数电课后答案

合集下载

数电课后答案解析康华光第五版(完整)

数电课后答案解析康华光第五版(完整)

第一章数字逻辑习题1.1数字电路与数字信号1.1.2 图形代表的二进制数0101101001.1.4一周期性数字波形如图题所示,试计算:(1)周期;(2)频率;(3)占空比例MSB LSB0 1 2 11 12 (ms)解:因为图题所示为周期性数字波,所以两个相邻的上升沿之间持续的时间为周期,T=10ms 频率为周期的倒数,f=1/T=1/0.01s=100HZ占空比为高电平脉冲宽度与周期的百分比,q=1ms/10ms*100%=10%1.2数制2 1.2.2将下列十进制数转换为二进制数,八进制数和十六进制数(要求转换误差不大于4(2)127 (4)2.718解:(2)(127)D=72-1=(10000000)B-1=(1111111)B=(177)O=(7F)H(4)(2.718)D=(10.1011)B=(2.54)O=(2.B)H1.4二进制代码1.4.1将下列十进制数转换为8421BCD码:(1)43 (3)254.25解:(43)D=(01000011)BCD1.4.3试用十六进制写书下列字符繁荣ASCⅡ码的表示:P28(1)+ (2)@ (3)you (4)43解:首先查出每个字符所对应的二进制表示的ASCⅡ码,然后将二进制码转换为十六进制数表示。

(1)“+”的ASCⅡ码为0101011,则(00101011)B=(2B)H(2)@的ASCⅡ码为1000000,(01000000)B=(40)H(3)you的ASCⅡ码为本1111001,1101111,1110101,对应的十六进制数分别为79,6F,75(4)43的ASCⅡ码为0110100,0110011,对应的十六紧张数分别为34,331.6逻辑函数及其表示方法1.6.1在图题1. 6.1中,已知输入信号A,B`的波形,画出各门电路输出L的波形。

解: (a)为与非, (b)为同或非,即异或第二章 逻辑代数 习题解答2.1.1 用真值表证明下列恒等式 (3)A B AB AB ⊕=+(A ⊕B )=AB+AB 解:真值表如下A B A B ⊕ABAB A B ⊕AB +AB0 0 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 11111由最右边2栏可知,A B ⊕与AB +AB 的真值表完全相同。

数电课后答案康华光

数电课后答案康华光

数电课后答案康华光第一章数字逻辑习题1.1数字电路与数字信号1.1.2 图形代表的二进制数0101101001.1.4一周期性数字波形如图题所示,试计算:(1)周期;(2)频率;(3)占空比例MSB LSB0 1 2 11 12 (ms)解:因为图题所示为周期性数字波,所以两个相邻的上升沿之间持续的时间为周期,T=10ms 频率为周期的倒数,f=1/T=1/0.01s=100HZ占空比为高电平脉冲宽度与周期的百分比,q=1ms/10ms*100%=10%1.2数制2 1.2.2将下列十进制数转换为二进制数,八进制数和十六进制数(要求转换误差不大于4(2)127 (4)2.718解:(2)(127)D=72-1=(10000000)B-1=(1111111)B=(177)O=(7F)H(4)(2.718)D=(10.1011)B=(2.54)O=(2.B)H1.4二进制代码1.4.1将下列十进制数转换为8421BCD码:(1)43 (3)254.25解:(43)D=(01000011)BCD1.4.3试用十六进制写书下列字符繁荣ASCⅡ码的表示:P28(1)+ (2)@ (3)you (4)43解:首先查出每个字符所对应的二进制表示的ASCⅡ码,然后将二进制码转换为十六进制数表示。

(1)“+”的ASCⅡ码为0101011,则(00101011)B=(2B)H(2)@的ASCⅡ码为1000000,(01000000)B=(40)H(3)you的ASCⅡ码为本1111001,1101111,1110101,对应的十六进制数分别为79,6F,75(4)43的ASCⅡ码为0110100,0110011,对应的十六紧张数分别为34,331.6逻辑函数及其表示方法1.6.1在图题1. 6.1中,已知输入信号A,B`的波形,画出各门电路输出L的波形。

解: (a)为与非, (b)为同或非,即异或第二章逻辑代数习题解答2.1.1 用真值表证明下列恒等式(3)A B AB AB ⊕=+(A ⊕B )=AB+AB由最右边2栏可知,A B ⊕与AB +AB 的真值表完全相同。

数电课后答案解析康华光第五版(完整)

数电课后答案解析康华光第五版(完整)

数电课后答案解析康华光第五版(完整)第⼀章数字逻辑习题1.1数字电路与数字信号1.1.2 图形代表的⼆进制数0101101001.1.4⼀周期性数字波形如图题所⽰,试计算:(1)周期;(2)频率;(3)占空⽐例MSB LSB0 1 2 11 12 (ms)解:因为图题所⽰为周期性数字波,所以两个相邻的上升沿之间持续的时间为周期,T=10ms 频率为周期的倒数,f=1/T=1/0.01s=100HZ占空⽐为⾼电平脉冲宽度与周期的百分⽐,q=1ms/10ms*100%=10%1.2数制2 1.2.2将下列⼗进制数转换为⼆进制数,⼋进制数和⼗六进制数(要求转换误差不⼤于4(2)127 (4)2.718解:(2)(127)D=72-1=(10000000)B-1=(1111111)B=(177)O=(7F)H(4)(2.718)D=(10.1011)B=(2.54)O=(2.B)H1.4⼆进制代码1.4.1将下列⼗进制数转换为8421BCD码:(1)43 (3)254.25解:(43)D=(01000011)BCD1.4.3试⽤⼗六进制写书下列字符繁荣ASCⅡ码的表⽰:P28(1)+ (2)@ (3)you (4)43解:⾸先查出每个字符所对应的⼆进制表⽰的ASCⅡ码,然后将⼆进制码转换为⼗六进制数表⽰。

(1)“+”的ASCⅡ码为0101011,则(00101011)B=(2B)H(2)@的ASCⅡ码为1000000,(01000000)B=(40)H(3)you的ASCⅡ码为本1111001,1101111,1110101,对应的⼗六进制数分别为79,6F,75(4)43的ASCⅡ码为0110100,0110011,对应的⼗六紧张数分别为34,331.6逻辑函数及其表⽰⽅法1.6.1在图题1. 6.1中,已知输⼊信号A,B`的波形,画出各门电路输出L的波形。

解: (a)为与⾮, (b)为同或⾮,即异或第⼆章逻辑代数习题解答2.1.1 ⽤真值表证明下列恒等式 (3)A B AB AB ⊕=+(A ⊕B )=AB+AB 解:真值表如下A B A B ⊕ABAB A B ⊕AB +AB0 0 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 11111由最右边2栏可知,A B ⊕与AB +AB 的真值表完全相同。

数字电子技术课后习题答案(全部)

数字电子技术课后习题答案(全部)

第一章数制与编码1.1自测练习1.1.1、模拟量数字量1.1.2、(b)1.1.3、(c)1.1.4、(a)是数字量,(b)(c)(d)是模拟量1.2 自测练习1.2.1. 21.2.2.比特bit1.2.3.101.2.4.二进制1.2.5.十进制1.2.6.(a)1.2.7.(b)1.2.8.(c)1.2.9.(b)1.2.10.(b)1.2.11.(b)1.2.12.(a)1.2.13.(c)1.2.14.(c)1.2.15.(c)1.2.16.10010011.2.17.111.2.18.1100101.2.19.11011.2.20.8进制1.2.21.(a)1.2.22.0,1,2,3,4,5,6,71.2.23.十六进制1.2.24.0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 1.2.25.(b)1.3自测练习1.3.1.1221.3.2.675.521.3.3.011111110.011.3.4.521.3.5.1BD.A81.3.6.1110101111.11101.3.7.38551.3.8.28.3751.3.9.100010.111.3.10.135.6251.3.11.570.11.3.12.120.51.3.13.2659.A1.4自测练习1.4.1.BCD Binary coded decimal 二—十进制码1.4.2.(a)1.4.3.(b)1.4.4.8421BCD码,4221BCD码,5421BCD1.4.5.(a)1.4.6.011001111001.10001.4.7.111111101.4.8.101010001.4.9.111111011.4.10.61.051.4.11.01011001.011101011.4.12.余3码1.4.13.XS31.4.14.XS31.4.15.1000.10111.4.16.1001100000111.4.17.521.4.18.110101.4.19.0101111.4.20.(b)1.4.21.ASCII1.4.22.(a)1.4.23.ASCII American Standard Code for Information Interchange美国信息交换标准码EBCDIC Extended Binary Coded Decimal Interchange Code 扩展二-十进制交换吗1.4.24.10010111.4.25.ASCII1.4.26.(b)1.4.27.(b)1.4.28.110111011.4.29.-1131.4.30.+231.4.31.-231.4.32.-861.5 自测练习 1.5.1 略1.5.2 11011101 1.5.3 010001011.5.4 11100110 补码形式 1.5.5 011111011.5.6 10001000 补码形式 1.5.7 11100010 补码形式习题1.1 (a )(d )是数字量,(b )(c )是模拟量,用数字表时(e )是数字量,用模拟表时(e )是模拟量 1.2 (a )7, (b )31, (c )127, (d )511, (e )40951.3 (a )22104108⨯+⨯+, (b )26108108⨯+⨯+,(c )321102105100⨯+⨯+⨯+(d )322104109105⨯+⨯+⨯+ 1.4 (a )212121⨯+⨯+, (b )4311212121⨯+⨯+⨯+, (c )64212+12+12+12+1⨯⨯⨯⨯(d )9843212+12+12+12+12⨯⨯⨯⨯⨯ 1.5 2201210327.15310210710110510--=⨯+⨯+⨯+⨯+⨯,3210-1-221011.0112+02+12+12+02+12=⨯⨯⨯⨯⨯⨯,210-18437.448+38+78+48=⨯⨯⨯⨯, 10-1-2163A.1C 316+A 16+116+C 16=⨯⨯⨯⨯1.6 (a )11110, (b )100110,(c )110010, (d )1011 1.7 (a )1001010110000, (b )10010111111.8 110102 = 2610, 1011.0112 = 11.37510, 57.6438 = 71.81835937510, 76.EB 16= 118.91796875101.9 1101010010012 = 65118 = D4916,0.100112 = 0.468 = 0.9816,1011111.011012 = 137.328 = 5F.68161.10 168 = 1410,1728 = 12210,61.538 = 49.671875, 126.748 = 86.9375101.11 2A 16 = 4210 = 1010102 = 528, B2F 16 = 286310 = 1011001011112 = 54578, D3.E 16= 211.87510 = 11010011.11102 = 323.78, 1C3.F916 = 451.9726562510 = 111000011.111110012 = 703.76281.12 (a )E, (b )2E, (c )1B3, (d )349 1.13 (a )22, (b )110, (c )1053, (d )2063 1.14 (a )4094, (b )1386, (c )49282 1.15(a )23, (b )440, (c )27771.16 198610 = 111110000102 = 00011001100001108421BCD , 67.31110 = 1000011.010012 =01100111.0011000100018421BCD , 1.183410 = 1.0010112 = 0001.00011000001101008421BCD ,0.904710 = 0.1110012 = 0000.10010000010001118421BCD1.17 1310 = 000100118421BCD = 01000110XS3 = 1011Gray, 6.2510 = 0110.001001018421BCD=1001.01011000 XS3 = 0101.01Gray,0.12510= 0000.0001001001018421BCD= 0011.010*********XS3 = 0.001 Gray1.18 101102 = 11101 Gray,0101102 = 011101 Gray1.19 110110112 = 0010000110018421BCD,45610 = 0100010101108421BCD,1748=0010011101008421BCD,2DA16 = 0111001100008421BCD,101100112421BCD = 010*********BCD, 11000011XS3 = 100100008421BCD1.20 0.0000原= 0.0000反= 0.0000补,0.1001原= 0.1001反= 0.1001补,11001原= 10110反= 10111补1.21 010100原= 010100补,101011原= 110101补,110010原= 101110补,100001原=111111补1.22 1310 = 00001101补,11010 = 01101110补,-2510 = 11100111补,-90 =10100110补1.23 01110000补= 11210,00011111补= 3110,11011001补= -3910,11001000补= -56101.24 1000011 1000001 1010101 1010100 1001001 1001111 1001110 0100001 01000001001000 1101001 1100111 1101000 0100000 1010110 1101111 1101100 1110100 1100001 1100111 11001011.25 0100010 1011000 0100000 0111101 0100000 0110010 0110101 0101111 101100101000101.26 BEN SMITH1.27 00000110 100001101.28 01110110 10001110第二章逻辑门1.1 自测练习2.1.1. (b)2.1.2. 162.1.3. 32, 62.1.4. 与2.1.5. (b)2.1.6. 162.1.7. 32, 62.1.8. 或2.1.9. 非2.1.10. 12.2 自测练习=⋅2.2.1. F A B2.2.2. (b)2.2.3. 高2.2.4. 322.2.5. 16,52.2.6. 12.2.7. 串联2.2.8. (b)2.2.9. 不相同2.2.10. 高2.2.11. 相同2.2.12. (a)2.2.13. (c)2.2.14. 奇2.3 自测练习2.3.1. OC,上拉电阻2.3.2. 0,1,高阻2.3.3. (b)2.3.4. (c)2.3.5. F A B=⋅, 高阻2.3.6. 不能2.4 自测练习1.29 TTL,CMOS1.30 Transisitor Transistor Logic1.31 Complementary Metal Oxide Semicoductor1.32 高级肖特基TTL,低功耗和高级低功耗肖特基TTL1.33 高,强,小1.34 (c)1.35 (b)1.36 (c)1.37 大1.38 强1.39 (a)1.40 (a)1.41 (b)1.42 高级肖特基TTL1.43 (c)习题2.1 与,或,与2.2 与门,或门,与门2.3 (a)F=A+B, F=AB (b)F=A+B+C, F=ABC (c)F=A+B+C+D, F=ABCD2.4 (a )0 (b )1 (c )0 (d )0 2.5 (a )0 (b )0 (c )1 (d )0 2.6 (a )1 (b )1 (c )1 (d )1 2.7 (a )4 (b )8 (c )16 (d )32 2.8 (a )3 (b )4 (c )5 (d )62.9 (a )(b ) A B C D F 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 11112.10 Y AB AC =+2.11A B C Y 0 0 0 0 0 0 1 0 011A B C F 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 11110 1 1 11 0 0 01 0 1 11 1 0 01 1 1 12.122.13F1 = A(B+C), F2=A+BCA B C F1F20 0 0 0 00 0 1 0 00 1 0 0 00 1 1 0 11 0 1 1 11 0 0 0 11 1 0 1 11 1 1 1 12.142.15 (a)0 (b)1 (c)1 (d)02.16 (a)1 (b)0 (c)0 (d)12.17 (a)0 (b)02.182.19 Y AB BC DE F=⋅⋅⋅2.20 Y AB CD EF=⋅⋅2.21 102.22 402.23 当TTL反相器的输出为3V,输出是高电平,红灯亮。

数电课后习题答案

数电课后习题答案

数电课后习题答案(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2思考题与习题思考题与习题第一章【1-1】(1)(1101)2= (13)10(2)(10111)2=(23)10 (3)(110011)2=(51)10 (4)()2=()10【1-2】(1)(35)10=(100011)2 (2)(168)10 =()2 (3)()10=()2 (4)(199)10=()2【1-3】(1)(1011011682)()55()AD ==(2)(11682)1()715()CD == (3)(011682)36()1435()D == (4)(11682)157()527()==【1-4】答:数字逻辑变量能取“1”,“0”值。

它们不代表数量关系,而是代表两种状态,高低电平.【1-5】答:数字逻辑系统中有“与”,“或”,“非”三种基本运算,“与”指只有决定事件发生的所有的条件都成立,结果才会发生,只要其中有一个条件不成立,结果都不会发生. “与“指只要所有的条件中有一个条件成立,结果就会发生,除非所有的条件都不成立,结果才不会发生. ”非“指条件成立,结果不成立。

条件不成立,结果反而成立。

【1-6】答:逻辑函数:指用与,或,非,等运算符号表示函数中各个变量之间逻辑关系的代数式子。

将由真值表写出逻辑函数表达式的方法: 1.在真值表中挑选出所有使函数值为1的变量的取值组合。

2.将每一个选出的变量取值组合对应写成一个由各变量相与的乘积项,在此过程中,如果某变量取值为1,该变量以原变量的形式出现在乘积项中,如果某变量取值为0,则该变量以反变量的形式出现在乘积项中。

3.将所有写出的乘积项相或,即可得到该函数的表达式。

【1-7】答:在n 输入量的逻辑函数中,若m 为包含n 个因式的乘积项,而且这n 个输入变量均以原变量或反变量的形式在m 中出现且仅出现一次,这m 称为该n 变量的一个最小项。

《数字电子技术》课后习题答案

《数字电子技术》课后习题答案

第1单元能力训练检测题(共100分,120分钟)一、填空题:(每空0.5分,共20分)1、由二值变量所构成的因果关系称为逻辑关系。

能够反映和处理逻辑关系的数学工具称为逻辑代数。

2、在正逻辑的约定下,“1”表示高电平,“0”表示低电平。

3、数字电路中,输入信号和输出信号之间的关系是逻辑关系,所以数字电路也称为逻辑电路。

在逻辑关系中,最基本的关系是与逻辑、或逻辑和非逻辑。

4、用来表示各种计数制数码个数的数称为基数,同一数码在不同数位所代表的权不同。

十进制计数各位的基数是10,位权是10的幂。

5、8421 BCD码和2421码是有权码;余3码和格雷码是无权码。

6、进位计数制是表示数值大小的各种方法的统称。

一般都是按照进位方式来实现计数的,简称为数制。

任意进制数转换为十进制数时,均采用按位权展开求和的方法。

7、十进制整数转换成二进制时采用除2取余法;十进制小数转换成二进制时采用乘2取整法。

8、十进制数转换为八进制和十六进制时,应先转换成二进制,然后再根据转换的二进数,按照三个数码一组转换成八进制;按四个数码一组转换成十六进制。

9、逻辑代数的基本定律有交换律、结合律、分配律、反演律和非非律。

10、最简与或表达式是指在表达式中与项中的变量最少,且或项也最少。

13、卡诺图是将代表最小项的小方格按相邻原则排列而构成的方块图。

卡诺图的画图规则:任意两个几何位置相邻的最小项之间,只允许一位变量的取值不同。

14、在化简的过程中,约束项可以根据需要看作1或0。

二、判断正误题(每小题1分,共10分)1、奇偶校验码是最基本的检错码,用来使用PCM方法传送讯号时避免出错。

(对)2、异或函数与同或函数在逻辑上互为反函数。

(对)3、8421BCD码、2421BCD码和余3码都属于有权码。

(错)4、二进制计数中各位的基是2,不同数位的权是2的幂。

(对)3、每个最小项都是各变量相“与”构成的,即n个变量的最小项含有n个因子。

(对)4、因为逻辑表达式A+B+AB=A+B成立,所以AB=0成立。

数字电子技术基础课后习题及参考答案

数字电子技术基础课后习题及参考答案

第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。

(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。

(1)10110001;(2)10101010;(3)11110001;(4)10001000解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。

(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。

(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。

(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。

(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。

数字电子技术课后习题答案(全部)

数字电子技术课后习题答案(全部)

第一章数制与编码1.1自测练习1.1.1、模拟量数字量1.1.2、(b)1.1.3、(c)1.1.4、(a)是数字量,(b)(c)(d)是模拟量1.2 自测练习1.2.1. 21.2.2.比特bit1.2.3.101.2.4.二进制1.2.5.十进制1.2.6.(a)1.2.7.(b)1.2.8.(c)1.2.9.(b)1.2.10.(b)1.2.11.(b)1.2.12.(a)1.2.13.(c)1.2.14.(c)1.2.15.(c)1.2.16.11.2.17.111.2.18.1.2.19.11011.2.20.8进制1.2.21.(a)1.2.22.0,1,2,3,4,5,6,71.2.23.十六进制1.2.24.0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 1.2.25.(b)1.3自测练习1.3.1.1221.3.2.675.521.3.3.011111‎110.011.3.4.521.3.5.1BD.A81.3.6.1111.11101.3.7.38551.3.8.28.3751.3.9.100010‎.111.3.10.135.6251.3.11.570.11.3.12.120.51.3.13.2659.A1.4自测练习1.4.1.BCD Binary‎l二—十进制码1.4.2.(a)1.4.3.(b)1.4.4.8421BC‎D码,4221BC‎D码,5421BC‎D1.4.5.(a)1.4.6.011001‎111001‎.10001.4.7.111111‎101.4.8.101010‎001.4.9.111111‎011.4.10.61.051.4.11.010110‎01.011101‎011.4.12.余3码1.4.13.XS31.4.14.XS31.4.15.1000.10111.4.16.100110‎000011‎1.4.17.521.4.18.110101.4.19.010111‎1.4.20.(b)1.4.21.ASCII1.4.22.(a)1.4.23.ASCII h ange美‎准码EBCDIC‎Extend‎e d Binary‎Coded Decima‎l Interc‎h ange Code 扩展二-十进制 ‎1.4.24.100101‎11.4.25.ASCII1.4.26.(b)1.4.27.(b)1.4.28.110111‎011.4.29.-1131.4.30.+231.4.31.-231.4.32.-861.5 自测练习 1.5.1 略 1.5.2 110111‎01 1.5.3 010001‎01 1.5.4 111001‎10 补码形式 1.5.5 011111‎01 1.5.6 100010‎00 补码形式 1.5.7 111000‎10 补码形式 习题1.1 (a )(d )是数字量,(b )(c )是模拟量,用数字表时(e )是数字量,用模拟表时(e )是模拟量1.2 (a )7, (b )31, (c )127, (d )511, (e )40951.3 (a )22104108⨯+⨯+, (b )26108108⨯+⨯+,(c )321102105100⨯+⨯+⨯+(d )322104109105⨯+⨯+⨯+1.4 (a )212121⨯+⨯+, (b )4311212121⨯+⨯+⨯+, (c )64212+12+12+12+1⨯⨯⨯⨯(d )9843212+12+12+12+12⨯⨯⨯⨯⨯ 1.5 2201210327.15310210710110510--=⨯+⨯+⨯+⨯+⨯,3210-1-221011.0112+02+12+12+02+12=⨯⨯⨯⨯⨯⨯, 210-18437.448+38+78+48=⨯⨯⨯⨯, 10-1-2163A.1C 316+A 16+116+C 16=⨯⨯⨯⨯1.6 (a )11110, (b ) ,(c ) , (d )1011 1.7 (a ) 0, (b ) 1111 1.8 110102‎ = 2610, 1011.0112 = 11.37510, 57.6438 = 71.818359‎37510, 76.EB 16 = 118.7510 1.9 110101‎001001‎2 = 65118 = D4916,0.100112‎ = 0.468 = 0.9816,101111‎1.011012‎ =137.328 = 5F.68161.10 168 = 1410,1728 = 12210,61.538 = 49.671875‎, 126.748 = 86.937510‎ 1.11 2A 16 = 4210 = 2 = 528, B2F 16 = 286310‎ = 2 = 54578,D3.E 16 = 211.87510 = 11.11102 = 323.78, 1C3.F916 = 451 2510 = 011.111110‎012 = 703.76281.12 (a )E, (b )2E, (c )1B3, (d )349 1.13 (a )22, (b )110, (c )1053, (d )2063 1.14 (a )4094, (b )1386, (c )49282 1.15 (a )23, (b )440, (c )2777 1.16 198610‎ = = 000110‎011000‎011084‎21BCD , 67.31110 = 1.010012‎ = 011001‎11.001100‎010001‎8421BC ‎D ,1.183410‎ = 1.001011‎2 = 0001.000110‎000011‎010084‎21BCD , 0.904710‎ = 0.111001‎2 = 0000.100100‎000100‎011184‎21BCD1.17 1310 = 000100‎118421‎B CD = 010001‎10XS3 = 1011Gr‎a y, 6.2510 = 0110.001001‎018421‎B CD = 1001.010110‎00XS3 = 0101.01Gray‎,0.12510= 0000.000100‎100101‎ = 0011.010001‎101000‎X S3 = 0.001 Gray8421BC‎D1.18 101102‎= 11101 Gray,010110‎2 = 011101‎ Gray1.19 110110‎112 = 001000‎011001‎8421BC‎D,45610 = 010001‎010110‎8421BC‎D,1748=001001‎110100‎8421BC‎D,2DA16 = 011100‎110000‎8421BC‎D,101100‎112421‎B CD = 010100‎118421‎B CD,110000‎11XS3 = 100100‎008421‎B CD1.20 0.0000原= 0.0000反= 0.0000补,0.1001原= 0.1001反= 0.1001补,11001原‎=10110反‎=10111补‎1.21 010100‎原= 010100‎补,101011‎原= 110101‎补,110010‎原= 101110‎补,100001‎原=111111‎补1.22 1310 = 000011‎01补,11010 = 011011‎10补,-2510 = 111001‎11补,-90 = 101001‎10补1.23 011100‎00补= 11210,000111‎11补= 3110,110110‎01补= -3910,110010‎00补= -56101.24 100001‎1100000‎1101010‎1101010‎0100100‎1100111‎1 100111‎0010000‎1010000‎0100100‎0 110100‎1 110011‎1 110100‎0 010000‎0 101011‎0 110111‎1 110110‎0 111010‎0 110000‎1 110011‎1 110010‎11.25 010001‎0101100‎0010000‎0011110‎1010000‎0011001‎0 011010‎1010111‎1101100‎1010001‎01.26 BEN SMITH1.27 000001‎10 100001‎101.28 011101‎10 100011‎10第二章逻辑门1.1 自测练习2.1.1. (b)2.1.2. 162.1.3. 32, 62.1.4. 与2.1.5. (b)2.1.6. 162.1.7. 32, 62.1.8. 或2.1.9. 非2.1.10. 12.2 自测练习2.2.1. F A B=⋅2.2.2. (b)2.2.3. 高2.2.4. 322.2.5. 16,52.2.6. 12.2.7. 串联2.2.8. (b)2.2.9. 不相同2.2.10. 高2.2.11. 相同2.2.12. (a)2.2.13. (c)2.2.14. 奇2.3 自测练习2.3.1. OC,上拉电阻2.3.2. 0,1,高阻2.3.3. (b)2.3.4. (c)2.3.5. F A B=⋅, 高阻2.3.6. 不能2.4 自测练习1.29 TTL,CMOS1.30 Transi‎s itor Transi‎s tor Logic1.31 Comple‎m entar‎y Metal Oxide Semico‎d uctor‎1.32 高级肖特基T‎T L, 高级‎ 肖特基‎T TL1.33 高,强,小1.34 (c)1.35 (b)1.36 (c)1.37 大1.38 强1.39 (a)1.40 (a)1.41 (b)1.42 高级肖特基T‎T L1.43 (c)习题2.1 与,或,与2.2 与门,或门,与门2.3 (a)F=A+B, F=AB (b)F=A+B+C, F=ABC (c)F=A+B+C+D, F=ABCD2.4 (a )0 (b )1 (c )0 (d )0 2.5 (a )0 (b )0 (c )1 (d )0 2.6 (a )1 (b )1 (c )1 (d )1 2.7 (a )4 (b )8 (c )16 (d )32 2.8 (a )3 (b )4 (c )5 (d )6 2.9 (a )(b ) A B C D F 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 11112.10 Y AB AC =+2.11A B C Y 0 0 0 0 0 0 1 0 011A B C F 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 11110 1 1 11 0 0 01 0 1 11 1 0 01 1 1 12.122.13F1 = A(B+C), F2=A+BCA B C F1F20 0 0 0 00 0 1 0 00 1 0 0 00 1 1 0 11 0 1 1 11 0 0 0 11 1 0 1 11 1 1 1 12.142.15 (a)0 (b)1 (c)1 (d)02.16 (a)1 (b)0 (c)0 (d)12.17 (a)0 (b)02.18=⋅⋅⋅2.19 Y AB BC DE F=⋅⋅2.20 Y AB CD EF2.21 102.22 402.23 当TTL反相‎器的输出为3‎V,输出是高电 ‎,红灯亮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《时序逻辑电路》练习题
[5.1] 分析图P5.8的计数器电路,说明这是多少进制的计数器。

十进制计数器74160的功能表见表5.3.4。

[5.2] 分析图P5.9的计数器电路,画出电路的状态转换图,说明这是多少进制的计数器。

十六进制计数器74LS161的功能表如表5.3.4所示。

[5.11]试分析图P5.11的计数器在M=1和M=0时各为几进制。

74LS160的功能表同上题。

[5.12]图P5.12电路是可变进制计数器。

试分析当控制变量A为1和0时电路各为几进制计数器。

74LS161的功能表见题5.10。

[5.13]设计一个可控制进制的计数器,当输入控制变量M=0时工作在五进制,M=1
时工作在十五进制。

请标出计数输入端和进位输出端。

[解] 见图A5.13。

[5.15]试分析图P5.15计数器电路的分频比(即Y与CP的频率之比)。

74LS161的功能表见题5.10。

[解] 利用与上题同样的分析方法,可得74LS161(1)和74LS161(2)的状态转换图如图A5.15(a)、(b)所示。

可见,74LS 161(1)为七进制计数器,且每当电路状态由1001~1111时,给74LS 161(2)一个计数脉冲。

74LS 161(2)为九进制计数器,计数状态由0111~1111循环。

整个电路为63进制计数器,分频比为1:63。

[5.16] 图P5.16电路是由两片同步十进制计数器74160组成的计数器,试分析这是多少进制的计数器,两片之间是几进制。

74160的功能表见题5.10。

[解] 第(1)片74160接成十进制计数器,第(2)片74160接成了三进制计数器。

第(1)片到第(2)片之间为十进制,两片中串联组成71~90的二十进制计数器。

[5.17] 分析图P5.17给出的电路,说明这是多少进制的计数器,两片之间多少进制。

74LS161的功能表见题5.10。

[解] 在出现0=LD 信号以前,两片74LS161均按十六进制计数。

即第(1)片到第(2)片之间为十六进制。

当第(1)片计为2,第(2)片计为5时产生0=LD 信号,总的进制为5×16+2+1=83。

故为八十三进制计数器。

计数范围0000000~1010010(83进)。

[5.24] 设计一个序列信号发生器电路,使之在一系列CP 信号作用下能周期性地输出“0010110111”的序列信号。

[解] 可以用十进制计数器和8选1数据选择器组成这个序列信号发生器电路。

若将十进制计数器74160的输出状态0123Q Q Q Q 作为8选1数据选择器的输入,则可得到数据选择器的输出Z 与输入0123Q Q Q Q 之间关系的真值表。

若取用8选1数据选择器74LS251(见图A5.24(a )),则它的输出逻辑式可写为
)()()()( )
()()()(01270126012501240123012201210120A A A D A A A D A A A D A A A D A A A D A A A D A A A D A A A D Y +++++++=
由真值表写出Z 的逻辑式,并化成与上式对应的形式,则得到 )(0)()()(012012301230123Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Z ⋅+++=
)()(0)()(012301201230123Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q +⋅+++
令A 2=Q 2,A 1=Q 1,A 0=Q 0,D 0=D 1=Q 3 ,D 2=D 4=Q 5=Q 7=3Q ,D 3=D 6=0,
则数据选择器的输出Y 即所求之Z 。

所得到的电路如图A5.24(a)所示。

Q 3 Q 2 Q 1 Q 0 Z 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1。

相关文档
最新文档