《发酵动力学》第六章 发酵工程基本操作

合集下载

6发酵动力学

6发酵动力学

第 2节
发酵动力学分类
1. 根据细胞生长与产物形成有否偶联进行分类 细胞浓度(x)或产物浓度对时间作图时 , 细胞浓度 或产物浓度对时间作图时, 或产物浓度对时间作图时 两者密切平行, 两者密切平行 , 其最大的比生长速率和 最大的产物合成比速率出现在同一时刻. 最大的产物合成比速率出现在同一时刻 . 一般来说在这种类型的发酵生产中, 控 一般来说在这种类型的发酵生产中 , 制好最佳生长条件就可获得产物合成的 最适条件. 最适条件.
(3) 分段反应型 其营养成分在转化为产物之前 全部转变为中间物, 全部转变为中间物,或营养成分以优先顺序选 择性地转化为产物. 择性地转化为产物.反应过程是由两个简单反 应段组成,这两段反应由酶诱导调节. 应段组成,这两段反应由酶诱导调节. (4) 串联反应型 是指在形成产物之前积累一 定 程度的中间物的反应 (5) 复合型 大多数发酵过程是一个联合反应, 大多数发酵过程是一个联合反应, 它们的联合可能相当复杂. 它们的联合可能相当复杂.
型发酵〗 〖 Ⅲ型发酵〗 产物的形成和菌体的生长非偶联
p x
2. 根据产物形成与基质消耗的关系分类
(1) 类型Ⅰ 类型Ⅰ
产物的形成直接与基质(糖类 的消耗有关 产物的形成直接与基质 糖类)的消耗有关,产 糖类 的消耗有关, 物合成与利用糖类存在化学计量关系, 物合成与利用糖类存在化学计量关系,糖提供 了生长所需的能量. 了生长所需的能量. 糖耗速度与产物合成速度的变化是平行的,如 糖耗速度与产物合成速度的变化是平行的, 利用酵母菌的酒精发酵和酵母菌的好气生长. 利用酵母菌的酒精发酵和酵母菌的好气生长. 在厌氧条件下, 在厌氧条件下,酵母菌生长和产物合成是平行 的过程;在通气条件下培养酵母时, 的过程;在通气条件下培养酵母时,底物消耗 的速度和菌体细胞合成的速度是平行的. 的速度和菌体细胞合成的速度是平行的.这种 形式也叫做有生长联系的培养. 形式也叫做有生长联系的培养.

第六章 发酵动力学

第六章 发酵动力学

率的上升而增加,而实际产物得率YP/S随的上升而减少。
发酵过程的化学计量式 质量平衡 能量平衡
1、分批发酵时生产菌的生长周期三个时期
三个时期:
菌体生长期 产物合成期 菌体自溶期
2、发酵的操作方式 三种:
分批发酵 补料分批发酵 连续发酵
第二节 分批发酵
分批培养 所谓分批培养的是一次投料, 一次接种,一次收获的间歇 培养方式。这种培养方式操 作简单,发酵液中的细胞浓 度、基质浓度和产物浓度均 随时间而不断变化。就细胞 的浓度X的变化而言,在分批 培养中要经历延迟期、对数 生长期、减速期、稳定期和 衷亡期各阶段。
X
X(菌体) + P(产物)
S1 菌体 (Biomass)
维持消耗(m) :
指维持细胞最低活性所需消 耗的能量,一般来讲,单位 重量的细胞在单位时间内用 于维持消耗所需的基质的量 是一个常数。
S
S2 S3
产物 (Products) 维持(Maintain)
S(底物)
X
X(菌体) + P(产物)+维持
(一)维持因数
“维持”是指细胞群体没有实质性的生长(更确切地说是 生长和死亡处于动态平衡状态)和没有胞外代谢产物 合成情况下的生命活动,如细胞的运动、细胞内外各 种物质的交换、细胞物质的转运和更新等,所需能量 由细胞物质的氧化或降解产生。 “维持”的物质代谢称为维持代谢,也叫内源代谢,代谢 释放的能叫维持能。
细胞 营养物→ → →新细胞+代谢产物
一、细胞反应的元素衡算
如果细胞的代谢产物就是细胞、CO2和水时, Meteles根据细胞的主要元素组成,提出了预测 发酵过程中微生物需要氧数量的计算公式: 32 C + 8 H + 16 O - 1 .34 Q= Y ·M

发酵动力学

发酵动力学
延迟期长短与菌种的种龄有关,年轻的种 子延迟期短,年龄老的种子延迟期长。对于相 同种龄的种子,接种量愈大延迟期愈短。
dX 0 dt
对数期
在对数期,培养基中营养物质较充分, 细胞的生长不受限制,细胞浓度随时间呈指 数生长,比生长速率μ维持不变。
两边积分
dX X
dt
x dX
t
dt
x0 X
0
可得
第二节 分批发酵动力学
分批发酵的特点
在发酵过程中,要经历接种、生长繁殖、 菌体衰老、发酵结束(放罐)等过程。 随着底物不断被消耗、产物逐渐生成,反 应体系在不断变化。 分批发酵过程中,细胞经历停滞期、对数 期、静止期和衰亡期四个阶段。
分批发酵动力学的研究内容
细胞生长动力学 底物消耗动力学 产物生成动力学
细胞生长动力学:研究影响细胞生长速率 的各种因素及其影响规律。 重点:Monod方程 底物消耗动力学 以C源为例 产物生成动力学 考虑产物生成速率与细胞生长速率相关
发酵动力学分类
根据产物形成与底物消耗的关系
Ⅰ型:产物形成直接与底物消耗有关(酒精发酵、乳酸发酵) Ⅱ型:产物形成与底物消耗间接有关(柠檬酸、谷氨酸发酵) Ⅲ型:产物形成与底物消耗无关(青霉素发酵、核黄素发酵)
分批发酵法
底物一次性装入反应器内,在适宜条件下进行 反应, 经过一定时间后将反应物全部取出。
补料分批发酵法
先将一定量底物装入反应器,在适宜条件下反 应,在反应过程中,间歇或连续地进行补加新鲜 培养基,反应终止时将全部反应物取出。
连续发酵法
反应过程中,一方面把底物连续加入反应器, 同时又把反应液连续不断地取出,使反应过程始 终处于稳定状态。
X X 0 exp( t)
可以看出:菌体浓度呈指数增加

第六章 典型发酵过程动力学及模型ppt课件

第六章 典型发酵过程动力学及模型ppt课件
20
基质消耗动力学
S1 菌体
S
S2 产物
S3 维持
X S(底物) ─→ X(菌体) + P(产物)+维持
21
1、基质的消耗速率与比消耗速率 如果基质仅用于细胞的生长:
rsY r X X /SY X 1 /S
s
m ax K ss
X
如果以氧的消耗来计算:
rO2
rX YX /O2
22
2、包括维持代谢的基质消耗动力学 要消耗额外的基质产生能量供维持代谢待续
进行。
rs Y*1X/s rX mX
m:维持系数 g/(g·g) Y*X/S:生成细胞的干重与完全消耗于细 胞生长的基质的质量之比,表示维持细胞 代谢的细胞得率,可称为最大细胞得率
23
3、包括产物生成的基质消耗动力学 (1)产物的生成以产能途径进行;
如生产ATP、酒精、乳酸等 (2)产物的生成不与或仅部分与能量代谢相关联。 基质消耗速度取决于: (1)细胞生长速率;(2)产物生物 速率;(3)基质消耗用于维持能速率。
dx dt
f (s)
细胞生长速率与单一限制性底物浓度的关系
max
s Ks s
Monod方程
Ks:微生物对底物的半饱和常数,与亲和力成反比,10g/L
Monod方程假设基础: 1、细胞的生长为均衡生长; 2、培养基中只有一种限制基质; 3、细胞生长视为简单的单一反应,细胞得
率为常数。
11
(1) 当限制性基质的浓度很低时s,即Ks
第六章 发酵过程动力学及 模型
1
一、概述
1、发酵的实质:生物化学反应。 2、发酵过程动力学主要研究各种环境因素与微
生物代谢活动间的相互作用随时间而变化的规 律。 3、研究方法

发酵工程_6发酵动力学

发酵工程_6发酵动力学

首先研究微生物生长和产物合成限制因子;


建立细胞生长、基质消耗、产物生成模型;
确定模型参数;
实验验证模型的可行性与适用范围;
根据模型实施最优控制。
本章主要内容
分批发酵动力学 连续发酵动力学 补料分批发酵动力学
什么是分批发酵?

分批发酵:准封闭培养,指一次性投料、接种 直到发酵结束,属典型的非稳态过程。 分批发酵过程中,微生物生长通常要经历延滞 期、对数生长期、衰减期、稳定期(静止期) 和衰亡期五个时期。
菌体浓度X t1
dx 0, 0, x xmax dt
(浓度最大)
t5
t2
t3 时间 t
t4
图6-1 分批发酵时典型的微生物生长动力学曲线
此阶段次级代谢活跃,次级代谢物大量合成。
dying:
a
(比死亡速率 ,s-1)

假定整个生长阶段无抑制物作用存在,则微生物生长动 力学可用阶段函数表示如下:

反应器层次(过程工程)
基于细胞群体生长及产物合成对外部环境综合响应
采用一系列优化反应器发酵条件的方法
针对微生物发酵的表观动力学,通过研究微生物群 体的生长、代谢,定量反映细胞群体酶促反应体 系的宏观变化速率,主要包括:
细胞生长动力学 底物消耗动力学 产物合成动力学
发酵动力学研究的基本过程
Y*X/S表示底物的细胞绝对得率,也称理论细胞得率; m为细胞维持系数
扣除细胞量的影响,
qS
将qS用µ表示,可得
1 Y
* X /S
m

YX / S

1 Y
* X /S
m
1 YX / S

发酵工程六PPT课件

发酵工程六PPT课件

.
24
二、人工控制微生物代谢的手段
(一)生物合成途径的遗传控制
代谢调节控制育种通过特定突变型的选育,达到改变代谢 通路、降低支路代谢总产物的产生或切断代谢途径及提高 细胞膜的透性,使代谢流向目的产物积累方向进行。
1、代谢缺陷型菌株
2、利用抗代谢类似物的突变积累氨基酸
3、产物降解酶缺失突变株
4、细胞膜组分的缺失突变
.
30
生物素是丙酮酸羧化酶的辅酶,生物素在低于亚适浓度之
前有,利例增于加谷1:生氨谷物酸氨素的酸有合棒利成杆于;菌丙(酮生酸物的素羧缺化陷产型生)草生酰产乙谷酸氨,酸进而
生物素是催化脂肪酸生物合成的初始酶乙酰辅酶A羧化酶的 辅酶,该酶催化乙酰辅酶A羧化生成丙二酸单酰辅酶A,再 经一系列转化合成脂肪酸,而脂肪酸又是构成细胞膜磷脂 的主P要EP成分,因P此y生r 物素可间A接cC地o影A 响细胞膜的透性。
真核微生物细胞里,各种酶系被细胞器隔离分布,使
其代谢活动只能在特定的部位上进行,如与呼吸产能有 关的酶系集中于线粒体内膜上,DNA合成的某些酶位于 细胞核里。
.
5
(二)代谢流向的调控
微生物在不同条件下可以通过控制各代谢途径中某个酶促反应的速 率来控制代谢物的流向,从而保持机体代谢的平衡。
1、由一个关键酶控制的可逆反应
第六章 发酵机制及发酵动力学
第一节 发酵工程微生物的基本代谢及产物代谢 第二节 微生物代谢调节机制 第三节 糖代谢产物的发酵机制 第四节 氨基酸和核苷酸发酵机制 第五节 抗生素发酵机制 第六节 微生物发酵动力学
.
1
本章要求
掌握初级与次级代谢的产物 掌握微生物代谢调节的方式 掌握酶活性被抑制的方式 了解发酵产物的发酵机制及发酵动力学抑制来自抑制DE

简述发酵工程的基本过程

简述发酵工程的基本过程

简述发酵工程的基本过程
发酵工程的基本过程包括以下几个步骤:
1. 选择发酵微生物:根据工艺要求和产品特性,选择合适的发酵微生物(如细菌、酵母、真菌等)作为发酵的生物体。

2. 培养种子:用适当的培养基和条件,培养发酵微生物的种子菌株,使其达到一定的生长状态。

3. 发酵罐设计:设计合适的发酵罐,包括容量、搅拌、通气、温度和pH控制等,以提供最佳的生长环境。

4. 发酵培养基准备:根据微生物的生长需求,配制合适的发酵培养基,包括碳源、氮源、无机盐和其他必要的添加剂。

5. 接种发酵:将培养好的种子菌株接种到发酵罐中的发酵培养基中,使其开始生长和繁殖。

6. 发酵过程控制:通过监测和调控发酵罐中的温度、pH、搅
拌速度、通气速率等参数,控制发酵过程中的生物学反应,以实现最佳的生长和代谢活动。

7. 产物收集和分离:在发酵结束后,收集发酵液中的目标产品,根据需要进行进一步的分离、提纯和处理。

《发酵工程》第6章 发酵动力学

《发酵工程》第6章 发酵动力学

在厌气条件下,厌氧微生物进行的是基质水平磷酸化。 以同型乳酸发酵为例:
所以,厌气发酵时,基质水平磷酸化所产生的ATP要比 当发酵过程充分供氧时氧化磷酸化产生的ATP少的多.
3.微生物生长代谢过程中的氧平衡
有机物完全氧化最终会被分解成二氧化碳和水。根据单一碳 源培养基内微生物生长代谢的基质和产物完全氧化的需氧量, 可建立下列平衡式:
QGO:即QO2微生物生长(无非细胞产物生成)时的比耗氧率(g 或molO2·-1菌体·-l): g h 氧的消耗比速(见P134式8-10)
对于特定的菌株和特定的基质,纯生长得率是一常数,故又称 为生长得率常数。为区别于纯生长得率,可以把生长得率称为毛生 长得率。和各种培养条件下的毛生长得率相比,纯生长得率为生长 得率中的最大值,故也称为最大生长得率。这是一种理论生长得率, 是生长得率的极限值。
维持因数的大小代表细胞能量代谢效率的高低:维持因 数越大,表示能量效率越低;维持因数越小,则能量效率越 高。
对于特定的微生物菌株,在一定的培养条件和营养基质下, 维持因数是一个常数,它不因基质浓度、细胞浓度、细胞生长 速率和产物合成速率的不同而变化,
维持因数多种表示法:
基质维持因数mS:以基质消耗为基准 氧维持因数mO:以耗氧为基准 能量维持因数mkcal:以分解代谢热表示 ATP维持因数mATP:以ATP消耗表示。
S= (S)G+ (S)m+ (S)P+…
设:
YG:表示用于菌体生长的碳源对菌体的得率常数, m:表示微生物的碳源维持常数, Ym:表示碳源对代谢产物的得率常数。
则:
在以生产细胞物质为目的的发酵过程中(如面包酵母生产和 SCP),代谢产物的积累可以忽略不计,上式可简化为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酵罐、还是尿素(或液氨)罐、消泡罐, 当培养基(或物料)尚未进罐前对罐进 行预先灭菌,为空罐灭菌。
为了杀死所有微生物特别是耐热的的芽孢,空 罐灭菌要求温度较高,灭菌时间较长,只有这 样才能杀死设备中各死角残存的杂菌或芽孢。
(二)实罐灭菌
将培养基置于发酵罐中用蒸汽加热,达到预 定灭菌温度后,维持一定时间,再冷却到发 酵温度,然后接种发酵,这叫做实罐灭菌, 又称分批灭菌。
<1
10000
≤350
<3
100000 ≤3500
<10
﹥100000 ≤35000
----
二、空气除菌的方法
(一) 辐射杀菌 (二) 热杀菌 (三) 静电除菌 (四) 过滤除菌
热灭菌
热空气进入培养系统之前,一般均需用压缩机 压缩,提高压力。
空气压缩后温度可达到120℃以上,保持一定 时间后,便可杀菌。
第六章 发酵工程基本操作
第一节 严格消毒灭菌
一、灭菌(sterilization)
除菌的方法
培养基的加热灭菌(包括常压或蒸汽高压加热 法)
空气的过滤除菌 紫外线或电离辐射 化学药物灭菌
二、灭菌设备
l、高压蒸汽灭菌 手提式灭菌锅 立式或卧式灭菌锅 灭菌柜
三、灭菌操作
(一)空罐灭菌 空罐灭菌也称空消。无论是种子罐、发
从可靠性,经济适用与便于控制等方面考虑, 目前仍以介质过滤法较好,也是大空气除菌流程分析
要保持过滤器有比较高的过滤效率,应 维持一定气流速度和不受油、水干扰。
1 高空取气管
高空取气管是远离地面几十米 的管子。一般而言,地面附近 空气中所含的微生物和灰尘等 均比高空空气中含的多,每升 高10米,空气中杂菌可降低一 个数量级,因此从高空取气要 比从低空取气有利得多。
三路进汽:蒸汽直接从通风、取样和出料口 进入罐内直接加热,直到所规定的温度,并 维持一定的时间。这就是所谓的“三路进 汽”。
(三)连续加压灭菌法
在发酵行业里也称“连消法”。此法只 在大规模的发酵工厂中作培养基灭菌用。
主要操作:将培养基在发酵罐外连续不 断地进行加热、维持和冷却,然后才进 入发酵罐。培养基一般在135~140℃下 处理5~15秒钟。
大型空气压缩机
静电除菌
静电除尘器可除去空气中的水雾、油雾、尘埃, 同时也除去微生物。
原理:利用静电引力来吸附带电粒子而达到除 尘灭菌目的。
对于一些直径小的微粒,所带电荷小,不能被 吸附而沉降。
介质过滤除菌
介质过滤除菌是使空气通过经高温灭菌的介质 过滤层,将空气中的微生物等颗粒阻截在介质 层中,而达到除菌的目的。
五、其他除菌方法
(1)过滤除菌法 是将液体或气体用微孔薄膜过滤,使大
于孔径的细菌等微生物颗粒阻留,从而 达到除菌目的。在体外培养时,过滤除 菌大多用于遇热容易变性而失效的试剂 或培养液。
(2)还可以用气体灭菌剂如环氧乙烷等 对个别成分进行灭菌处理。
六、灭菌效果监测
1、高压蒸汽灭菌效果监测 (1) 高压蒸汽灭菌指示卡:将卡片放入灭
连续加压灭菌法优点
①采用高温瞬时灭菌,故既可杀灭微生物, 又可最大限度减少营养成分破坏,提高了 原料利用率,比“实罐灭菌”(120℃, 30分钟)提高产量5~10%;
②提高了发酵罐、锅炉的利用率; ③降低了劳动强度;适宜自动化操作。
采用高温灭菌的原理及优点
杀死微生物芽孢的活化能大于维生素分解的活 化能,灭菌中总体上希望尽可能的杀灭微生物, 同时少破坏营养成分。
菌器不同部位,观察灭菌后指示卡颜色变化。
(2)芽孢菌片法:将染有嗜热脂肪杆菌芽孢
105cfu/ml的菌片包好、放入灭菌器内。灭菌 后作细菌计数测定。对照是不经灭菌的菌片, 芽孢完全被杀灭或杀灭率达99.9999%为合格。
2、紫外线消毒效果监测 ⑴ 微型紫外线强度计:
第二节 空气除菌
一、空气除菌概述
空气出口 d1
D
h' L
h
d2
排污口
图4-13 丝网分离器示意图
2 除 尘 装 置
振动机构 滤袋
净气 含尘气流
图4-7 机械振动袋式除尘器
空气出口 过滤网
高压水入口
空气入口 图4-9 水雾除尘装置
3 油水分离器
其内部同时采用直接拦截, 惯性碰撞,布朗扩散及凝 聚等机理,能有效地去除 空气中的水、油雾、尘埃, 内部不锈钢丝网可清洗, 使用寿命长。
金属丝网 空气进口
空气要做到绝对无菌在目前是不可能的,也是不 经济的。
发酵对无菌空气的无菌程度要求是:只要在发酵 过程中不因无菌空气染菌而造成损失即可。
在工程设计中一般要求1000次使用周期中只允许 有一个菌通过
《 药品生产管理规范》中洁净度标准
洁净级别 尘粒数(粒/L) 菌落数
粒径≥0.5μm
100
≤3.5
灭菌温度上升,灭菌速度常数增加速度大于培 养基成分破坏增加的速度,因此,灭菌温度上 升,则杀死微生物速度增加大于培养基成分破 坏速度的增加。
因而生产中多采用高温或超高温灭菌,其在杀 灭微生物的同时可减少培养基营养成分的破坏
培养基连消工艺流程图
四. 影响培养基灭菌的因素
1、pH值的影响 pH值对微生物的耐热性影响很大,pH为
6.0-8.0时微生物最不易死亡, pH<6.0时 氢离子易渗入微生物的细胞内。
2、培养基成分
培养基的成分中,油脂、糖类、蛋白质 都是传热的不良介质,会增加微生物的 耐热性,使灭菌困难。
浓度较高的培养基相对需要较高温度和 较长时间灭菌。
3、培养基中的颗粒物质
培养基中的颗粒物质大,灭菌困难,反之,灭 菌容易。一般说来,含有颗粒对培养基灭菌影 响不大,但在培养基混有较大颗粒,特别是存 在凝结成团的胶体时,会影响灭菌效果,必须 过滤除去。
发酵对空气处理要求随发酵产品和菌种不同而异。 半固体制曲和酵母生产中无菌要求不十分严格,
一般无需复杂的空气净化处理; 密闭的深层通气发酵需严格的纯净培养,进入发
酵罐前空气必须进行冷却、脱水、脱油和过滤除 菌等处理。
发酵对空气无菌程度的要求
发酵对无菌空气的要求是 :无菌、无灰尘、无 杂质、无水、无油等;
相关文档
最新文档