发酵工程 第六章 微生物发酵机理
微生物发酵工程

微生物发酵工程微生物发酵工程是一门应用生物学领域的重要学科,它利用生物转化功能强大的微生物来生产各种化学物质。
这项技术在药品、食品、饮料、化妆品、环境保护等领域都有广泛的应用。
本文将从微生物发酵的定义、应用、工程设计等多个方面进行探讨。
一、微生物发酵的定义及原理微生物发酵是指利用微生物的代谢能力和酶的功能,通过适宜的培养条件,将底物转化成目标产物的过程。
它是一种自然而又复杂的生物反应过程,其基本原理可以归纳为底物与微生物的相互作用。
1. 微生物的选择酿酒、面包等产物需要酵母菌;乳酸、醋等食品需要乳酸菌和醋酸菌;抗生素需要青霉菌、链霉菌等。
不同的产品需要不同种类的微生物。
2. 培养条件的控制温度、pH、氧气供应、营养物质的添加等都是微生物发酵过程中需要控制的因素。
这些因素会影响微生物的生长速率和产物生成率。
3. 酶的作用微生物在发酵过程中产生的酶在催化底物转化成产物的反应中起到了关键的作用。
不同的产物需要特定的酶来完成转化。
二、微生物发酵的应用微生物发酵技术的应用广泛,以下主要介绍几个方面的应用。
1. 食品工业微生物发酵在食品工业中应用非常广泛。
例如,酸奶、豆豉、泡菜、味精等都是通过微生物发酵得到的。
微生物在发酵过程中可以产生有益的物质,例如乳酸、醋酸、氨基酸等,为食品增添了特殊的风味和营养价值。
2. 药品工业抗生素是微生物发酵的重要应用之一。
青霉素、链霉素等都是通过微生物发酵生产的。
此外,微生物发酵还可以用于生产维生素、氨基酸等药用物质。
3. 环境保护微生物发酵技术在环境保护领域也有广泛的应用。
例如废水处理中利用微生物的能力来分解有机物,减少污染物的排放。
还可以通过微生物发酵来处理有机废弃物,降低对环境的影响。
三、微生物发酵工程的设计与优化微生物发酵工程的设计是实现高效产物合成的关键。
以下是一些常用的优化策略。
1. 培养基优化培养基的成分对微生物的生长和产物生成起到重要的影响。
通过合理调整培养基的组成,可提高产物的生成效率。
发酵工程知识点总结归纳

发酵工程知识点总结归纳一、发酵工程概述1. 发酵工程的定义发酵工程是一门研究微生物、酶等生物催化剂在工业生产中广泛应用的工程学科。
2. 发酵工程的历史发酵工程的历史可以追溯到几千年前,最早的酿酒技术可以追溯到古代民族。
随着人类对微生物的认识和技术的发展,发酵工程逐渐成为一门系统的学科。
3. 发酵工程的应用领域发酵工程广泛应用于食品、饮料、医药、生物制药、环保等领域,对人类的生活和健康有着重要影响。
二、发酵过程及机理1. 发酵过程发酵过程是利用微生物或酶对有机物进行生物催化反应,产生有机产物或能量的过程。
发酵过程通常包括菌种培养、发酵产物的分离提纯等步骤。
2. 发酵机理发酵的基本机理包括微生物的生长和代谢过程,包括物质的代谢途径、酶的作用、生理生化特性等。
三、发酵工程中的微生物1. 发酵微生物的分类发酵微生物包括细菌、真菌、酵母等。
不同的微生物在发酵过程中起到不同的作用。
2. 发酵微生物的培养发酵微生物的培养包括培养基的配制、发酵罐的设计等环节,培养条件对微生物的生长和代谢具有重要影响。
3. 发酵微生物的选育发酵工程中常用的微生物包括大肠杆菌、酵母菌等,针对不同的产品需要选择适合的微生物用于发酵生产。
四、发酵工程中的酶1. 酶的分类酶是生物催化剂,可以促进化学反应的进行。
按照其作用方式可以分为氧化酶、还原酶、水解酶等。
2. 酶的应用酶在发酵工程中有着广泛的应用,可以用于生产食品、医药、生物燃料等产品。
3. 酶的工程化酶的工程化包括酶的产生、提纯、改良等步骤,使其更好地适用于实际生产。
五、发酵工程中的设备1. 发酵罐发酵罐是用于放置和滋生微生物的设备,包括灭菌、通气、控温等功能。
2. 排气系统排气系统可以有效地排除产生的二氧化碳和其他代谢产物,以保证发酵过程的正常进行。
3. 分离设备分离设备包括离心机、膜分离等,用于分离提纯发酵产物。
六、发酵工程中的工艺控制1. 发酵条件的控制发酵过程中需要控制pH、温度、氧气供应等参数,以保证微生物的生长和产物的产生。
微生物发酵工程

3. 农业领域
在农业领域,微生物 发酵工程主要用于有 机肥、生物农药等的 生产。例如,通过微 生物发酵工程可以将 有机废弃物转化为有 机肥料,同时也可以 产生具有杀虫效果的 生物农药
4. 环保领域
在环保领域,微生物发酵工程主要用于废水 处理、垃圾处理等。例如,通过微生物发酵 工程可以将有机废水中的有机物转化为二氧 化碳和水,从而达到废水处理的目的
微生物发酵工程的基本原理 是利用微生物的生长和代谢 活动,在特定的条件下产生 有用的物质
这些物质可以是微生物自身 产生的,也可以是通过微生 物转化其他物质条件下会生长和繁殖,同时 进行一系列的代谢活动。这些代谢活动会产 生各种有用的物质,如氨基酸、酶、抗生素 等
-
1 微生物发酵工程的基本原理 2 微生物发酵工程的应用 3 微生物发酵工程的意义
微生物发酵工程
微生物发酵工程,也称为微生物生物技术,是一种利 用微生物在特定条件下产生有用物质的技术
x
这种技术广泛应用于医药、食品、农业、环保等领域 ,为人类的生产和生活带来了巨大的便利
1
微生物发酵工程的基本原理
3. 环保和可持续发展
随着环保意识的不断提高,未来 微生物发酵工程将会更加注重环 保和可持续发展。通过研究和开 发新的技术和设备,我们可以实 现更加环保和可持续的微生物发 酵过程
总之,微生物发酵工程作为一 种重要的生物技术,在未来将 会在各个领域发挥更大的作用
-
20XX
感谢您的聆听
ADD YOUR TITLE ADD YOUR TITLE HERE.ADD YOUR TITLE.ADD YOUR TITLE. HERE.ADD YOUR TITLE.ADD YOUR TITLE
微生物发酵工程的应用 非常广泛,下面列举几
《发酵工程》课程教学大纲

《发酵工程》课程教学大纲课程名称:发酵工程课程类别:专业选修课适用专业:食品科学与工程考核方式:考察总学时、学分: 32 学时、2 学分一、课程教学目的发酵工程是整个生物技术的核心,是工业微生物实现试验室与工厂化生产的具体操作,是生物技术在生产实践中应用的原理及方法的一局部,是基因工程及酶工程等生物技术工业化的过程与方法。
因此,通过对《发酵工程》的学习,不仅把握发酵工程原理及发酵优化把握过程,而且对系统了解生物技术及其工业化应用都具有深远的意义。
另外,通过《发酵工程》试验及发酵工程各论的了解,不仅能够把握发酵工艺操作从小试到放大的具体过程及反响过程把握方法,而且进一步了解了目前发酵行业的具体产品生产工艺,从理论到方法学会发酵工程这一门技术,对发酵生产能够进展指导与分析。
二、课程教学要求通过本课程的教学,应使学生把握发酵工程学的根本学问和根本技能,了解现代生物工程技术的进展与应用状况,具备确定的微生物生产工程技能。
通过本课程的学习,使学生深刻理解发酵工程的微生物学原理,结实把握发酵工业菌种的筛选、驯化、培育与保藏,好氧、厌氧发酵工艺的调控与治理,了解发酵产品提取与精制的原理、流程及常见发酵产品的生产过程。
三、先修课程食品微生物学、生物化学。
四、课程教学重、难点重点:发酵工程的概念、特点;工业微生物菌种的退化、复壮与保藏;工业上常用作碳源、氮源的原料;淀粉水解糖的制备方法;微生物对培育基中的碳源代谢;酒精发酵机制;好氧发酵罐构造和功能;温度、 pH 和泡沫对发酵过程的影响;不同时间及染菌程度对发酵的影响;种子、空气、培育基和设备染菌及防治;细胞裂开方法及裂开率的测定;盐析法分别发酵产物。
难点:影响种子培育的因素和种子质量的把握;发酵生产的前体物质和促进剂、抑制剂有机酸发酵机制;染菌的检查推断及缘由分析;离子交换法原理和离子交换树指的构造与分类,膜和膜分别的根本理论。
五、课程教学方法与教学手段多媒体教学,课堂讲授与实践相结合。
微生物发酵原理

微生物发酵原理
微生物发酵的基本过程包括生长阶段和产物生成阶段。
在生长阶段,微生物在
适宜的温度、pH值、营养物质和氧气等条件下进行生长,增殖数量。
而在产物生
成阶段,微生物开始产生有用的化合物,如酒精、醋酸、抗生素等。
这一过程是通过微生物的代谢活动完成的,包括糖类、脂肪类、氨基酸类等物质的代谢过程。
微生物在发酵过程中,会分泌酶类物质,对底物进行催化作用,从而产生所需的有机物。
微生物发酵的影响因素主要包括微生物菌种的选择、培养条件、底物种类和发
酵过程的控制等。
首先,微生物菌种的选择对发酵过程至关重要,不同的微生物对不同的底物有着特异的代谢途径和产物生成能力。
其次,培养条件如温度、pH值、氧气供应等也会直接影响微生物的生长和代谢活动。
此外,底物的种类和浓度也是影响微生物发酵的重要因素。
最后,发酵过程的控制包括对发酵罐内温度、搅拌速度、通气量等参数的调控,这些都会影响微生物的生长和产物生成。
微生物发酵在食品加工、药物生产和环境保护等领域有着广泛的应用。
在食品
加工中,酵母菌发酵可以产生酒精,细菌发酵可以产生酸奶、酸菜等食品。
在药物生产中,抗生素、酶类药物等大多是通过微生物发酵生产的。
此外,微生物发酵还可以用于废水处理、生物肥料制备等环境保护领域。
综上所述,微生物发酵原理是一种重要的生物化学过程,它涉及到微生物的生长、代谢和产物生成等方面。
了解微生物发酵的原理,有助于我们更好地利用微生物资源,开发新型的食品、药物和环境保护技术。
希望本文的介绍能够对读者有所帮助,谢谢阅读!。
6 微生物工程 第六章 发酵动力学2

1 KS 1 1
max S max
1
1 KS
KS
斜率 max
1
max
1 S
Monod方程式双倒数图
求μm和 Ks。
解:将Monod方程变形:
1 1 Ks 1
m m S
以1/S为横坐标,1/μ为 纵坐标,得一条直线, 由直线与x轴和y轴相交, 分别求得:
分批发酵动力学-产物形成动力学
生长部分相关→生长部分偶联型:
柠檬酸、氨基酸发酵
dP dt
dX dt
X
qP
α: 与菌体生长相关的产物生成系数
β: 与菌体浓度相关的产物生成系数
产物间接由能量代谢生成,不是底物的 直接氧化产物,而是菌体内生物氧化过 程的主流产物(与初生代谢紧密关联)。
相关型
部分相关型
非相关型
产物合成相关、部分相关、非相关模型动力学示意图
分批培养中的产物形成:
Ⅰ型:生长偶联产物生成 ——菌体生长、碳源利 用和产物形成几乎在相同时间出现高峰。产物形 成直接与碳源利用有关。
Ⅱ型:生长与产物生成部分偶联——在生长开始后 并无产物生成,在生长继续进行到某一阶段才有 产物生成。产物形成间接与碳源利用有关。
分批发酵动力学-产物形成动力学
与生长不相关→无关联:抗生素发酵
dP X
dt
qp
若考虑到产物可能存在分解时,则
dP dt
X
kd P
qp X
kd P
产物生成与能量代谢不直接相关,通过细 胞进行的独特的生物合成反应而生成。
发酵工程第六章

发酵工程
第二节 发酵过程的代谢变化
了解生产菌种在具有合适的培养基、pH、温
度和通气搅拌等环境条件下对基质的利用、细胞
的生长以及产物合成的代谢变化,有利于人们对
生产的控制。
发酵工程
一、发酵过程操作方式 发酵过程操作方式:
A.分批发酵 B.补料分批发酵 C.连续发酵
发酵工程
1. 分批发酵 分批发酵是指在一封闭培养系统内含
发酵工程
控制方法: (1)培养基注意适当的配比 (2)通过中间补料,控制起始浓度不要太高
发酵工程
第四节 基质对发酵的影响及其控制
一、碳源种类 速效碳源:较迅速的被利用,有利于菌体的生
长,如葡萄糖 迟效碳源:被菌体缓慢利用,有利于代谢产物
的合成,如乳糖等
发酵工程
培养基中不同糖对大肠杆菌生长速度的影响 1.单独加入葡萄糖时,菌体生长几乎没有延迟期; 单独加入乳糖时,菌体生长有明显的延迟期;2. 同 时加入葡萄糖和乳糖时,菌体呈二次生长
3)培养后期,产生热量不多,温度变化不大,且逐 渐减弱。
发酵工程
2、搅拌热Q搅拌
在机械搅拌通气发酵罐中,由于机械 搅拌带动发酵液作机械运动,造成液 体之间,液体与搅拌器等设备之间的 摩擦,产生可观的热量。
发酵工程
3、蒸发热Q蒸发
通气时,引起发酵液的水分蒸发,水分 蒸发所需的热量叫蒸发热。 此外,排气也会带走部分热量叫显热Q显 热,显热很小,一般可以忽略不计。
发酵工程
4、辐射热Q辐射
发酵罐内温度与环境温度不同,发酵液中有 部分热通过罐体向外辐射。辐射热的大小取 决于罐温与环境的温差。冬天大一些,夏天 小一些,一般不超过发酵热的5%。
发酵工程
第六节 发酵过程的pH控制
《发酵工程原理》课件

04
发酵工程应用实例
酒精发酵
酒精发酵简介
酒精发酵原理
酒精发酵是一种通过酵母菌将糖类物质转 化为乙醇和二氧化碳的过程,广泛应用于 酒精饮料、生物能源等领域。
酒精发酵主要基于酵母菌的厌氧代谢,通 过糖酵解途径将葡萄糖转化为乙醇和二氧 化碳。
酒精发酵工艺
酒精发酵的应用
酒精发酵工艺包括原料选择、糖化、发酵 、蒸馏和精馏等步骤,每个步骤都有严格 的操作要求。
生物农药的应用
生物农药广泛应用于农业、林 业等领域,可有效防治病虫害 ,提高农产品质量和产量。
05
发酵工程的前景与挑战
新型生物反应器的研发与应用
总结词
新型生物反应器是发酵工程的重要发 展方向,能够提高发酵效率和产物质 量。
详细描述
新型生物反应器采用先进的材料和设 计,优化了发酵过程中的氧气和营养 物质传递,减少了染菌风险,提高了 产物浓度和收率。
发酵工程通过控制微生物的生长和代谢过程,生产出包括食品、饮料、饲料、医 药品、化学品和农业用化学品等在内的各种有用物质。它具有高度洁净的生产环 境,能够实现高效转化和大规模生产,是现代生物技术的重要组成部分。
发酵工程的发展历程
总结词
发酵工程经历了自然发酵、纯培养技术、通气发酵、 酶工程和基因工程等阶段,发展至今已成为一门高度 综合性的生物工程技术。
02
微生物发酵过程
微生物发酵的类型
厌氧发酵
在无氧条件下,利用厌氧菌进行发酵,产生 乙醇、乳酸等。
兼性厌氧发酵
在有氧和无氧条件下都能进行发酵,产生酒 精、酵母等。
好氧发酵
在有氧条件下,利用好氧菌进行发酵,产生 丙酮、丁醇等。
混合发酵
同时利用多种微生物进行发酵,产生多种代 谢产物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
ADP
ATP NADH+H+ NAD+
3分子乙酸
乳酸
葡萄糖经双歧途径发酵生成乳酸和乙酸
不同点
同型乳酸发酵
异型乳酸发酵
参与发酵的微 乳酸菌(双球菌、链球菌、肠膜状明串珠菌、番茄乳杆菌、短 生物类群 乳杆菌等兼性微生物) 乳杆菌、甘露醇乳杆菌、双歧杆菌 及真菌中的根霉 关键酶 发酵途径 磷酸果糖激酶、乳酸脱氢 磷酸戊糖(或己糖)解酮酶 酶 EMP途径 HMP、PK途径
1 G→2丙酮酸→2乙醛 + CO2 → 2乙醇 + 2ATP
丙酮酸脱羧酶 乙醇脱氢酶
ATP 葡萄糖 ⑴
ADP
⑵
葡萄糖-6-磷酸
乳酸
+ ⑿ +2H
果糖-6-磷酸 乙醇 ⒁ 2NAD+ ⑶
ATP Mg2+ ADP
果糖-1,6-二磷酸 ⑷ 甘油醛二羟丙酮 ⑸ 3-磷酸 磷酸
丙酮酸 ⑾ 2CO2
乙醛 +2H
谷氨酸产生菌因环境条件变化而引起的发酵转换
环 境 因 子
乳酸和琥珀酸 (通气不足)
发酵产物转换 谷氨酸
α-酮戊二酸 (适中) (通风过量,转速过快)
溶解氧
NH4+ pH值
α-酮戊二酸
(缺乏)
谷氨酸 (适量)
谷氨酰胺 (过量)
谷氨酰胺,N-乙酰谷酰胺 (pH值5~8,NH4+过多)
谷氨酸 (中性或微碱性)
葡萄糖
1
2 3
ATP ADP
乙醇
6-磷酸葡萄糖 NAD
NADH+H+
8
乙醛
NAD
1. 己糖激酶 2. 6-磷酸葡萄糖脱氢酶 3. 6-磷酸葡萄糖酸脱氢酶 4. 5-磷酸核酮糖-3-差向异构酶 5. 磷酸解酮酶 6. 磷酸转乙酰酶 7. 乙醛脱氢酶 8. 醇脱氢酶
NADH+H+
6-磷酸葡萄糖酸 NAD
+
烯醇式丙酮酸 2ATP ⑽ 2ADP 磷酸烯醇式丙酮酸 ⑼ 2H2O
2(NADH+H+)
⑹
2Pi
1,3-二磷酸甘油酸 ⑺ 2ADP 3-磷酸甘油酸 2ATP
2-磷酸甘油酸
糖酵解和酒精发酵的全过程
酒精发酵中的副产物
主产物:乙醇、CO2 醇(杂醇油) 酵母菌酒精 醛(糠醛) 发酵 酸(琥珀酸) 副产物40多种 酯 甲醇
第二节 厌氧发酵产物的合成机制
酒精发酵机制 甘油发酵机制 乳酸发酵机制 沼气发酵机制
一 酒精发酵
酵母菌的乙醇发酵
酵母菌——EMP途径——丙酮酸——乙醛——乙醇 C6H12O6+2ADP+2H3PO4→2C2H5OH+2ATP+2CO2 +2H2O
(弱酸性条件):1分子Glu发酵生成2分子乙醇和2分子 CO2
2(NADH+H+)
⑹
2Pi
1,3-二磷酸甘油酸 ⑺ 2ADP 3-磷酸甘油酸 2ATP
2-磷酸甘油酸
糖酵解和酒精发酵的全过程
柠檬酸积累的代谢调节
2.
三羧酸循环的调节
顺乌头酸 × 异柠檬酸
柠檬酸 ×
∵顺乌头酸酶含铁的非血红蛋白,以Fe4S4作为辅基。 且反应需要Fe++ ∴1适量加入亚铁氰化钾(黄血盐),与Fe++ 生成络合 物,则酶失活或活性减少,而积累柠檬酸。 ∴2诱变或其他方法,造成生产菌种顺乌头酸酶的缺损 或活力很低,同样积累柠檬酸。
ATP CO2
CO2
ADP
草酰乙酸
柠檬酸
断部位之后的产物, 必须有适当的补充 机制
苹果酸
抑 制 剂
阻断
顺乌 头酸 酶
顺乌头酸
柠檬酸的生物合成途径
柠檬酸积累的代谢调节
1. 糖酵解及丙酮酸代谢的调节
黑曲霉在缺锰的培养基中培养时,抑制了蛋 白质的合成,可提高NH4+浓度,高浓度 NH4+ 可有效解除ATP、 柠檬酸对磷酸果糖 激酶的抑制。
乙酰磷酸
ADP ATP 乙酰
3
5-磷酸木酮糖 5-磷酸核糖
4
5-磷酸核酮糖
5
5-磷酸木酮糖
6
2 分子3-磷酸甘油醛 NAD+ NADH+H+ 乙酰磷酸 1. ADP ATP 2. 3. 4. 5. 6. 7. 6-磷酸果糖解酮酶 转二羟基丙酮基酶 转羟乙醛基酶 5-磷酸核糖异构酶 5-磷酸核酮糖-3-差向异构酶 5-磷酸木酮糖磷酸酮解酶 乙酸激酶
菌种不同,代谢途径不同,生成的产物有所不
同,可分为:
同型乳酸发酵:(EMP途径)
异型乳酸发酵:(HMP途径、PK途径)
1. 同型乳酸发酵——产物只有乳酸
进行乳酸发酵的主要是乳酸菌(乳链球菌、乳酪链
球菌、干酪乳杆菌、保加利亚乳杆菌等)
利用糖经EMP途径生成丙酮酸,丙酮酸还原产生乳
乳酸脱氢酶
酸。
ATP 葡萄糖 ⑴
ADP
乳酸
+ ⑿ +2H
AMP
⒁ 无机磷
NH4+
乙醇
柠檬酸 葡萄糖-6-磷酸 ⑵ 抑制 解除 果糖-6-磷酸 ATP Mg2+ 活化 磷酸果 ⑶ ADP
糖激酶
丙酮酸 ⑾ 2CO2
2NAD+ 乙醛 +2H
+
果糖-1,6-二磷酸 ⑷ 二羟丙酮 ⑸ 甘油醛3-磷酸 磷酸
烯醇式丙酮酸 2ATP ⑽ 2ADP 磷酸烯醇式丙酮酸 ⑼ 2H2O
柠檬酸发酵微生物
黑曲霉
分生孢子头
三羧酸循环(糖的最后氧化途径)
柠檬酸发酵机理
TCA循环与乙醛酸循环 柠檬酸积累的代谢调节 柠檬酸积累机理
葡萄糖
磷酸烯醇式丙酮酸 磷酸烯醇 ADP ATP
式丙酮酸 羧化酶
丙酮酸 CO2 乙酰 丙酮 CoA
酸羧 化酶
实现柠檬酸积 累:
一、设法阻断代谢 途径,实现柠檬酸 的积累 二、代谢途径被阻
脂肪酸
丙二单酰CoA
乙酰乙酰CoA
乙酰CoA
胆固醇
草酰乙酸 苹果酸 延胡索酸 琥珀酸 琥珀酰CoA -酮戊二酸
乙醛酸
柠檬酸
异柠檬酸
微生物的能量代谢
中心任务是将外界环境中各种形式的最初能源转变成 能量货币——ATP。 日光 (光能营养菌)
最初能源 有机物(化能异养菌)
—ATP
还原态无机物(化能自养菌)
磷酸 生物素
缬 氨 酸 谷氨酸 (高浓度磷酸盐) (磷酸盐适中)
乳酸或琥珀酸 (过量)
谷氨酸 (限量)
2 控制细胞渗透性
谷 氨 酸 的 生 物 合 成 途 径
控制细胞渗透性
消除终产物的反馈抑制与阻遏 促进ATP的积累,以利于氨基酸的生物合成
1 控制发酵的环境条件
氨基酸发酵受菌种的生理特征和环境条件的 影响。 对专性好氧菌来说,环境条件的影响更大。 谷氨酸发酵必须严格控制菌体生长的环境条 件,否则就几乎不积累谷氨酸。 氨基酸发酵是人为地控制环境条件而使发酵发生转换
7
乙酰CoA
NAD
NADH+H+
NADH+H+
5-磷酸核酮糖
6
乙酰磷酸
4
5-磷酸木酮糖
乙酰
5
3-磷酸甘油醛 NAD
NADH+H+
ADP ATP NADH+H+
NAD
乳酸
6-磷酸葡萄糖酸生成乳酸和乙醇
葡萄糖
ATP ADP
6-磷酸果糖
6-磷酸果糖
1
4-磷酸赤藓糖
Pi
2
3-磷酸甘油醛 7-磷酸景天庚酮糖
四 甲烷发酵
第一阶段是复杂有机物, 如纤维素、蛋白质、脂 肪等,在微生物作用下 降解至其基本结构单位分解成各种脂肪酸、二 氧化碳和氢气; 第二阶段是各类脂肪酸 进行分解,生成乙酸、 二氧化碳和氢气; 第三阶段是在甲烷产生 菌的作用下由醋酸和二 氧化碳及氢气反应生成 甲烷。
第三节
好氧发酵产物的合成机制
葡萄糖
磷酸烯醇式丙酮酸
丙酮酸
1 14
13
乙酰辅酶A
2
草酰乙酸
10
柠檬酸 乙酰辅酶A
12
Fe2+
3
顺乌头 酸酶 16
苹果酸
9
亚铁氰化钾
乙醛酸
11
顺乌头酸
衣康酸
延胡索酸
8
Fe2+ 3 异柠檬酸
4
琥珀酸
7
草酰琥珀酸
5
琥珀酰辅酶A
6
α-酮戊二酸
TCA循环与乙醛酸循环
15
谷氨酸
柠檬酸积累的代谢调节
葡萄糖 磷酸烯醇式丙酮酸
丙酮酸 ⑾ 烯醇式丙酮酸 2ATP ⑽ 2ADP 磷酸烯醇式丙酮酸 ⑼ 2H2O
2(NADH+H+)
⑹
2Pi
1,3-二磷酸甘油酸 ⑺ 2ADP 3-磷酸甘油酸 2ATP
2-磷酸甘油酸
2. 异型乳酸发酵
发酵产物中除乳酸外同时还有比例较高的乙酸、
合成途径:6-磷酸葡萄糖酸途径、 双歧途径
乙醇、CO2等。
第一节 微生物基础物质代谢
新陈代谢(metabolism):
生物体从环境摄取营养物转变为自身物质,同时 将自身原有组成转变为废物排出到环境中的不 断更新的过程。
分解代谢、合成代谢
物质代谢、能量代谢
初级代谢、次级代谢
初级代谢和次级代谢
1. 初级代谢(primary metabolism):微生物从外界 吸收各类营养物质,通过分解代谢和合成代谢,生 成维持生命活动所需要的物质和能量的过程。