,曲线C上任意点P与两个定点A(-2,0)和点B(2,0)连线的斜率之和等于2,则关于曲线C的结论正确的有()A.曲线C是轴对称图形B.曲线C上所有的点都在圆x2+y2=2外C.曲线C是中心对称图形D.曲线C上所有点的横坐标x满足|x|>2P(x,y),则k PA+k PB=2,即yx+2+yx-2=2(x≠±2),整理得x2-xy=4(x≠±2),所以曲线C 是中心对称图形,不是轴对称图形,故C 正确,A 错误;由x 2-xy=4>2=x 2+y 2,所以曲线C 上所有的点都在圆x 2+y 2=2外,故B 正确; 由x 2-xy=4可知,x ∈R 且x ≠0,x ≠±2,故D 错误. 12.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左右焦点,且△F 1PF 2的面积为3,则下列说法正确的是 ( )A.P 点纵坐标为3B.∠F 1PF 2>π2C.△F 1PF 2的周长为4(√2+1)D.△F 1PF 2的内切圆半径为32(√2-1)P 点坐标为(x ,y ),S=12×2c×|y|=12×4×|y|=3,得y=32或y=-32,故A 错误;椭圆中焦点三角形面积为S=b 2tan θ2(θ为焦点三角形的顶角),S=4tan θ2=3,得tan θ2=34,则θ2<π4,∠F 1PF 2<π2,故B 错误;C △F 1PF 2=2a+2c=4(√2+1),故C 正确;设△F 1PF 2的内切圆半径为R ,12R (4√2+4)=3,得R=32(√2-1),故D 正确. 三、填空题:本题共4小题,每小题5分,共20分.13.经过点P (1,4),且在两坐标轴上的截距相反的直线方程是 .4x 或y=x+3,分2种情况讨论:①直线经过原点,则直线l 的方程为y=4x ;②直线不经过原点,设直线方程为x-y=a ,把点P (1,4)代入可得1-4=a ,解得a=-3,即直线的方程为y=x+3.综上可得,直线的方程为y=4x 或y=x+3.14.若双曲线x 2m −y 2m -5=1的一个焦点到坐标原点的距离为3,则m 的值为 .或-2c=3,当双曲线的焦点在x 轴上时,m>5,c 2=m+m-5=9,所以m=7;当双曲线的焦点在y 轴上时,m<0,c 2=-m+5-m=9,所以m=-2.综上,m=7或m=-2.15.如图,过抛物线y 2=4x 的焦点F 作直线,与抛物线及其准线分别交于A ,B ,C 三点,若FC ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则直线AB 的方程为 ,|AB|= .√3(x-1)163F (1,0),准线方程为x=-1,设C (-1,m ),B (a ,b ),∵FC ⃗⃗⃗⃗⃗ =3FB⃗⃗⃗⃗⃗ ,∴(-2,m )=3(a-1,b )=(3a-3,3b ),则3a-3=-2,m=3b ,即a=13,此时b 2=4×13,得b=-√43=-2√33,即m=-2√3,则C (-1,-2√3),则AB 的斜率k=2√32=√3,则直线方程为y=√3(x-1),代入y 2=4x ,得3x 2-10x+3=0,得x 1+x 2=103,即|AB|=x 1+x 2+2=103+2=163.16.已知点O (0,0),A (4,0),B (0,4).若从点P (1,0)射出的光线经直线AB 反射后过点Q (-2,0),则反射光线所在直线的方程为 ;若从点M (m ,0),m ∈(0,4)射出的光线经直线AB 反射,再经直线OB 反射后回到点M ,则光线所经过的路程是 (结果用m 表示).2y+2=0 √2m 2+32,设点P 1(a ,b )与点P (1,0)关于直线AB 对称,则P 1在反射光线所在直线上,又由A (4,0),B (0,4),则直线AB 的方程为x+y=4,则有{ba -1=1,a+12+b2=4,解得{a =4,b =3,即P 1(4,3), 反射光线所在直线的斜率k=3-04-(-2)=12, 则其方程为y-0=12(x+2),即x-2y+2=0;设点M 1(a 0,b 0)与点M 关于直线AB 对称,点M 2与M 关于y 轴对称,易得M 2(-m ,0); 线段M 1M 2的长度就是光线所经过的路程,则有{b 0a 0-m=1,m+a2+b 02=4,解得{a 0=4,b 0=4-m ,即M 1(4,4-m ),又由M 2(-m ,0),则|M 1M 2|=√(4+m )2+(4-m )2=√2m 2+32.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知△ABC 三个顶点的坐标分别为A (2,4),B (0,-5),C (10,0),线段AC 的垂直平分线为l.(1)求直线l 的方程;(2)点P 在直线l 上运动,当|AP|+|BP|最小时,求此时点P 的坐标.直线AC 的斜率为k AC =4-02-10=-12,所以直线l 的斜率为k 1=2,直线AC 的中点为(6,2),所以直线l 的方程为y-2=2(x-6),即2x-y-10=0.(2)由(1)得点A 关于直线l 的对称点为点C ,所以直线BC 与直线l 的交点即为|AP|+|BP|最小的点.由B (0,-5),C (10,0)得直线BC 的方程为x10+y-5=1,即x-2y-10=0,联立方程{x -2y -10=0,2x -y -10=0,解得{x =103,y =-103,所以点P 的坐标为(103,-103). 18.(12分)已知直线l :ax-y-3a+1=0恒过定点P ,过点P 引圆C :(x-1)2+y 2=4的两条切线,设切点分别为A ,B.(1)求直线AB 的一般式方程;(2)求四边形PACB 的外接圆的标准方程.∵直线l :y-1=a (x-3).∴直线l 恒过定点P (3,1).由题意可知直线x=3是其中一条切线,且切点为A (3,0). 由圆的性质可知AB ⊥PC ,∵k PC =1-03-1=12,∴k AB =-2,所以直线AB 的方程为y=-2(x-3),即2x+y-6=0. (2)由题意知|PC|=√(3-1)2+(1-0)2=√5.∵PA ⊥AC ,PB ⊥BC ,所以四边形PACB 的外接圆是以PC 为直径的圆,PC 的中点坐标为(2,12),所以四边形PACB 的外接圆为(x-2)2+(y -12)2=54.19.(12分)已知F 1,F 2分别是双曲线E :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,P 是双曲线上一点,F 2到左顶点的距离等于它到渐近线距离的2倍, (1)求双曲线的渐近线方程;(2)当∠F 1PF 2=60°时,△PF 1F 2的面积为48√3,求此双曲线的方程.因为双曲线的渐近线方程为bx ±ay=0,则点F 2到渐近线距离为√b 2+a 2=b (其中c 是双曲线的半焦距),所以由题意知c+a=2b.又因为a 2+b 2=c 2,解得b=43a ,故所求双曲线的渐近线方程是4x ±3y=0.(2)因为∠F 1PF 2=60°,由余弦定理得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos60°=|F 1F 2|2,即|PF 1|2+|PF 2|2-|PF 1|·|PF 2|=4c 2. 又由双曲线的定义得||PF 1|-|PF 2||=2a ,平方得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4a 2,相减得|PF 1|·|PF 2|=4c 2-4a 2=4b 2.根据三角形的面积公式得S=12|PF 1|·|PF 2|sin60°=√34·4b 2=√3b 2=48√3,得b 2=48. 由(1)得a 2=916b 2=27,故所求双曲线方程是x 227−y 248=1.20.(12分)已知过抛物线x 2=2py (p>0)的焦点,斜率为√24的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB|=9. (1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ ,求λ的值.抛物线x 2=2py 的焦点为(0,p2),所以直线AB 的方程为y=√24x+p 2, 联立{y =√24x +p2,x 2=2py ,消去x ,得4y 2-5py+p 2=0,所以y 1+y 2=5p4,由抛物线定义得|AB|=y 1+y 2+p=9,即5p4+p=9,所以p=4.所以抛物线的方程为x 2=8y. (2)由p=4知,方程4y 2-5py+p 2=0, 可化为y 2-5y+4=0,解得y 1=1,y 2=4,故x 1=-2√2,x 2=4√2. 所以A (-2√2,1),B (4√2,4).则OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ =(-2√2,1)+λ(4√2,4)=(-2√2+4√2λ,1+4λ).因为C 为抛物线上一点,所以(-2√2+4√2λ)2=8(1+4λ),整理得λ2-2λ=0,所以λ=0或λ=2.21.(12分)(2021全国乙,文20)已知抛物线C :y 2=2px (p>0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ ⃗⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗⃗ ,求直线OQ 斜率的最大值.在抛物线C 中,焦点F 到准线的距离为p ,故p=2,C 的方程为y 2=4x.(2)设点P (x 1,y 1),Q (x 2,y 2).又F (1,0),则PQ ⃗⃗⃗⃗⃗ =(x 2-x 1,y 2-y 1),QF ⃗⃗⃗⃗⃗ =(1-x 2,-y 2). 因为PQ ⃗⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗⃗ ,所以x 2-x 1=9(1-x 2),y 2-y 1=-9y 2, 得x 1=10x 2-9,y 1=10y 2.又因为点P 在抛物线C 上,所以y 12=4x 1,所以(10y 2)2=4(10x 2-9), 则点Q 的轨迹方程为y 2=25x-925. 易知直线OQ 的斜率存在.设直线OQ 的方程为y=kx ,当直线OQ 和曲线y 2=25x-925相切时,斜率取得最大值、最小值.由{y =kx ,y 2=25x -925,得k 2x 2=25x-925,即k 2x 2-25x+925=0,(*)当直线OQ 和曲线y 2=25x-925相切时,方程(*)的判别式Δ=0,即(-25)2-4k 2·925=0,解得k=±13,所以直线OQ 斜率的最大值为13. 22.(12分)如图所示,取同离心率的两个椭圆成轴对称内外嵌套得一个标志,为美观考虑,要求图中标记的①,②,③三个区域面积彼此相等.已知椭圆面积为圆周率与长半轴、短半轴长度之积,即椭圆x 2a 2+y 2b 2=1(a>b>0)面积为S 椭圆=πab(1)求椭圆的离心率的值;(2)已知外椭圆长轴长为6,用直角角尺两条直角边内边缘与外椭圆相切,移动角尺绕外椭圆一周,得到由点M 生成的轨迹将两椭圆围起来,整个标志完成.请你建立合适的坐标系,求出点M 的轨迹方程.建立如图平面直角坐标系.设外椭圆的方程为x 2a 2+y 2b 2=1(a>b>0),∵内外椭圆有相同的离心率且共轴,可得内椭圆长轴为b ,设内椭圆短轴长为b',焦距长为c',得ca =c 'b ,c'=bca ,b'2=b 2-c'2=b 2-b 2c2a 2=b 2(a 2-c 2)a 2=b 4a 2.∴内椭圆的方程为y 2b 2+x 2b 4a 2=1.图中标记的①,②,③三个区域面积彼此相等,由对称性只需S 外=3S 内,即πab=3πb ·b 2a 得a 2=3b 2,即a 2=3(a 2-c 2),故e=√63.(2)同(1)建立如图平面直角坐标系,由于外椭圆长轴为6,∴a=3,又e=√63,∴c=√6,b 2=3. 则外椭圆方程为x 29+y 23=1.设点M (x 0,y 0),切线方程为y-y 0=k (x-x 0),代入椭圆方程得,(1+3k 2)x 2+6k (y 0-kx 0)x+3(y 0-kx 0)2-9=0.∴Δ=36k 2(y 0-kx 0)2-4(1+3k 2)[3(y 0-kx 0)2-9]=0.化简得(x 0-9)k 2-2x 0y 0k+y 02-3=0.∵两条切线互相垂直,∴k 1k 2=-1,即y 02-3x 02-9=-1,即x 02+y 02=12(x 0≠±3).当两切线与坐标轴垂直时,四点(3,±√3),(-3,±√3)也满足方程,∴轨迹方程为x 2+y 2=12.模块综合测验一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件两直线平行,∴斜率相等.即可得ab=4,又因为不能重合,当a=1,b=4时,满足ab=4,但是重合,故“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的必要不充分条件.2.如图,四面体S-ABC 中,D 为BC 中点,点E 在AD 上,AD=3AE ,则SE ⃗⃗⃗⃗⃗ =( ) A.13SA ⃗⃗⃗⃗⃗ +12SB ⃗⃗⃗⃗⃗ +13SC ⃗⃗⃗⃗B.23SA ⃗⃗⃗⃗⃗ +16SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗ C.12SA ⃗⃗⃗⃗⃗ +14SB ⃗⃗⃗⃗⃗ +14SC ⃗⃗⃗⃗ D.12SA ⃗⃗⃗⃗⃗ +13SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗S-ABC 中,D 为BC 中点,点E 在AD 上,AD=3AE ,∴SE ⃗⃗⃗⃗⃗ =SA ⃗⃗⃗⃗⃗ +13AD ⃗⃗⃗⃗⃗ =SA⃗⃗⃗⃗⃗ +13×12(AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=SA ⃗⃗⃗⃗⃗ +16AC ⃗⃗⃗⃗⃗ +16AB ⃗⃗⃗⃗⃗ =SA ⃗⃗⃗⃗⃗ +16(SC ⃗⃗⃗⃗ −SA ⃗⃗⃗⃗⃗ )+16(SB ⃗⃗⃗⃗⃗ −SA ⃗⃗⃗⃗⃗ )=23SA ⃗⃗⃗⃗⃗ +16SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗ .3.圆P :(x+3)2+(y-4)2=1关于直线x+y-2=0对称的圆Q 的标准方程是( ) A.(x+2)2+(y-1)2=1 B.(x+2)2+(y-5)2=1 C.(x-2)2+(y+5)2=1 D.(x-4)2+(y+3)2=1P :(x+3)2+(y-4)2=1,圆心(-3,4),半径1,关于直线x+y-2=0对称的圆半径不变,设对称圆的圆心为(a ,b ),则{a -32+b+42-2=0,b -4a+3=1,解得{a =-2,b =5,所求圆Q 的标准方程为(x+2)2+(y-5)2=1.4.(2021新高考Ⅰ,5)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( ) A.13 B.12 C.9 D.6|MF 1|+|MF 2|=2a=6,则√|MF 1|·|MF 2|≤|MF 1|+|MF 2|2=3,则|MF 1|·|MF 2|≤9,当且仅当|MF 1|=|MF 2|=3时,等号成立. 故|MF 1|·|MF 2|的最大值为9.故选C .5.坐标原点O (0,0)在动直线mx+ny-2m-2n=0上的投影为点P ,若点Q (-1,-1),那么|PQ|的取值范围为( ) A.[√2,3√2] B.[√2,2√2] C.[2√2,3√2] D.[1,3√2]mx+ny-2m-2n=0,可化为m (x-2)+n (y-2)=0,故直线过定点M (2,2),坐标原点O (0,0)在动直线mx+ny-2m-2n=0上的投影为点P ,故∠OPM=90°,所以P 在以OM 为直径的圆上,圆的圆心N为(1,1),半径为√2,根据点与圆的关系,|NQ|=√(1+1)2+(1+1)2=2√2, 故√2=2√2−√2≤|PQ|≤√2+2√2=3√2.6.正确使用远光灯对于夜间行车很重要.已知某家用汽车远光灯(如图)的纵断面是抛物线的一部分,光源在抛物线的焦点处,若灯口直径是20 cm,灯深10 cm,则光源到反光镜顶点的距离是()A.2.5 cmB.3.5 cmC.4.5 cmD.5.5 cmxOy,如图所示,设对应抛物线的标准方程为y2=2px,由题意知抛物线过点(10,10),得100=2p×10,得p=5,=2.5,即焦点坐标为(2.5,0),则p2则光源到反光镜顶点的距离是2.5cm.7.如图,四棱锥S-ABCD 中,底面是正方形,各棱长都相等,记直线SA 与直线AD 所成角为α,直线SA 与平面ABCD 所成角为β,二面角S-AB-C 的平面角为γ,则( ) A.α>β>γ B.γ>α>β C.α>γ>β D.γ>β>αAC ,BD ,交于点O ,连接OS ,则OA ,OB ,OS 两两垂直,以O 为原点,OA 为x 轴,OB 为y 轴,OS 为z 轴,建立空间直角坐标系,设|AB|=2,则S (0,0,√2),A (√2,0,0),D (0,-√2,0),B (0,√2,0),SA ⃗⃗⃗⃗⃗ =(√2,0,-√2),AD ⃗⃗⃗⃗⃗ =(-√2,-√2,0),SB ⃗⃗⃗⃗⃗ =(0,√2,-√2),cos α=|SA ⃗⃗⃗⃗⃗ ·AD⃗⃗⃗⃗⃗⃗ ||SA⃗⃗⃗⃗⃗ |·|AD ⃗⃗⃗⃗⃗⃗ |=√4×√4=12,平面ABCD 的法向量n =(0,0,1),cos β=|n ·SA ⃗⃗⃗⃗⃗ ||n |·|SA⃗⃗⃗⃗⃗ |=√2√4=√22,设平面SAB 的法向量m =(x ,y ,z ),则{m ·SA ⃗⃗⃗⃗⃗ =√2x -√2z =0,m ·SB⃗⃗⃗⃗⃗ =√2y -√2z =0,取x=1,得m =(1,1,1),cos γ=|m ·n ||m |·|n |=√3=√33,∵cos α<cos γ<cos β,∴α>γ>β.8.设F 1,F 2是双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,O 是坐标原点,过F 2作C 的一条渐近线的垂线,垂足为P.若|PF 1|=√6|OP|,则C 的离心率为( ) A.√5 B.√3 C.2 D.√2|PF 2|=b ,|OF 2|=c ,∴|PO|=a.在Rt △POF 2中,cos ∠PF 2O=|PF 2||OF 2|=bc ,∵在△PF 1F 2中,cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2||F 1F 2|=bc ,∴b 2+4c 2-(√6a )22b ·2c=bc ⇒c 2=3a 2,∴e=√3.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分. 9.(2021新高考Ⅰ,11)已知点P 在圆(x-5)2+(y-5)2=16上,点A (4,0),B (0,2),则( ) A.点P 到直线AB 的距离小于10 B.点P 到直线AB 的距离大于2 C.当∠PBA 最小时,|PB|=3√2 D.当∠PBA 最大时,|PB|=3√2,记圆心为M ,半径为r ,则M (5,5),r=4.由条件得,直线AB 的方程为x4+y2=1,整理得x+2y-4=0,过点M 作MN 垂直于直线AB ,垂足为N ,直线MN 与圆M 分别交于点P 1,P 2,圆心M (5,5)到直线AB 的距离|MN|=√12+22=√5,于是点P 到直线AB 的距离最小值为|P 2N|=|MN|-r=√5-4,最大值为|P 1N|=|MN|+r=√5+4.又√5-4<2,√5+4<10,故A 正确,B 错误;过点B 分别作圆的两条切线BP 3,BP 4,切点分别为点P 3,P 4,则当点P 在P 3处时∠PBA 最大,在P 4处时∠PBA 最小.又|BP 3|=|BP 4|=√|BM |2-r 2=√52+(5-2)2-42=3√2,故C,D 正确.故选A,C,D .10.若a =(-1,λ,-2),b =(2,-1,1),a 与b 的夹角为120°,则λ的值为( ) A.17 B.-17 C.-1 D.1a =(-1,λ,-2),b =(2,-1,1),a 与b 的夹角为120°,∴cos120°=a ·b|a |·|b |=√5+λ2·√6,解得λ=-1或λ=17.11.已知P是椭圆C:x 26+y2=1上的动点,Q是圆D:(x+1)2+y2=15上的动点,则()A.C的焦距为√5B.C的离心率为√306C.圆D在C的内部D.|PQ|的最小值为2√55c=√6-1=√5,则C的焦距为2√5,e=√5√6=√306.设P(x,y)(-√6≤x≤√6),则|PD|2=(x+1)2+y2=(x+1)2+1-x 26=56(x+65)2+45≥45>15,所以圆D在C的内部,且|PQ|的最小值为√45−√15=√55.12.已知直线l过点P(1,0,-1),平行于向量a=(2,1,1),平面α过直线l与点M(1,2,3),则平面α的法向量可能是()A.(1,-4,2)B.(14,-1,12)C.(-14,1,-12) D.(0,-1,1),所研究平面的法向量垂直于向量a=(2,1,1)和向量PM⃗⃗⃗⃗⃗⃗ , 而PM⃗⃗⃗⃗⃗⃗ =(1,2,3)-(1,0,-1)=(0,2,4),选项A,(2,1,1)·(1,-4,2)=0,(0,2,4)·(1,-4,2)=0满足垂直,故正确;选项B,(2,1,1)·(14,-1,12)=0,(0,2,4)·(14,-1,12)=0满足垂直,故正确;选项C,(2,1,1)·(-14,1,-12)=0,(0,2,4)·(-14,1,-12)=0满足垂直,故正确;选项D,(2,1,1)·(0,-1,1)=0,但(0,2,4)·(0,-1,1)≠0,故错误.三、填空题:本题共4小题,每小题5分,共20分.13.过点(1,√2)的直线l将圆x2+y2-4x=0分成两段弧,当劣弧所对圆心角最小时,直线l的斜率k=.。

高中数学 本册综合测试题(B)新人教B版必修1-新人教B版高一必修1数学试题

高中数学 本册综合测试题(B)新人教B版必修1-新人教B版高一必修1数学试题

本册综合测试题(B)(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014~2015学年度某某德阳五中高一上学期月考)若集合A ={x |1<x <2},B ={x |x >a },满足A ⊆B ,则实数a 的取值X 围是( )A .a ≤1B .a <1C .a ≥1D .a ≤2[答案] A[解析] 将集合A 、B 分别表示在数轴上,如图所示.∵A ⊆B ,∴a ≤1.2.(2014~2015学年度某某市第一中学高一上学期期中测试)函数g (x )=2x+5x 的零点所在的一个区间是( )A .(0,1)B .(-1,0)C .(1,2)D .(-2,-1)[答案] B[解析] g (-1)=12-5<0,g (0)=20=1>0,故选B .3.已知f (x 2)=ln x ,则f (3)的值是( ) A .ln3 B .ln8 C .12ln3 D .-3ln2[答案] C[解析] 设x 2=t ,∵x >0,x =t , ∴f (t )=ln t =12ln t ,∴f (x )=12ln x ,∴f (3)=12ln3.4.(2014~2015学年度某某某某中学高一上学期月考)设f (x )是定义在R 上的偶函数,且x >0时,f (x )=x 2+1,则f (-2)=( )A .-5B .5C .3D .-3[答案] B[解析] ∵x >0时,f (x )=x 2+1,∴f (2)=5. 又∵f (x )是定义在R 上的偶函数,∴f (-2)=f (2)=5.5.若m =(2+3)-1,n =(2-3)-1,则(m +1)-2+(n +1)-2的值是( ) A .1 B .14 C .22D .23[答案] D[解析] ∵m =(2+3)-1=2-3,n =(2-3)-1=2+ 3.∴(m +1)-2+(n +1)-2=(3-3)-2+(3+3)-2=3+32+3-323-323+32=2436=23. 6.函数f (x )=x 2-5x +6x -2的定义域是( )A .{x |2<x <3}B .{x |x <2或x >3}C .{x |x ≤2或x ≥3}D .{x |x <2或x ≥3}[答案] D[解析] 解法一:验证排除法:x =3时,函数f (x )有意义,排除A 、B ;x =2时,函数f (x )无意义,排除C ,故选D .解法二:要使函数有意义,应满足⎩⎪⎨⎪⎧x 2-5x +6≥0x -2≠0,解得x <2或x ≥3,故选D .7.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y =x 2+bx +c 的图象经过(1,0),…,求证这个二次函数的图象关于直线x =2对称.根据已知信息,题中二次函数图象不具有的性质是( ) A .过点(3,0) B .顶点(2,-2) C .在x 轴上截线段长是2 D .与y 轴交点是(0,3) [答案] B[解析] ∵二次函数y =x 2+bx +c 的图象经过点(1,0), ∴1+b +c =0,又二次函数的图象关于直线x =2对称,∴b =-4,∴c =3.∴y =x 2-4x +3,其顶点坐标为(2,-1),故选B .8.(2015·某某文,3)设a =0.60.6,b =0.61.5,c =1.50.6,则a 、b 、c 的大小关系是( ) A .a <b <c B .a <c <b C .b <a <c D .b <c <a[答案] C[解析] ∵c =1.50.6>1,0<b =0.61.5<0.60.6=a <1,∴b <a <c .9.(2014~2015学年度某某某某市金台区高一上学期期中测试)若lg a +lg b =0(a ≠1,b ≠1),则函数f (x )=a x 与g (x )=b x 的图象( )A .关于直线y =x 对称B .关于x 轴对称C .关于y 轴对称D .关于原点对称[答案] C[解析] ∵lg a +lg b =0,∴lg ab =0,∴ab =1,∴b =1a.∴f (x )=a x 与g (x )=b x=⎝ ⎛⎭⎪⎫1ax 的图象关于y 轴对称.10.函数f (x )=log 2(-x 2+1)的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-1,0]D .[0,1)[答案] C[解析] 由-x 2+1>0,得-1<x <1.令u =-x 2+1(-1<x <1)的单调递增区间为(-1,0], 又y =log2u 为增函数,∴函数f (x )的单调递增区间为(-1,0].11.(2015·某某理,10)设函数f (x )=⎩⎪⎨⎪⎧3x -1x <12xx ≥1,则满足f (f (a ))=2f (a )的a 的取值X 围是( )A .[23,1]B .[0,1]C .[23,+∞)D .[1,+∞)[答案] C[解析] 由f (f (a ))=2f (a )可得f (a )≥1,故有⎩⎪⎨⎪⎧a <13a -1≥1或⎩⎪⎨⎪⎧a ≥12a≥1,二者取并集即得a 的取值X 围是⎣⎢⎡⎭⎪⎫23,+∞,故选C . 12.已知某产品的总成本y (万元)与产量x (台)之间的函数关系是y =0.1x 2-11x +3 000,每台产品的售价为25万元,则生产者为获得最大利润,产量x 应定为( )A .55台B .120台C .150台D .180台[答案] D[解析] 设利润为S ,由题意得,S =25x -y =25x -0.1x 2+11x -3 000=-0.1x 2+36x -3 000=-0.1 (x -180)2+240, ∴当产量x =180台时,生产者获得最大利润,故选D .二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上) 13.(2014~2015学年度潍坊四县市高一上学期期中测试)已知f (x )=x 22-x+(3x +1)0,则函数f (x )的定义域为________________.[答案] ⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫-13,2 [解析] 由题意,得⎩⎪⎨⎪⎧2-x >03x +1≠0,∴x <2,且x ≠-13,故函数f (x )的定义域为⎝⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫-13,2.14.(2014~2015学年度某某南开中学高一上学期期中测试)已知f (x )=⎩⎪⎨⎪⎧x 2+1x <1-2x +3x ≥1,则f [f (2)]=____.[答案] 2[解析] f (2)=-4+3=1,f (-1)=(-1)2+1=2, ∴f [f (2)]=f (-1)=2.15.(2014~2015学年度某某一中高一上学期期中测试)函数y =x 2+1,x ∈[-1,2]的值域为__________.[答案] [1,5][解析] ∵x ∈[-1,2],∴当x =0时,y min =1,当x =2时,y max =5. ∴函数y =x 2+1,x ∈[-1,2]的值域为[1,5].16.设M 、N 是非空集合,定义M ⊙N ={x |x ∈M ∪N 且x ∉M ∩N }.已知M ={x |y =2x -x 2},N ={y |y =2x ,x >0},则M ⊙N 等于________.[答案] {x |0≤x ≤1或x >2}[解析] ∵M ={x |2x -x 2≥0}={x |0≤x ≤2},N ={y |y >1},∴M ∩N ={x |1<y ≤2},M ∪N ={x |x ≥0}, ∴M ⊙N ={x |0≤x ≤1或x >2}.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)(2014~2015学年度某某某某市十三校高一上学期期中测试)已知非空集合A ={x |2a -2<x <a },B ={x |x ≤1或x ≥2},且A ∩B =A ,某某数a 的取值X 围.[解析] ∵A ∩B =A ,∴A ⊆B . ∴当A =∅时,2a -2≥a ,∴a ≥2.当A ≠∅时,由题意得⎩⎪⎨⎪⎧2a -2<a a ≤1或⎩⎪⎨⎪⎧2a -2<a2a -2≥2,解得a ≤1.综上可知,实数a 的取值X 围是a ≤1或a ≥2.18.(本小题满分12分)(2014~2015学年度某某某某中学高一上学期期中测试)计算下列各式的值:(1)⎝ ⎛⎭⎪⎫21412 -(-9.6)0-⎝ ⎛⎭⎪⎫33823 +(1.5)2+(2×43)4; (2)lg 25+lg2×lg500-12lg 125-log 29×log 32.[解析] (1)⎝ ⎛⎭⎪⎫21412 -(-9.6)0-⎝ ⎛⎭⎪⎫33823 +(1.5)2+(2×43)4=⎝ ⎛⎭⎪⎫9412 -(-9.6)0-⎝ ⎛⎭⎪⎫27823 +⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫212×3144=32-1-94+94+12=252. (2)lg 25+lg2×lg500-12lg 125-log 29×l og 32=lg 25+lg2(2+lg5)-lg 15-lg9lg2×lg2lg3=lg5(lg2+lg5)+lg4+lg5-2 =lg100-2=2-2=0.19.(本小题满分12分)(2014~2015学年度某某省实验中学高一月考)已知二次函数f (x )=2kx 2-2x -3k -2,x ∈[-5,5].(1)当k =1时,求函数f (x )的最大值和最小值;(2)某某数k 的取值X 围,使函数y =f (x )在区间[-5,5]上是单调函数. [解析] (1)当k =1时,f (x )=2x 2-2x -5=2⎝⎛⎭⎪⎫x -122-112,∵x ∈[-5,5],∴当x =12时,f (x )min =-112,当x =-5时,f (x )max =55.(2)当k =0时,f (x )=-2x -2在区间[-5,5]上是减函数,当k ≠0时,由题意得12k ≥5或12k≤-5, ∴0<k ≤110或-110≤k <0.综上可知,实数k 的取值X 围是⎣⎢⎡⎦⎥⎤-110,110.20.(本小题满分12分)某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收入最大?最大月收入是多少元? [解析] (1)当每辆车的月租金定为3 600元时,未租出的车辆数为3 600-3 00050=12,所以能租出100-12=88辆车.(2)设每辆车的月租金定为x (x 为50的整数倍)元时,租赁公司的月收入为y 元,则y =⎝⎛⎭⎪⎫100-x -3 00050·(x -150)-x -3 00050×50=-150x 2+162x -21 000=-150(x -4 050)2+307 050.所以当x =4 050时,y max =307 050.故当每辆车的月租金定为4 050元时,租赁公司的月收入最大,最大月收入为307 050元.21.(本小题满分12分)(2014~2015学年度某某省实验中学高一月考)已知函数f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ).(1)求f (1)的值;(2)已知f (3)=1,且f (a )>f (a -1)+2,求a 的取值X 围; (3)证明:f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ).[解析] (1)令x =y =1, 则f (1)=f (1)+f (1)=2f (1), ∴f (1)=0.(2)∵f (xy )=f (x )+f (y ), f (3)=1, ∴f (9)=f (3)+f (3)=2.∴f (a )>f (a -1)+2化为f (a )>f (a -1)+f (9)=f (9a -9),由题意得⎩⎪⎨⎪⎧a >0a -1>0a >9a -9, 解得1<a <98.(3)∵f (x )=f ⎝ ⎛⎭⎪⎫x y·y =f ⎝ ⎛⎭⎪⎫x y +f (y ),∴f ⎝ ⎛⎭⎪⎫x y=f (x )-f (y ).22.(本小题满分14分)已知函数f (x )=lg(m x-2x)(0<m <1). (1)当m =12时,求f (x )的定义域;(2)试判断函数f (x )在区间(-∞,0)上的单调性并给出证明; (3)若f (x )在(-∞,-1]上恒取正值,求m 的取值X 围.[解析] (1)当m =12时,要使f (x )有意义,须(12)x -2x >0,即2-x >2x,可得:-x >x ,∴x <0∴函数f (x )的定义域为{x |x <0}.(2)设x 2<0,x 1<0,且x 2>x 1,则Δ=x 2-x 1>0 令g (x )=m x-2x,则g (x 2)-g (x 1)=m x2-2 x2-m x1+2 x1 =m x2-m x1+2 x1-2 x 2 ∵0<m <1,x 1<x 2<0, ∴m x2-m x1<0,2 x1-2 x2<0g (x 2)-g (x 1)<0,∴g (x 2)<g (x 1)∴lg[g (x 2)]<lg[g (x 1)], ∴Δy =lg(g (x 2))-lg(g (x 1))<0, ∴f (x )在(-∞,0)上是减函数.(3)由(2)知:f (x )在(-∞,0)上是减函数, ∴f (x )在(-∞,-1]上也为减函数,∴f (x )在(-∞,-1]上的最小值为f (-1)=lg(m -1-2-1) 所以要使f (x )在(-∞,-1]上恒取正值, 只需f (-1)=lg(m -1-2-1)>0,即m -1-2-1>1,∴1m >1+12=32,∵0<m <1,∴0<m <23.。

高中数学 第一章 集合综合测试(B)新人教B版必修1-新人教B版高一必修1数学试题

高中数学 第一章 集合综合测试(B)新人教B版必修1-新人教B版高一必修1数学试题

第一章综合测试(B)(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014~2015学年度某某育才中学高一上学期月考)方程组⎩⎪⎨⎪⎧x +y =1x 2-y 2=9的解集是( )A .(5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}[答案] D[解析] 由⎩⎪⎨⎪⎧x +y =1x 2-y 2=9,解得⎩⎪⎨⎪⎧x =5y =-4,故选D .2.(2015·新课标Ⅱ理,1)已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}[答案] A[解析] 由已知得B ={x |-2<x <1}, 故A ∩B ={-1,0},故选A .3.(2014~2015学年度潍坊四县市高一上学期期中测试)已知全集U ={0,1,2},且∁U A ={2},则集合A 等于( )A .{0}B .{0,1}C .{1}D .∅ [答案] B[解析] ∵U ={0,1,2},且∁U A ={2},∴A ={0,1}.4.(2014~2015学年度德阳五中高一上学期月考)设全集U ={1,2,3,4,5,6,7},P ={1,2,3,4,5},Q ={3,4,5,6,7},则P ∪(∁U Q )=( )A .{1,2}B .{3,4,5}C .{1,2,6,7}D .{1,2,3,4,5} [答案] D[解析] ∁U Q ={1,2},P ∪(∁U Q )={1,2,3,4,5}.5.(2015·某某理,1)已知集合A ={1,2,3},B ={2,3},则( ) A .A =B B .A ∩B =∅ C .A BD .B A[答案] D[解析] 根据子集的定义,B A,故选D.6.(2014~2015学年度某某某某市高一上学期期中测试)已知集合M={x|y=2-x},N ={y|y=x2},则M∩N=( )A.∅B.{(1,1)}C.{x|x≥0} D.{y|y>0}[答案] C[解析] M={x|y=2-x}=R,N={y|y=x2}={y|y≥0},∴M∩N={x|x≥0}.7.(2014·某某文,1)设集合S={x|x≥2},T={x|x≤5},则S∩T=( )A.(-∞,5] B.[2,+∞)C.(2,5) D.[2,5][答案] D[解析] S∩T={x|x≥2}∩{x|x≤5}={x|2≤x≤5},故选D.8.已知A∩{-1,0,1}={0,1},且A∪{-2,0,2}={-2,0,1,2},则满足上述条件的集合A共有( )A.2个B.4个C.6个D.8个[答案] B[解析] ∵A∩{-1,0,1}={0,1},∴0∈A,1∈A.又∵A∪{-2,0,2}={-2,0,1,2},∴-2,2可能是集合A的元素,也可能不是集合A的元素.∴A={0,1}或A={0,1,-2},或A={0,1,2},或A={0,1,-2,2}.9.设集合U={1,2,3,4,5},A={1,2,3},B={2,4},则图中阴影部分所表示的集合是( )A.{1,3,4}B.{2,4}C.{4,5}D.{4}[答案] D[解析] A∩B={1,2,3}∩{2,4}={2},图中阴影部分所表示的集合是∁B(A∩B)={4}.10.设集合A={(x,y)|y=ax+1},B={(x,y)|y=x+b},且A∩B={(2,5)},则( )A .a =3,b =2B .a =2,b =3C .a =-3,b =-2D .a =-2,b =-3[答案] B[解析] ∵A ∩B ={(2,5)},∴(2,5)∈A ,(2,5)∈B , ∴5=2a +1,5=2+b ,∴a =2,b =3.11.已知集合A ={x |x 2+mx +1=0},若A ∩R =∅,则实数m 的取值X 围是( ) A .m <4 B .m >4 C .0<m <4 D .0≤m <4[答案] A[解析] ∵A ∩R =∅,∴A =∅,即方程x 2+mx +1=0无解,∴Δ=(m )2-4<0, ∴m <4.12.在集合{a ,b ,c ,d }上定义两种运算⊕和⊗如下:那么d ⊗(a ⊕c )=( ) A .a B .b C .c D .d[答案] A[解析] 由题中表格可知,a ⊕c =c ,d ⊗(a ⊕c )=d ⊗c =a ,故选A .二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上) 13.若{a,0,1}={c ,1b,-1},则a =______,b ________,c =________.[答案] -1 1 0[解析] ∵1b≠0,∴c =0,a =-1,b =1.14.(2014~2015学年度某某启东中学高一上学期月考)若集合A ={x |1<x <3},B ={x |2<x <4},则A ∩B =________.[答案] {x |2<x <3}[解析] A ∩B ={x |1<x <3}∩{x |2<x <4} ={x |2<x <3}.15.已知U ={2,3,a 2+6a +13},A ={|a -1|,2},∁U A ={5},则实数a =________. [答案] -2[解析] ∵∁U A ={5},∴5∉A,5∈U ,∴⎩⎪⎨⎪⎧|a -1|=3a 2+6a +13=5,即⎩⎪⎨⎪⎧a -1=3a 2+6a +8=0,或⎩⎪⎨⎪⎧a -1=-3a 2+6a +8=0,解得a =-2.16.有15人进家电超市,其中有8人买了电视,有7人买了电脑,两种均买了的有2人,则这两种都没买的有________人.[答案] 2[解析] 设两种都没买的有x 人,由题意知,只买电视的有6人,只买电脑的有5人,两种均买了的有2人,∴6+5+2+x =15,∴x =2.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)设全集U ={x ∈Z |0≤x ≤10},A ={1,2,4,5,9},B ={4,6,7,8,10},C ={3,5,7}.求:A ∪B ,(A ∩B )∩C ,(∁U A )∩(∁U B ).[解析] U ={x ∈Z |0≤x ≤10}={0,1,2,3,4,5,6,7,8,9,10},A ∪B ={1,2,4,5,6,7,8,9,10}, A ∩B ={4},(A ∩B )∩C ={4}∩{3,5,7}=∅. ∁U A ={0,3,6,7,8,10}, ∁U B ={0,1,2,3,5,9}, ∴(∁U A )∩(∁U B )={0,3}.18.(本小题满分12分)(2014~2015学年度某某师X 大学附属第二中学高一上学期月考)已知全集U ={x |x -2≥0或x -1≤0},A ={x |x <1或x >3},B ={x |x ≤1或x >2}.求:A ∩B ,A ∪B ,(∁U A )∩(∁U B ),(∁U A )∪(∁U B ).[解析] U ={x |x ≥2或x ≤1},∴∁U A ={x |x =1或2≤x <3},∁U B ={x |x =2}. ∴A ∩B ={x |x <1或x >3},A ∪B ={x |x ≤1或x >2},(∁U A )∩(∁U B )={x |x =2},(∁U A )∪(∁U B )={x |x =1或2≤x <3}.19.(本小题满分12分)已知集合A ={x |kx 2-8x +16=0}中只有一个元素,试求出实数k 的值,并用列举法表示集合A .[解析] ∵集合A 中只有一个元素,∴方程kx 2-8x +16=0只有一个实根或有两个相等的实数根.①当k =0时,方程-8x +16=0只有一个实数根2,此时A ={2}. ②当k ≠0时,由Δ=(-8)2-64k =0, 得k =1,此时A ={x |x 2-8x +16=0}={4}. 综上可知,k =0,A ={2}或k =1,A ={4}.20.(本小题满分12分)(2014~2015学年度某某正定中学高一上学期月考)已知全集U =R ,集合M ={x |-1≤x ≤4m -2},P ={x |x >2或x ≤1}.(1)若m =2,求M ∩P ;(2)若M ∩P =R ,某某数m 的取值X 围. [解析] (1)m =2时,M ={x |-1≤x ≤6}, ∴M ∩P ={x |-1≤x ≤1或2<x ≤6}. (2)若M ∪P =R ,则有4m -2≥2,∴m ≥1.21.(本小题满分12分)已知集合A ={x |x <-1或x ≥1},B ={x |x ≤2a 或x ≥a +1},若(∁R B )⊆A ,某某数a 的取值X 围.[解析] ∵B ={x |x ≤2a 或x ≥a +1}, ∴∁R B ={x |2a <x <a +1}.当2a ≥a +1,即a ≥1时,∁R B =∅⊆A , 当2a <a +1,即a <1时,∁R B ≠∅, 要使∁R B ⊆A ,应满足a +1≤-1或2a ≥1, 即a ≤-2或12≤a <1.综上可知,实数a 的取值X 围为a ≤-2或a ≥12.22.(本小题满分14分)已知集合A ={x |x 2-4ax +2a +6=0},B ={x |x <0},若A ∩B ≠∅,求a 的取值X 围.[解析] ∵A ∩B ≠∅,∴A ≠∅,即方程x 2-4ax +2a +6=0有实数根,∴Δ=(-4a )2-4(2a +6)≥0,即(a +1)(2a -3)≥0,∴⎩⎪⎨⎪⎧a +1≥02a -3≥0,或⎩⎪⎨⎪⎧a +1≤02a -3≤0,解得a ≥32或a ≤-1.①又B ={x |x <0},∴方程x 2-4ax +2a +6=0至少有一个负实数根.若方程x 2-4ax +2a+6=0没有负实数根,则需有⎩⎪⎨⎪⎧Δ≥0x 1+x 2=4a ≥0x 1·x 2=2a +6≥0,解得a ≥32.所以方程至少有一负实数根时有a <32.②由①②取得公共部分得a ≤-1.即当A ∩B ≠∅时,a 的取值X 围为a ≤-1.。

2020人教B版高中数学必修二第一章立体几何初步综合测试B含解析

2020人教B版高中数学必修二第一章立体几何初步综合测试B含解析

【成才之路】2015-2016学年高中数学第一章立体几何初步综合测试B 新人教B版必修2时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2015·山东莱州市高一期末测试)在四棱台ABCD-A1B1C1D1中,DD1与BB1所在直线是( )A.相交B.平行C.不垂直的异面直线D.垂直的异面直线[答案] A[解析]根据棱台的定义可知,DD1与BB1延长后一定交于一点,故选A.2.不在同一直线上的五个点,最多能确定平面的个数是( )A.8 B.9C.10 D.12[答案] C[解析]要确定平面个数最多,须任意四点不共面,从A、B、C、D、E五个点中任取三个点确定一个平面,即ABC、ABD、ABE、ACD、ACE、ADE、BCD、BCE、BDE、CDE共10种情况,选C.3.给出四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.其中正确的命题个数是( )A.0 B.1C.2 D.3[答案] A[解析]反例:①直平行六面体底面是菱形,满足条件但不是正方体;②底面是等腰梯形的直棱柱,满足条件但不是长方体;③④显然错误,故选A.4.下列几何体各自的三视图中,只有两个视图相同的是( )A .①③B .②③C .②④D .③④[答案] C[解析] 正方体和球体的三个视图都相同,故选C .5.(2015·广东东莞市高一期末测试)若球的半径扩大到原来的2倍,那么其体积扩大到原来的( )倍A .64B .16C .8D .4 [答案] C[解析] 设球的半径为R ,其体积V =43πR 3,当球半径扩大到原来的2倍时,其体积V ′=43π(2R )3=8V . 6.若一个几何体的三视图如图所示,则此几何体的体积为( )A .112B .5C .92D .4[答案] D[解析] 本题考查三视图,棱柱体积公式.由三视图知该几何体为直六棱柱.其底面积为S =2×[12(1+3)×1]=4,高为1.所以体积V =4,由“长对正、宽相等、高平齐”确定几何体的形状及尺寸、角度等.7.(2015·安徽安庆市高一教学质量调研监测)已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β,能推出m ∥β的是( )A .①④B .①⑤C .②⑤D .③⑤[答案] D [解析]⎭⎪⎬⎪⎫m ⊂αα∥β⇒m ∥β,故选D. 8.如图所示,在正方体ABCD -A 1B 1C 1D 1中,若点E 为A 1C 1上的一点,则直线CE 一定垂直于( )A .ACB .BDC .A 1D D .A 1D 1[答案] B[解析] 由BD ⊥AC ,BD ⊥AA 1易知BD ⊥平面A 1ACC 1,而CE ⊂平面A 1ACC 1,故BD ⊥CE . 9.已知圆柱的侧面展开图矩形面积为S ,底面周长为C ,它的体积是( ) A .C 34πSB .4πSC3C .CS2π D .SC4π[答案] D[解析] 设圆柱底面半径为r ,高为h ,,则⎩⎪⎨⎪⎧Ch =S C =2πr,∴r =C 2π,h =SC,∴V =πr 2·h =π⎝⎛⎭⎪⎫C 2π2·S C =SC 4π.10.(2015·辽宁沈阳二中高一期末测试)三棱锥P -ABC 三条侧棱两两垂直,三个侧面面积分别为22、32、62,则该三棱锥的外接球的表面积为( ) A .4π B .6π C .8π D .10π[答案] B[解析] 设PA =a ,PB =b ,PC =c ,则⎩⎨⎧ab =2ac =3bc =6,解得⎩⎪⎨⎪⎧a 2=1b 2=2c 2=3.∴外接球的半径R =a 2+b 2+c 22=62. ∴外接球的表面积S =4πR 2=6π.11.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF =12,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A -BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等 [答案] D[解析] 由正方体ABCD -A 1B 1C 1D 1得B 1B ⊥面AC , ∴AC ⊥B 1B ,又∵AC ⊥BD ,BD ∩B 1B =B , ∴AC ⊥面BDD 1B 1,BE ⊂面BDD 1B 1, ∴AC ⊥BE ,故A 正确.由正方体ABCD -A 1B 1C 1D 1得B 1D 1∥BD ,B 1D 1⊄面ABCD ,BD ⊂面ABCD ,∴B 1D 1∥面ABCD ,∴EF ∥面ABCD ,故B 正确.V A -BEF =12AC ×12BB 1×EF =13×12×12×22=224. ∴三棱锥A -BEF 的体积为定值,故C 正确. 因线段B 1D 1上两个动点E 、F ,且EF =12,当E 、F 移动时,A 到EF 的距离与B 到EF 的距离不相等, ∴△AEF 的面积与△BEF 的面积不相等,故D 不正确.12.已知圆锥的母线长为5 cm ,圆锥的侧面展开图如图所示,且∠AOA 1=120°,一只蚂蚁欲从圆锥底面上的点A 出发,沿圆锥侧面爬行一周回到点A .则蚂蚁爬行的最短路程为( )A .8 cmB .5 3 cmC .10 cmD .5π cm[答案] B[解析] 连接AA 1,作OC ⊥AA 1于C ,因为圆锥的母线长为5 cm ,∠AOA 1=120°,所以AA 1=2AC =5 3 cm.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2015·宁夏银川一中高一期末测试)一个水平放置的平面图形的斜二测直观图是直角梯形ABCD ,如图所示,∠ABC =45°,AB =AD =1,DC ⊥BC ,这个平面图形的面积为________.[答案] 2+22[解析] S 直观图=[1+1+22]×222=2+2224=22+14.又S直观图S平面图=24,∴S平面图=22+1424=2+22.14.(2015·湖南益阳市高一期末测试)已知两个球的表面积之比为19,则这两个球的半径之比为__________.[答案]1 3[解析]设两球的半径分别为R1、R2,由题意得4πR214πR22=19,∴R1R2=1 3.15.已知平面α、β和直线m,给出以下条件:①m∥α,②m⊥α;③m⊂α;④α∥β.要使m⊥β,则所满足的条件是________.[答案]②④[解析]⎭⎪⎬⎪⎫m⊥αα∥β⇒m⊥β.16.已知点P、A、B、C、D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为23的正方形,若PA=26,则△OAB的面积为________.[答案]3 3[解析]本题考查了与球有关的几何问题.如图,连接AC.∵PA⊥平面ABCD,∴PA⊥AC,故PC为球的直径,取CP中点O,取AC中点O′,则OO′=12PA= 6.又AC=26,PA=2 6.PC=4 3.∴半径R = OC =OA =OB =AB =23,∴S △OAB =3 3.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)一个棱锥的底面是边长为a 的正三角形,它的一个侧面也是正三角形,且这个侧面与底面垂直,求这个棱锥的体积和全面积.[解析] 如图所示,平面ABC ⊥平面BCD ,△ABC 与△BCD 均为边长为a 的正三角形,取BC 中点E ,连接AE ,则AE ⊥平面BCD ,故棱锥A -BCD 的高为AE ,△BCD 的面积为34a 2, AE =32a , ∴V A -BCD =13·34a 2·32a =18a 3.连接DE ,∵AE ⊥平面BCD ,DE ⊂平面BCD ,∴AE ⊥DE , 在Rt △AED 中,AE =ED =32a , ∴AD =2·32a =62a . 取AD 中点F ,连接CF ,则CF ⊥AD . 在Rt △CDF 中,DF =12·62a =64a ,∴CF =CD 2-DF 2=a 2-⎝⎛⎭⎪⎫64a 2=104a . ∴S △ACD =12AD ·CF =12×62a ×104a =158a 2.∵△ABD ≌△ACD ,S △ABD =158a 2. 故S 全面积=34a 2+34a 2+2×158a 2=23+154a 2. ∴棱锥的体积为 18a 3,全面积为23+154a 2.18.(本题满分12分)(2015·辽宁沈阳二中高一月考)如图,矩形AMND 所在平面与直角梯形MBCN 所在的平面垂直,MB ∥NC ,MN ⊥MB .(1)求证:平面AMB ∥平面DNC ; (2)若MC ⊥CB ,求证:BC ⊥AC .[解析](1)∵四边形AMND是矩形,∴AM∥DN,又∵MB∥NC,AM∩MB=M,DN∩NC=N,∴平面AMB∥平面DNC.(2)∵平面AMND⊥平面MBCN,平面AMND∩平面MBCN=MN,AM⊥MN,∴AM⊥平面MBCN,∴AM⊥BC.∵BC⊥MC,AM∩MC=M,∴BC⊥平面AMC,∴BC⊥AC.19.(本题满分12分)(2015·广东清远市高一期末测试)如图,已知直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.[解析](1)∵AC=3,BC=4,AB=5,∴AC2+BC2=AB2,∴AC⊥BC.又∵直三棱柱ABC-A1B1C1中,AC⊥CC1,CC1∩BC=C,∴AC⊥平面BB1C1C,∴AC⊥BC1.(2)如图,设BC1交B1C于点E,连接DE.∵D 为AB 的中点,E 为BC 1的中点,∴DE ∥AC 1. 又∵AC 1⊄平面CDB 1,DE ⊂平面CDB 1, ∴AC 1∥平面CDB 1.20.(本题满分12分)(2014·福建文,19)如图,三棱锥A -BCD 中,AB ⊥平面BCD ,CD ⊥BD .(1)求证:CD ⊥平面ABD ;(2)若AB =BD =CD =1,M 为AD 中点,求三棱锥A -MBC 的体积. [解析] (1)∵AB ⊥平面BCD ,CD ⊂平面BCD , ∴AB ⊥CD .又∵CD ⊥BD ,AB ∩BD =B ,AB ⊂平面ABD ,BD ⊂平面ABD ,∴CD ⊥平面ABD .(2)由AB ⊥平面BCD ,得AB ⊥BD , ∵AB =BD =1,∴S △ABD =12.∵M 是AD 的中点,∴S △ABM =12S △ABD =14.由(1)知,CD ⊥平面ABD , ∴三棱锥C -ABM 的高h =CD =1, 因此三棱锥A -MBC 的体积V A -MBC =V C -ABM =13S △ABM ·h =112.21.(本题满分12分)如下三个图中,左面的是一个长方体截去一个角所得多面体的直观图,右面是它的主视图和左视图(单位: cm).(1)画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连接BC ′,证明:BC ′∥平面EFG .[解析] (1)如图.(2)所求多面体的体积V =V 长方体-V 正三棱锥=4×4×6-13×(12×2×2)×2=2843(cm 3).(3)证明:如图,在长方体ABCD -A ′B ′C ′D ′中,连接AD ′,则AD ′∥BC ′,因为E 、G 分别为AA ′、A ′D ′中点, 所以AD ′∥EG , 从而EG ∥BC ′, 又BC ′⊄平面EFG , 所以BC ′∥平面EFG .22.(本题满分14分)如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,AB =AE ,FA =FE ,∠AEF =45°.文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支持。

高中数学必修1综合测试卷(三套+含答案)

高中数学必修1综合测试卷(三套+含答案)

高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3。

已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C 。

5D .6 4。

下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6。

设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A 。

2 B .3 C .9 D 。

187.函数1(0,1)x y a a a a=->≠的图象可能是( )8。

(人教版B版2017课标)高中数学必修第一册 全册综合测试卷一(附答案)

(人教版B版2017课标)高中数学必修第一册 全册综合测试卷一(附答案)

(人教版B 版2017课标)高中数学必修第一册 全册综合测试卷一(附答案)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集{0,1,2,3,4,5}U =,集合{1,2,3,5}A =,{2,4}B =,则()uA B =U ð( ) A .{0,2,4}B .{4}C .{1,2,4}D .{0,2,3,4}2.已知集合{0,2,3}A =,{|,,}B x x a b a b A ==⋅∈,则集合B 的子集的个数是( ) A .4B .8C .15D .163.如果甲是乙的必要不充分条件,乙是丙的充要条件,丙是丁的必要不充分条件,则丁是甲的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.设a ,b ∈R ,集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( )A .1B .1-C .2D .2-5.若集合{0,1,2}M =,{(,)|210210,,}N x y x y x y x y M =-+--∈且厔,则N 中元素的个数为( ) A .9B .6C .4D .26.命题:q x ∀∈R ,3210x x -+„的否定是( ) A .32,10x x x ∃∈-+R „B .32,10x x x ∃∈-+R …C .32,10x x x ∃∈-+R >D .32,10x x x ∀∈-+R >7.已知p 是r 的充分条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件;③r 是q 的必要条件;④p ⌝是s ⌝的必要条件;⑤r 是s 的充分条件.则正确命题的序号是( ) A .①④⑤B .①②④C .②③⑤D .②④⑤8.已知集合{}2|0M x x x =->,{|1}N x x =…,则M N =I ( ) A .[1,)+∞B .(1,)+∞C .∅D .(,0)(1,)-∞+∞U9.设集合{|0}M x x m =-„,{}2|(1)1,N y y x x ==--∈R .若M N =∅I ,则实数m 的取值范围是( ) A .[1,)-+∞B .(1,)-+∞C .(,1]-∞-D .(,1)-∞-10.已知全集U R =,集合{|(2)0}A x x x =+<,{|||1}B x x =≤,则如图所示的阴影部分表示的集合是( )A .(2,1)-B .[1,0)[1,2)-UC .(2,1)[0,1]--UD .[0,1]11.设条件p :关于x 的方程()221210m x mx -+-=的两根一个小于0,一个大于1,若p 是q 的必要不充分条件,则条件q 可设为( )A .(1,1)m ∈-B .(0,1)m ∈C .(1,0)m ∈-D .(2,1)m ∈-12.关于x 的方程2210ax x ++=至少有一个负根的充要条件是( ) A .01a 剟B .1a <C .1a „D .01a <„或0a <二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.已知非空集合M 满足:{1,2,3,4,5}M ⊆,且若x M ∈,则6x M -∈.则满足条件的集合M 有__________个.14.设全集S 有两个子集A ,B ,若sA x x B ∈⇒∈ð,则x A ∈是x sB ∈ð的条件是__________. 15.关于x 的不等式2043x ax x +++>的解集为(3,1)(2,)--+∞U 的充要条件是__________. 16.已知集合{|||1}A x x a =-„,{}2|540B x x x =-+…,若A B =∅I ,则实数a 的取值范围是__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{|(2)[(31)]0}A x x x a =--+<,()22|01x a B x x a ⎧⎫-⎪⎪=⎨⎬-+⎪⎪⎩⎭<. (1)当2a =时,求A B ⋂; (2)求使B A ⊆的实数a 的取值范围.18.(本小题满分12分)若{|68,,}A x x a b a b ==+∈Z ,{|2,}B x x m m ==∈Z ,求证:A B =.19.(本小题满分12分)已知命题p :方程2220a x ax +-=在区间[1,1]-上有解;命题q :只有一个实数x 满足不等式2220x ax a ++≤.若命题“p 或q ”是假命题,求实数a 的取值范围.20.(本小题满分12分)已知{}2|320A x x x =++≥,{}2|410,B x mx x m m =-+-∈R >,若 0A B =I ,且A B A =U ,求实数m 的取值范围.21.(本小题满分12分)已知{}2:|10p A x x ax =++≤,{}2:|320q B x x x =-+≤,若p 是q 的充分不必要条件,求实数a 的取值范围.22.(本小题满分12分)已知集合{}2|8200P x x x =--≤,{||1|}S x x m =-„. (1)若()P S P ⊆U ,求实数m 的取值范围.(2)是否存在实数m ,使“x P ∈”是“x S ∈”的充要条件?若存在,求出m 的取值范围;若不存在,请说明理由.第一单元测试答案解析一、 1.【答案】A【解析】由题意得uA {0,4}=ð,又{2,4}B =,所以(){0,2,4}uA B =U ð,故选A . 2.【答案】D【解析】∵{0,4,6,9}B =,∴B 的子集的个数为4216=. 3.【答案】A【解析】因为丁⇒丙⇔乙⇒甲,故丁⇒甲(传递性). 4.【答案】C【解析】∵集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,又0a ≠∵,0a b +=∴,即a b =-,1ba=-∴,1b =. 2b a -=∴,故选C .5.【答案】C【解析】N ∵为点集,x M ∈,y M ∈,∴由x ,y 组成的点有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2).其中满足210x y -+≥且210x y --≤的仅有(0,0),(0,1),(1,1),(2,1)四个元素.6.【答案】C【解析】原命题的否定是“32,10x x x ∃∈-+R >”. 7.【答案】B【解析】由已知有p r ⇒,q r ⇒,r s ⇒,s q ⇒,由此得g s ⇒且s q ⇒,r q ⇒且q r ⇒,所以①正确,③不正确. 又p q ⇒,所以②正确.④等价于p s ⇒,正确.r s ⇒且s r ⇒,⑤不正确.故选B .8.【答案】B【解析】由20x x ->得0x <或1x >,∵(1,)M N =+∞I .故选B . 9.【答案】D【解析】由已知得(,]M m =-∞,[1,)N =-+∞,∵M N =∅I ,1m ∴-<,故选D . 10.【答案】C【解析】由已知得{|20}A x x =-<<,{|11}B x x =-≤≤,所以(2,1]A B =-U ,[1,0)A B =-I ,所以阴影部分表示的集合为()(2,1)[0,1]A B A B =--⋃U I ð,故选C .11.【答案】C【解析】构造函数()22121y m x mx =-+-,则0x =时,1y =-,函数的图像开口向上,由1x =时21210m m -+-<得2m >或0m <,又p 是q 的必要不充分条件,所以p ⇒q ,q p ⇒,故选C .12.【答案】C【解析】若0∆=,则440a -=,1a =,满足条件,当0∆>时,4401a a -⇒><.所以1a ≤. 二、 13.【答案】7【解析】列举如下:{1,5}M =,{2,4}M =,{3}M =,{1,3,5)M =,{2,3,4}M =,{1,2,4,5}M =,{1,2,3,4,5}M =,共7个.14.【答案】必要 不充分【解析】由已知得S A B ⊆ð,两边取补集,有()S S S A B ⊇痧?,即S A B ⊇ð,所以S x B x A ∈⇒∈ð,反之,不一定成立,故x ∈A 是S x B ∈ð的必要不充分条件.15.【答案】2a =-【解析】令2430x x ++=,得3x =-或1x =-,∴可猜想20a +=,即2a =-.代入原不等式得22043x x x -++>,解得(3,1)(2,)x ∈--+∞U .故2a =-.16.【答案】(2,3)【解析】由题意得{|11}A x a x a =-+≤≤,{|14}B x x x 或剠,A B =∅Q I ,1114a a ->⎧⎨+<⎩∴,23a ∴<<.三、17.【答案】(1)∵当2a =时,{|27}A x x =<<,{|45}B x x =<<,{|45}A B x x =I ∴<<(2)由已知得{}2|21B x a x a =+<<,当13a <时,{|312}A x a x =+<<,要使B A ⊆,必须满足2231,12,a a a +⎧⎨+⎩…„此时1a =-;当13a =时,A =∅,使B A ⊆的a 不存在; 当13a >时,(2,31)A a =+,要使B A ⊆,必须满足2222,131,12,a a a a a ⎧⎪++⎨⎪+≠⎩…„此时13a <„.综上可知,使B A ⊆的实数a 的取值范围为(1,3]{1}-U .18.【答案】证明:①设t A ∈,则存在,a b ∈Ζ,使得682(34)t a b a b =+=+.34a b +∈Z ∵t B ∈∴,t B ∴∈即A B ⊆.②设t B ∈,则存在m ∈Z ,使得26(5)84t m m m ==⨯-+⨯.0a =∴t A ∈∴ 5m -∈Z ∵,4m ∈Z ,,即B A ⊆. 由①②知A B =.19.【答案】由2220a x ax +-=,得(2)(1)0ax ax +-=, 显然0a ≠,2x a =-∴或1x a=. [1,1]x ∈-∵,故21a ≤或11a„,||1a ∴…. “只有一个实数x 满足2220x ax a ++≤”即抛物线222y x ax a =++与x 轴只有一个交点,2480a a ∆=-=∴,或2a =,∴命题“p 或q ”为真命题时“||1a ≥或0a =”.∵命题“p 或q ”为假命题,∴实数a 的取值范围为{|10 01}a a a -<<或<<. 20.【答案】A B A =U ∵,B A ⊆∴, 又A B =∅I ,B =∅∴{}2|410,B x mx x m m =-+-∈R ∵>,∴对一切x ∈R ,使得2410mx x m -+-≤恒成立,于是有0,164(1)0,m m m ⎧⎨--⎩<≤解得m „∴实数m的取值范围是|m m ⎧⎪⎨⎪⎪⎩⎭„21.【答案】{}2|320{|12}B x x x x x =∈-+=R 剟?,p ∵是q 的充分不必要条件,p q ⇒∴,q ⇒p ,即A 是B 的真子集,可A =∅或方程210x ax ++=的两根在区间[1,2]内,210a ∆=-∴<或0,12,2110,4210,a a a ∆⎧⎪⎪-⎪⎨⎪++⎪++⎪⎩…剟……解得22a -<„. 22.【答案】由28200x x --≤,得210x -剟,所以{|210P x x =-≤≤. 由|1|x m -≤,得11m x m -+剟.所以{|11}S x m x m =-+≤≤. (1)要使()P S P ⊆U ,则S P ⊆ ①若S =∅,则0m <;②若S ≠∅,则0,12,110,m m m ⎧⎪--⎨⎪+⎩……„解得03m 剟.综合①②可知,实数m 的取值范围为(,3]-∞.(2)由“x P ∈”是“x S ∈”的充要条件,知S P =,则12,110,m m -=-⎧⎨+=⎩此方程组无解,所以这样的实数m 不存在.第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若23A a ab =+,24B ab b =-,则A ,B 的大小关系是( ) A .A B „B .A B …C .A B <或A B >D .A B >2.下列结论正确的是( ) A .若ac bc >,则a b > B .若22a b >,则a b >C .若a b >,0c <,则a c b c ++<D .a b <3.下列变形是根据等式的性质的是( ) A .由213x -=得24x = B .由2x x =得1x = C .由29x =得x=3 D .由213x x -=得51x =-4.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .b a <C .0ab >D .||||b a <5.已知||a b a <<,则( )A .11a b> B .1ab <C .1ab> D .22a b >6.若41x -<<,则222()1x x f x x -+=-( ) A .有最小值2B .有最大值2C .有最小值2-D .有最大值2-7.已知0a >,0b >,2a b +=,则14y a b=+的最小值是( ) A .72B .4C .92D .58.已知1x ,2x 是关于x 的方程230x bx +-=的两根,且满足121234x x x x +-=,那么b 的值为( ) A .5B .5-C .4D .4-9.不等式22120x ax a --<(其中0a <)的解集为( ) A .(3,4)a a -B .(4,3)a a -C .(3,4)-D .(2,6)a a10.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的总利润y (单位:10万元)与营运年数()*x x ∈N 为二次函数的关系(如图),则每辆客车营运_____年,营运的年平均利润最大( )A .3B .4C .5D .611.若正数x ,y 满足35x y xy +=,则34x y +的最小值是( ) A .245B .285C .5D .612.已知a b >,二次三项式220ax x b ++…对于一切实数x 恒成立,又0x ∃∈R ,使20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D .二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.当1x >时,不等式11x a x +-≥恒成立,则实数a 的取值范围为__________. 14.若0a b <<,则1a b -与1a的大小关系为__________.15.若正数a ,b 满足3ab a b =++,则ab 的取值范围是__________.16.已知关于x 的一元二次方程2320x x m -+=有两个不相等的实数根1x 、2x .若1226x x -=,则实数m 的值为__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)解下列不等式(组):(1)2(2)01x x x +⎧⎨⎩>,<;(2)262318x x x --<„.18.(本小题满分12分)已知a ,b ,c 为不全相等的正实数,且1abc =.111a b c++<.19.(本小题满分12分)已知21()1f x x a x a ⎛⎫=-++ ⎪⎝⎭.(1)当12a =时,解不等式()0f x „; (2)若0a >,解关于x 的不等式()0f x „.20.(本小题满分12分)某镇计划建造一个室内面积为2800 m 的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?21.(未小题满分12分)设函数2()3(0)f x ax bx a =++≠. (1)若不等式()0f x >的解集为(1,3)-,求a ,b 的值; (2)若(1)4f =,0a >,0b >,求14a b+的最小值.22.(本小题满分12分)解下列不等式. (1)2560x x --+<;(2)()(2)0a x a x -->.第二章综合测试答案解析一、 1.【答案】B【解析】()2222334240b A B a ab ab b a b ⎛⎫-=+--=-+ ⎪⎝⎭∵…,A B ∴….2.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误. 3.【答案】A【解析】A .根据等式的性质1,在等式213x -=的左右两边同时加上1,可得24x =,故本选项正确;B .在等式2x x =的左右两边同时除以x ,可得1x =,但是当0x =时,不成立,故本选项错误;C .将等式29x =的左右两边开平方,可得3x =±,故本选项错误;D .根据等式的性质1,在等式213x x -=的左右两边同时加上(31)x +,可得561x x =+,故本选项错误. 4.【答案】D【解析】根据题图可知,21a --<<,01b <<,所以||||b a <. 5.【答案】D【解析】由||a b a <<,可知0||||b a <„,由不等式的性质可知22||||b a <,所以22a b >. 6.【答案】D【解析】2221()(1)11x x f x x x x -+==-+--.又41x -∴<<,10x -∴<,(1)0x --∴> 1()(1)2(1)f x x x ⎡⎤=---+-⎢⎥--⎣⎦∴„当且仅当111x x -=-,即0x =时等号成立.7.【答案】C【解析】2a b +=∵,12a b+=∴∴14142a bab a b +⎛⎫+=+⋅⎪⎝⎭52592222a b b a ⎛⎫=+++= ⎪⎝⎭… (当且仅当22a b b a =,即423b a ==时,等号成立) 故14y a b=+的最小值为92.8.【答案】A【解析】12,x x ∵是关于x 的方程230x bx +-=的两根,12x x b +=-∴,123x x =-, 121234x x x x +-=∵,94b -+=∴,解得5b =.9.【答案】B【解析】方程22120x ax a --=的两根为4a ,3a -,且43a a -<,43a x a <<-∴. 10.【答案】C【解析】求得函数式为2(6)11y x =--+,则营运的年平均利润2512122y x x x ⎛⎫=-+-= ⎪⎝⎭„, 当且仅当25x x=时,取“=”号,解得5x =. 11.【答案】C【解析】35x y xy +=∵,13155y x+=∴1334(34)1(34)55x y x y x y y x ⎛⎫+=+⨯=++ ⎪⎝⎭∴3941213555555x y y x =++++=…当且仅当31255x y y x =,即1x =,12y =时等号成立. 12.【答案】D【解析】a b ∵>,二次三项式220ax x b ++≥对于一切实数x 恒成立, 0a ∴>,且440ab ∆=-„,1ab ≥∴.再由0x ∃∈R ,使20020ax x b ++=成立,可得0∆…,1ab ∴…,又a b >,1a >.2224231101a a b a a a b a a a a+++==---∴> 2242484243624222211*********a a a a a a a a a a a a a a a a ⎛⎫+++ ⎪⎛⎫+++⎝⎭=== ⎪-+-⎛⎫⎝⎭+-+- ⎪⎝⎭ 22222221124412a a a a a a ⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭=⎛⎫+- ⎪⎝⎭令22112a a +=>,则24231(2)4(2)44(2)444822a t t t a a t t ⎛⎫+-+-+==-+++= ⎪---⎝⎭…, 当且仅当4t =,即a 时取等.故2431a a a ⎛⎫+ ⎪-⎝⎭的最小值为8,故22a b a b +-二、13.【答案】(,3]-∞ 【解析】1x ∵>,11(1)11311x x x x +=-++=--∴….3a ∴„. 14.【答案】11a b a-< 【解析】110()()a ab ba b a a a b a a b -+-==---∵<. 11a b a-∴< 15.【答案】[9,)+∞【解析】33ab a b =++…,所以1)0…,3,所以9ab ….16.【答案】2-【解析】由题意知123x x +=,1226x x -=∵,即12236x x x +-=, 2336x -=∴,解得21x =-,代入到方程中,得1320m ++=,解得2m =-. 三、17.【答案】(1)原不等式组可化为 2 0,11,x x x -⎧⎨-⎩<或><<即01x <<,所以原不等式组的解集为{|01}x x <<. (2)原不等式等价于22623,318,x x x x x ⎧--⎨-⎩≤<即2260,3180,x x x x ⎧--⎨--⎩<…因式分解,得(3)(2)0,(6)(3)0,x x x x -+⎧⎨-+⎩<…所以 2 3,36,x x -⎧⎨-⎩或<<剠所以132x --<≤或36x <„.所以不等式的解集为{|3236}x x x --<≤或≤<.18.【答案】证明:因为a ,b ,c 都是正实数,且1abc =,所以112a b +…11b c +=…11a c +=…以上三个不等式相加,得1112a b c ⎛⎫++ ⎪⎝⎭…,即111a b c++因为a,b,c不全相等,所以上述三个不等式中的“=”不同时成立.111a b c++<.19.【答案】(1)当12a=时,有不等式25()102f x x x=-+≤,1(2)02x x⎛⎫--⎪⎝⎭∴„,122x∴剟,即所求不等式的解集为1,22⎡⎤⎢⎥⎣⎦.(2)1()()0f x x x aa⎛⎫=--⎪⎝⎭∵„,0a>且方程1()0x x aa⎛⎫--=⎪⎝⎭的两根为1x a=,21xa=,∴当1aa>,即011a<<,不等式的解集为1,aa⎡⎤⎢⎥⎣⎦;当1aa<,即1a>,不等式的解集为1,aa⎡⎤⎢⎥⎣⎦;当1aa=,即1a=,不等式的解集为{1}.20.【答案】设矩形温室的左侧边长为 ma,后侧边长为 mb,蔬菜的种植面积为2mS,则800ab=.所以(4)(2)4288082(2)808648 S a b ab b a a b=--=--+=-+-„当且仅当2a b=,即40a=,20b=时等号成立,则648S=最大值.故当矩形温室的左侧边长为40 m,后侧边长为20 m时,蔬菜的种植面积最大,最大种植面积为2648 m.21.【答案】(1)因为不等式()0f x>的解集为(1,3)-,所以1-和3是方程()0f x=的两个实根,从而有(1)30,(3)9330,f a bf a b-=-+=⎧⎨=++=⎩解得1,2,ab=-⎧⎨=⎩(2)由(1)4f=,得1a b+=,又0a>,0b>,所以1414()a b a b a b ⎛⎫+=++ ⎪⎝⎭4559b a a b =+++… 当且仅当4b a a b =即1,32,3a b ⎧=⎪⎪⎨⎪=⎪⎩时等号成立,所以14a b+的最小值为9. 22.【答案】(1)2560x x --+<∵,2560x x +->∴, (1)(6)0x x -+∴>,解得6x -<或1x >,∴不等式2560x x --+<的解集是{| 6 1}x x x -<或>. (2)当0a <时,()(2)y a x a x =--的图象开口向下,与x 轴交点的横坐标为x a =,2x =,且2a <,()(2)0a x a a --∴>的解集为{|2}x a x <<.当0a =时,()(2)0a x a x --=,()(2)0a x a x --∴>无解.当0a >时,抛物线()(2)y a x a x =--的图像开口向上, 与x 轴交点的横坐标为x a =,2x =.当2a =时,不等式可化为22(2)0x ->,解得2x ≠. 当2a >时,解得2x <或x a >. 当2a <时,解得x a <或2x >.综上,当0a <时,不等式的解集是{|2}x a x <<; 当0a =时,不等式的解集是∅;当02a <<时,不等式的解集是{| 2}x x a x <或>; 当2a =时,不等式的解集是{|2}x x ≠; 当2a >时,不等式的解集是{|2}x x x a <或>.第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知2()1f x x =+,则[(1)]f f -的值等于( ) A .2B .3C .4D .5 2.已知函数()1f x x =+,其定义域为{1,0,1,2}-,则函数的值域为( ) A .[0,3]B .{0,3}C .{0,1,2,3}D .{|0}y y …3.函数0y =的定义域是( )A .{|01}x x 剟B .{| 1 1}x x x --<或>C .{|01}x x x ≠-<且D .{}|1 0x x x ≠-≠且4.已知二次函数()y f x =满足(2)(2)f x f x +=-,且函数图像截x 轴所得的线段长为8,则函数()y f x =的零点为( ) A .2,6B .2,6-C .2-,6D .2-,6-5.若函数()y f x =的定义域是{|01}x x ≤≤,则函数()()(2)(01)F x f x a f x a a =+++<<的定义域是( )A .1|22a a x x -⎧⎫-⎨⎬⎩⎭≤≤B .|12a x x a ⎧⎫--⎨⎬⎩⎭≤≤C .{|1}x a x a --≤≤D .1|2a x a x -⎧⎫-⎨⎬⎩⎭≤≤6.如图所示,可表示函数()y f x =的图像的只可能是( )ABCD7.已知函数2()1f x ax bx =++为定义在[2,1]a a -上的偶函数,则a b +的值是( ) A .1B .1-C .1或1-D .0或18.若()f x 满足()()f x f x -=-,且在(,0)-∞上是增函数,(2)0f -=,则()0xf x <的解集是( ) A .(2,0)(0,2)-UB .(,2)(0,2)-∞-UC .(,2)(2,)-∞-+∞UD .(2,0)(2,)-+∞U9.设函数()f x 与()g x 的定义域是{|1}x x ∈≠±R ,函数()f x 是一个偶函数,()g x 是一个奇函数,且1()()1f xg x x -=-,则()f x 等于( ) A .2221x x -B .211x -C .221x -D .221xx - 10.已知2()21(0)f x ax ax a =++>,若()0f m <,则(2)f m +与1的大小关系式为( ) A .(2)1f m +<B .(2)1f m +=C .(2)1f m +>D .(2)1f m +…11.函数()f x =( ) A .是奇函数但不是偶函数 B .是偶函数但不是奇函数 C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数12.已知2()2f x x x =+,若存在实数t ,使()3f x t x +„对[1,]x m ∈恒成立,则实数m 的最大值是( ) A .6B .7C .8D .9二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.已知1,[0,1],()2,[0,1],x f x x x ∈⎧=⎨-∉⎩,当[()]1f f x =时,x ∈__________.14.关于x 的方程240x x a --=有四个不相等的实数根,则实数a 的取值范围为__________.15.已知函数719()1x f x x +=+,则()f x 的图像的对称中心是__________,集合{}*|()x f x ∈=N __________.16.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则52f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的值是__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数2()2||1f x x x =--.(1)利用绝对值及分段函数知识,将函数()f x 的解析式写成分段函数; (2)在坐标系中画出()f x 的图像,并根据图像写出函数()f x 的单调区间和值域.18.(本小题满分12分)已知函数()f x 对任意实数x 均有()2(1)f x f x =-+,且()f x 在区间[0]1,上有解析式2()f x x =. (1)求(1)f -和(1.5)f 的值;(2)写出()f x 在区间[2,2]-上的解析式.19.(本小题满分12分)函数2()1ax bf x x +=+是定义在(,)-∞+∞上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)求实数a ,b 的值.(2)用定义证明()f x 在(1,1)-上是增函数;(3)写出()f x 的单调减区间,并判断()f x 有无最大值或最小值.如有,写出最大值或最小值(无需说明理由).20.(本小题满分12分)已知定义域为R 的单调函数()f x ,且(1)f x -的图像关于点(1,0)对称,当0x >时,1()3x f x x=-. (1)求()f x 的解析式;(2)若对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.21.(本小题满分12分)对于定义域为D 的函数()y f x =,若同时满足下列条件:①()f x在D 内单调递增或单调递减;②存在区间[,]a b D ⊆,使()f x 在[,]a b 上的值域为[,]a b ,那么称()()x D y f x =∈为闭函数.(1)求闭函数3y x =-符合条件②的区间[,]a b . (2)判断函数31()(0)4f x x x x=+>是否为闭函数?并说明理由;(3)判断函数y k =+k 的取值范围.22.(本小题满分12分)设函数()f x 的定义域为R ,当0x >时,()1f x >,对任意,x y ∈R ,都有()()()f x y f x f y +=g ,且(2)4f =. (1)求(0)f ,(1)f 的值.(2)证明:()f x 在R 上为单调递增函数.(3)若有不等式1()2f x f x x ⎛⎫+ ⎪⎝⎭g <成立,求x 的取值范围.第三章测试答案解析一、 1.【答案】D【解析】由条件知(-1)2f =,(2)5f =,故选D . 2.【答案】C【解析】将x 的值依次代入函数表达式可得0,1,2,3,所以函数的值域为{0,1,2,3},故选C . 3.【答案】C【解析】由条件知10x +≠且0x x ->,解得0x <且1x ≠-.故选C 4.【答案】C【解析】由于函数()y f x =满足(2)(2)f x f x +=-,所以直线2x =为二次函数()y f x =图像的对称轴,根据二次函数图像的性质,图像与x 轴的交点必关于直线2x =对称.又两交点间的距高为8,则必有两交点的横坐标分别为1246x =+=,2242x =-=-.故函数的零点为2-,6.故选C . 5.【答案】A【解析】由条件知01,021,x a x a +⎧⎨+⎩剟剟,又01a <<则122a ax --≤≤,故选A .6.【答案】D【解析】由函数定义可得,任意一个x 有唯一的y 与之对应,故选D . 7.【答案】B【解析】因为函数2()1f x ax bx =++为定义在[2,1]a a -上的偶函数,所以21a a =-,1a =-,0b =,因此1a b +=-,故选B.8.【答案】A【解析】根据题意可知函数是奇函数,且在(,0)-∞,(0,)+∞上是增函数,对()0xf x <,分0x >,0x <进行讨论,可知解集为(2,0)(0,2)-U ,故选A.9.【答案】B【解析】1()()1f x g x x -=-∵,1()()1f x g x x ---=--∴,1()()1f xg x x +=--∴, 21122()111f x x x x =-=-+-∴,21()1f x x =-,故选B . 10.【答案】C【解析】因为2()21(0)f x ax ax a =++>,所以其图像的对称轴为直线1x =-,所以()(2)0f m f m =--<,又(0)1f =,所以(2)1f m +>,故选C .11.【答案】A【解析】由定义城可知x 因此原式化简为()f x =那么根据函数的奇偶性的定义,可知该函数是奇函数不是偶函数,故选A . 12.【答案】C【解析】由题意知,对任意[1,]x m ∈,2()2()3x t x t x +++…恒成立,这个不等式可以理解为()f x t +的图像在直线3y x =的图像的下面时x 的取值范围.要使m 最大,需使两图像交点的横坐标分别为1和m .当1x =时,3y =,代入可求得4t =-(0t =舍去).进而求得另一个交点为(8,24),故8m =.故选C. 二、13.【答案】[0,1][2,3]{5}U U【解析】因为1,[0,1],()2,[0,1],x f x x x ∈⎧=⎨-∉⎩所以要满足元[()]1f f x =,需()[0,1]f x ∈,[0,1]x ∈或2[0,1]x -∈或5x =,这样解得x 的取值范围是[0,1][2,3]{5}U U .14.【答案】(0,4)【解析】原方程等价于24x x a -=,在同一坐标系内作出函数24y x x =-与函数y a =的图像,如图所示:平移直线y a =,可得当04a <<时,两图像有4个不同的公共点,相应地方程240x x a --=有4个不相等的实数根,综上所述,可得实数a 的范围为04a <<. 15.(1,7)- {13,7,5,4,3,0,1,2,3,5,11}----- 【解析】因为函数71912()711x f x x x +==+++,则()f x 的图像的对称中心为(1,7)-, 集合{|()}{13,7,5,4,3,0,1,2,3,5,11}x f x *∈=-----N 16.【答案】0【解析】因为()f x 是定义在R 上的偶函数,因此令12x =-,可知11112222f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以102f ⎛⎫= ⎪⎝⎭,分别令32x =-,52x =-,可得302f ⎛⎫= ⎪⎝⎭,502f ⎛⎫= ⎪⎝⎭,令1x =-.得(0)0f =,因此可知502f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭. 三、17.【答案】(1)22321,0()2||121,0x x x f x x x x x x ⎧--=--=⎨+-⎩<….(2)图像如图所示.单调增区间为(1,0)-,(1,)+∞, 单调减区间为(,1)-∞-,(0,1). 值域为[2,)-+∞.18.【答案】(1)由题意知(1)2(11)2(0)0f f f -=--+=-=,1111(1,5)(10.5)(0.5)2248f f f =+=-=-⨯=-. (2)当[0,1]x ∈时,2()f x x =; 当(1,2]x ∈时,1(0,1]x -∈,211()(1)(1)22f x f x x =--=--; 当[1,0)x ∈-时,1[0,1)x +∈, 2()2(1)2(1)f x f x x =-+=-+;当[2,1)x ∈--时,1[1,0)x +∈-,22()2(1)22(11)4(2)f x f x x x ⎡⎤=-+=-⨯-++=+⎣⎦.所以22224(2),[2,1),2(1),[1,0),(),[0,1],1(1),(1,2].2x x x x f x x x x x ⎧+∈--⎪-+∈-⎪⎪=⎨∈⎪⎪--∈⎪⎩19.【答案】(1)2()1ax bf x x +=+∵是奇函数()()f x f x -=-∴, 2211ax b ax bx x -++=-++∴,0b =∴. 故2()1ax f x x =+,又1225f ⎛⎫= ⎪⎝⎭∵,1a =∴ (2)证明:由(1)知2()1xf x x =+,任取1211x x -<<<,()()()()()()1212121222121211111x x x x x xf x f x x x x x ---=-=++++1211x x -∵<<<,1211x x -∴<<,120x x -<,1210x x ->,2110x +>,2210x +>,()()120f x f x -∴<,即()()12f x f x <,()f x ∴在(1,1)-上是增函数.(3)单调减区间为(,1),(1,)-∞-+∞.当1x =-时,min 1()2f x =-;当1x =时,max 1()2f x =.20.【答案】(1)由题意知()f x 的图像关于点(0,0)对称,是奇函数,∴(0)0f = 当0x <时,0x ->,1()3x f x x--=--∴, 又∵函数()f x 是奇函数.∴()()f x f x -=-,1()3x f x x=-∴. 综上所述,1(0),()30(0).x x f x x x ⎧-≠⎪=⎨⎪=⎩(2)2(1)(0)03f f =-=∵<,且()f x 在R 上单调.∴()f x 在R 上单调递减.由()()22220f t t f t k -+-<,得()()2222f t t f t k ---<.∵()f x 是奇函数,∴()()2222f t t f k t --<,又∵()f x 是减函数, ∴2222t t k t -->即2320t t k -->对任意t ∈R 恒成立,∴4120k ∆=+<,得13k -<.21.【答案】(1)由题意,3y x =-,在[,]a b 上单调递减,则33,,,b a a b b a ⎧=-⎪=-⎨⎪>⎩解得1,1,a b =-⎧⎨=⎩所以,所求区间为[1,1]-.(2)取11x =,210x =,则()()1273845f x f x ==<,即()f x 不是(0,)+∞上的减函数.取,1110x -=,21100x =,()()12331010040400f x f x =++=<,即()f x 不是(0,)+∞上的增函数.所以,函数在定义域内不单调递增或单调递减,从而该函数不是闭函数.(3)若y k =+[,]a b ,在区间[,]a b 上,函数()f x 的值域为[,]a b,即a k b k ⎧=+⎪⎨=⎪⎩∴a ,b为方程x k =的两个实根,即方程22(21)20(2,)x k x k x x k -++-=-厖有两个不等的实根,故两根均大于等于2-,且对称轴在直线2x =-的右边.当2k -„时,有220,(2)2(21)20,212,2k k k ⎧⎪∆⎪-+++-⎨⎪+⎪-⎩>>…解得924k --<„.当2k ->时,有220,(21)20,21,2k k k k k k ⎧⎪∆⎪-++-⎨⎪+⎪⎩>>…无解.综上所述,9,24k ⎛⎤∈-- ⎥⎝⎦.22.【答案】(1)因为(20)(2)(0)f f f +=g ,所以44(0)f =⋅,所以(0)1f =, 又因为24(2)(11)(1)f f f ==+=,且当0x >时,()1f x >,所以(1)2f =.(2)证明:当0x <时,0x ->,所以()1f x ->,而(0)[()]()()f f x x f x f x =+-=-g , 所以1()()f x f x =-,所以0()1f x <<,对任意的12,x x ∈R , 当12x x <时,有()()()]()()()1212222121f x f x f x x x f x f x f x x -=⎡-+-=--⎣, 因为120x x <<,所以120x x -<,所以()1201f x x -<<,即()1210f x x --<, 所以()()120f x f x -<,即()()12f x f x <,所以()f x 在R 上是单调递增函数.(3)因为1()12f x f x ⎛⎫+ ⎪⎝⎭g <,所以11(1)f x f x ⎛⎫++ ⎪⎝⎭<,而()f x 在R 上是单调递增函数,所以111x x ++<,即10x x+<,所以210x x +<,所以0x <,所以x 的取值范围是(,0)-∞.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Nhomakorabea)
3 1 1 C. D. 4 2 4 3、 如图 1, 在正四棱柱 ABCD A 则以下结论中不成立 的是 ( 1B 1C1D 1 中,E,F 分别是 AB1 ,BC1 的中点, ...
A. B.
A. EF 与 BB1 垂直 C. EF 与 CD 异面 B. EF 与 BD 垂直 D. EF 与 AC 1 1 异面
| 2k 1 k 2 | k 2 1
1, k
4 3
所以切线方程为 y 2
4 ( x 1) ,即 4 x 3 y 10 0 3
又过点 (1,2) 且与 x 轴垂直的直线 x 1 与圆也相切 所发所求的切线方程为 x 1 与 4 x 3 y 10 0 。
1
OC 所在直线的斜率为 kOC 3 0 3 .
1 0
(2)在 OABC 中, AB // OC ,
CD⊥AB, CD⊥OC. CD 所在直线的斜率为 kCD 1 .
3
. CD 所在直线方程为 y 3 ( x 1), 即x 3 y 1 0 0 16、 (1)证明:连结 BD. 在长方体 AC1 中,对角线 BD // B1D1 . 又 E、F 为棱 AD、AB 的中点, EF // BD .
2 a 1
, a 1, a 0 (10 分)
2 (14 分) 2
a2 1 2 ,得 0 d
4
20、解:将圆方程配方得 ( x a) ( y 1) a2 a (2 分)
2 2
故满足 a2 a 0 ,解得 a 1 或 a 0 (6 分) 由方程得圆心 (a,1) 到直线 ax y a2 0 的距离
d
| a2 1 a2 | a 1
2

1
1
必修一、二综合
一.选择题: (本大题共 10 小题,每小题 5 分,共 50 分。 )
1、若 A x x 1 , B x x 2 x 3 0 ,则 A B (
2 2





A. 3
B. 1
C.
D. 1
2、函数 f ( x ) 的定义域为 R ,若 f ( x y ) f ( x ) f ( y ) , f (8) 3 ,则 f (2) (
又 B1D1 平面 CB1D1,
y 3 A(-1,2)
A
平面 CAA1C1⊥平面 CB1D1.
17、 (1)解方程组
C(5,2) 1
3x y 1 0 x y 3 0

x 1 ,所以交点 P(1,2) y 2
-1
1 (2) l1 的斜率为 3,故所求直线为 y 2 ( x 1) 3
(1)在图 5 给定的直角坐标系内画出 f ( x) 的图象; (2)写出 f ( x) 的单调递增区间.
5
19、 (本小题满分 13 分) 2 2 已知圆 C 的方程为: x y 2mx 2 y 4m 4 0,(m R) . (1)试求 m 的值,使圆 C 的面积最小; (2)求与满足(1)中条件的圆 C 相切,且过点 (1, 2) 的直线方程.
1 3
EF // B1D1 .
又 B1D1 平面 CB1D1 , EF 平面 CB1D1 ,
EF∥平面 CB1D1.
(2) 在长方体 AC1 中,AA1⊥平面 A1B1C1D1,而 B1D1 平面 A1B1C1D1,
AA1⊥B1D1. 又 在正方形 A1B1C1D1 中,A1C1⊥B1D1, B1D1⊥平面 CAA1C1.
2
5 4

D1
A1
( )
B1
E D
B F
C1
4、.若直线 ax 2 y 6 0 和直线 x a(a 1) y (a 1) 0 垂直,则 a 的值为
3 3 B.0 C. 或0 D. 3 2 2 A 5、设 a, b 为两条直线, , 为两个平面,下列四个命题中,正确的命题是( ) A.若 a, b 与 所成的角相等,则 a ∥ b B.若 a ∥ , b ∥ , ∥ ,则 a ∥ b C.若 a , b , a ∥ b ,则 ∥ D.若 a , b , ,则 a b 1 x 6.、函数 f ( x) lg 的定义域为( ) x4 1) (4, ) 1] (4, ) , 4) , 4) A. (1 B. [1 C. (, D. (, A.
1

2
则 f [ g (1)] 的值为
三、解答题: 15、 (本小题满分 13 分, (Ⅰ)小问 6 分, (Ⅱ)小问 7 分)如图 1,在四边形 OABC 中,点 C(1,3) . (1)求 OC 所在直线的斜率; y (2)过点 C 做 CD⊥AB 于点 D,求 CD 所在直线的方程.
C B D
7、若圆 x2 y 2 2 x 4 y 0 的圆心到直线 x y a 0 的距离为 A. 2 或 2 B.
C
2 ,则 a 的值为( 2

1 3 或 C. 2 或 0 D. 2 或 0 2 2 2 2 8、圆 x y 2x 1 0 关于直线 2 x y 3 0 对称的圆的方程是( ) 1 1 2 2 2 2 A. ( x 3 ) ( y 2) B. ( x 3 ) ( y 2) 2 2 2 2 2 2 C. ( x 3 ) ( y 2) 2 D. ( x 3 ) ( y 2) 2 9、若函数 y f ( x) 的定义域为 [0,1] , 则下列函数中可能是偶函数的是 ( ).
16、 (本小题满分 13 分) 在正方体 ABCD-A1B1C1D1 中,E、F 为棱 AD、AB 的中点. (1)求证:EF∥平面 CB1D1; (2)求证:平面 CAA1C1⊥平面 CB1D1
O
1
A
x
1
D1 A1 B1
C1
17、(本题满分 13 分) 已知直线 l1 : 3x y 1 0 , l2 : x y 3 0 ,求:

第Ⅱ卷(非选择题,共 100 分) 二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分,把答案填在题中的横线上.) 1 x 1 11、方程 3 的解是 . 9 , 且与直线 x y 4 相切的圆的方程是 12、圆心为 (11) . 2 2 2 2 13、已知两圆 x y 10 和 ( x 1) ( y 3) 20 相交于 A, B 两点,则直线 AB 的方程是 14.已知函数 f ( x ) , g ( x) 分别由下表给出 x x 1 2 3 1 2 3 f ( x) f ( x) 2 1 1 3 2 1
(1)直线 l1 与 l2 的交点 P 的坐标; (2)过点 P 且与 l1 垂直的直线方程. E A
y
D F B
C
3
18、 (本小题满分 13 分)
已知函数 f ( x)
2 1 -1 0 -1 1 2 3 4 5
x
3 x , x [1, 2],
2
x 3, x (2,5].
A. y f ( x) A. 3 或 3 B. y f (3x)
2 2
C. y f ( x)
D. y f ( x )
2
10、 若直线 y kx 1 与圆 x y 1相交于 P,Q 两点, 且 POQ 120 (其中 O 为原点) , 则 k 的值为 ( B. 3 C. 2 或 2 D. 2
20、 (本小题满分 14 分) 2 已知圆方程: x2 y 2ax 2 y a 1 0 ,求圆心到直线 ax y a2 0 的距离的取值范围.
2
3
参考答案
一、DBDCD ACCDA 二、11、 x 1 12、 ( x 1)2 ( y 1)2 2 三、 15、 (Ⅰ)解: (1) 点 O(0,0) ,点 C(1,3) , 13、 x 3 y 0 14、 1 、
即为 x 3 y 7 0 18、解:(1)函数 f ( x ) 的图像如右图所示;
3
0 -1
1
2 B(2,-1)
5
x
4
(2))函数 f ( x ) 的单调递增区间为[-1,0]和[2,5]
说明:单调递增区间没有写成闭区间形式,统一扣 1 分。 19、配方得圆的方程: ( x m) 2 ( y 1) 2 (m 2) 2 1 (1)当 m 2 时,圆的半径有最小值 1,此时圆的面积最小。 (2)当 m 2 时,圆的方程为 ( x 2) 2 ( y 1) 2 1 设所求的直线方程为 y 2 k ( x 1) 即 kx y k 2 0 由直线与圆相切,得
相关文档
最新文档