蒸馏分离方法

合集下载

蒸馏的原理和操作及注意事项

蒸馏的原理和操作及注意事项

蒸馏的原理及操作和注意事项蒸馏是提纯液体物质和分离混合物的一种常用的方法。

通过蒸馏还可以测出化合物的沸点,所以它对鉴定纯粹的液体有机化合物也具有一定的意义。

一、蒸馏原理液体的分子由于分子运动有从表面逸出的倾向,这种倾向随着温度的升高而增大,即液体在一定温度下具有一定的蒸气压,当其温度达到沸点时,也即液体的蒸气压等于外压时(达到饱和蒸气压),就有大量气泡从液体内部逸出,即液体沸腾。

一种物质在不同温度下的饱和蒸气压变化是蒸馏分离的基础。

将液体加热至沸腾,使液体变为蒸气,然后使蒸气冷却再凝结为液体,这两个过程的联合操作称为蒸馏。

很明显,蒸馏可将易挥发和不易挥发的物质分离开来,也可将沸点不同的液体混合物分离开来。

(液体混合物各组分的沸点必须相差很大,至少30o C以上才能达到较好的分离效果)。

纯粹的液体有机化合物在一定压力下具有一定的沸点。

但由于有机化合物常和其它组分形成二元或三元共沸混合物(或恒沸混合物),他们也有一定的沸点(高于或低于其中的每一组分)。

因此具有固定沸点的液体不一定都是纯粹的化合物。

一般不纯物质的沸点取决于杂质的物理性质以及它和纯物质间的相互作用:假如杂质是不挥发的,溶液的沸点比纯物质的沸点略有提高(但在蒸馏时,实际上测量的并不是溶液的沸点,而是逸出蒸气与其冷凝液平衡时的温度,即是馏出液的沸点而不是瓶中蒸馏液的沸点);若杂质是挥发性的,则蒸馏时液体的沸点会逐渐上升;或者由于组成了共沸混合物,在蒸馏过程中温度可保持不变,停留在某一范围内。

二、蒸馏操作1. 蒸馏装置及安装最简单的蒸馏装置,如图28所示。

常压蒸馏装置主要由蒸馏烧瓶、蒸馏头、温度计套管、温度计、冷凝管、接液管和接受瓶等组成。

蒸馏液体沸点在140o C以下时,用直形冷凝管;蒸馏液体沸点在140o C 以上时,由于用水冷凝管温差大,冷凝管容易爆裂,故应改用空气冷凝管——高沸点化合物用空气冷凝管已可达到冷却目的。

蒸馏易吸潮的液体时,在接液管的支管处应连一干燥管;蒸馏易燃的液体时,在接液管的支管处接一胶管通入水槽,并将接受瓶在冰水浴中冷却。

第四章分子蒸馏分离技术

第四章分子蒸馏分离技术
• 蒸发面积小,处理能力不够大,并且没有 刮片构件,对于易结焦的物料不太合适。
二、分子蒸馏的流程
• 分子蒸馏流程有单级、多级分子蒸馏流程
• 1.脱气系统 2.分子蒸发器 3.加热系统 4.真空系统
四级刮膜式分子蒸馏装置流程示意图
多种馏分需要从混合液中分离
离心式分子蒸馏工业化流程图
一级分子蒸馏的成套装置
• 从20世纪60年代至今的40多年来:
二、分子蒸馏技术与传统精馏的区别
① 分子蒸馏的蒸发面与冷凝面距离很小。 ② 普通减压精馏是蒸发与冷凝的可逆过程。
分子蒸馏过程是不可逆的。 ③ 分子蒸馏的分离能力不但与各组分间的相
对挥发度有关,而且与各组分的分子量有关。 ④ 分子蒸馏是液膜表面的自由蒸发过程,没
PA0
0
PB0
MB MA
MA-轻分子相对分子质 量;MB-重分子相对分 子质量;P0A-轻分子 饱和蒸汽压,Pa; P0B -重分子饱和蒸汽压,
Pa;α0-相对挥发度
(二) 分子运动平均自由程
• 依靠不同物质分子运动平均自由程的差别 实现物质分离的。
• 1.分子碰撞 • 2.分子有效直径 • 3.分子运动自由程 • 4.分子运动平均自由程 λm =Vm/f
表41平均自由程和真空度对照表真空度mmhg平均自由程mm810331032511035003103250011033000从公式可以看到混合液中的不同组成分子的有效直径和分子自由程不同轻分子的平均自由程大而重分子的平均自由程小如果冷凝面与蒸发面的间距小于轻分子的平均自由程而大于重分子的平均自由程这样轻分子被冷却收集而重分子又返回到蒸发面从而实现了分离
2. 对于混合液中的低分子物质(如有机溶剂、 臭味物等)的脱除。

分离乙醇和乙酸的方法

分离乙醇和乙酸的方法

分离乙醇和乙酸的方法
乙醇和乙酸可以使用以下方法进行分离:
1. 蒸馏分离法:使用蒸馏分离的方法将乙醇和乙酸分离。

蒸馏过程中,两者沸点的差异可以被利用,同时可以调整蒸馏操作条件,比如温度和压力,以优化分离效果。

2. 类似于萃取的方法:将混合物溶解在一种适用的溶剂中,然后通过这种方法将乙醇和乙酸分离。

碳酸钠等碱性物质也可以用来进行类似于萃取的方法。

3. 晶体分离法:可以采用晶体分离技术,生长乙酸结晶,然后用过滤或其他方法分离出晶体,留下乙醇溶液。

4. 甲醇处理法:添加甲醇处理剂可以将混合物中的乙酸转变为甲酸甲酯和乙酸甲酯,然后再使用蒸馏等方法来分离乙醇和甲酸甲酯。

这种方法也可用于乙醇和乙酸混合物的分离。

以上方法都可以有效分离乙醇和乙酸,具体选用哪一种方法,主要取决于实际需求和具体条件。

蒸馏的过程

蒸馏的过程

蒸馏是一种通过热蒸汽将液体分离的精确的方法。

蒸馏的过程包括加热、蒸气形成、蒸气收集和冷却回液。

首先,要加热液体,使得其中一种溶质能够以气态形式释放出来。

接下来,当液体加热到一定温度后,某些溶质会以气态形式放出,形成一种可以被回收的气态混合物——蒸气。

所有的液体都不会在相同的温度下释放出气态,因此必须在恰当的温度上加热液体来生成蒸气。

之后,这种蒸气就会流经一个设备——蒸馏塔,这个设备会让液体和气体混合后通过一个收集器收集蒸气。

收集器较高的温度会让指定的物质形成固体或液体,然后把它们收集起来。

最后,蒸气被收集起来后,就要对它进行冷却,以便把液体和气体回收并把它们以原来的形式(液态或气态)返回到原容器中。

这样,就完成了整个蒸馏的过程。

1/ 1。

蒸发蒸馏萃取的操作方法

蒸发蒸馏萃取的操作方法

蒸发蒸馏萃取的操作方法蒸发蒸馏和萃取是常用的分离和纯化技术,在化学实验和工业生产中都得到了广泛应用。

下面我将详细介绍蒸发蒸馏和萃取的操作方法。

一、蒸发蒸馏操作方法:1. 样品制备:首先,需要准备待分离的混合物样品。

根据实验要求,可以选择固体-固体、固液或液体-液体混合物进行分离。

2. 蒸发装置准备:将蒸发瓶或烧瓶放在蒸发装置内,将冷凝管连接在瓶口上方,通过橡胶塞使两者紧密连接。

3. 设置加热设备:将蒸发瓶或烧瓶放在加热器上,根据需要设置和调整加热温度。

4. 开始蒸发:将待分离混合物溶液倒入蒸发瓶或烧瓶中,轻轻加热,使混合物开始蒸发。

在这个过程中,挥发性成分会蒸发,而非挥发性成分则会残留在容器中。

5. 冷凝收集:蒸发的挥发性成分会通过冷凝管冷凝成液体,并滴入冷凝瓶中。

这样,我们就可以将分离出来的纯化溶液进行收集。

6. 冷凝水槽:为了增加蒸发的效果,可以在冷凝管附近设置一个水槽,用冷水冷却冷凝管,提高冷凝效果。

二、萃取操作方法:1. 提取溶剂:首先,准备一种合适的溶剂,能够与待提取物质有较好的溶解性,且与其他杂质不溶,并且容易挥发或蒸馏。

常用的溶剂有醚类、酯类、醇类等。

2. 样品制备:将待提取的混合物溶液倒入一个漏斗或分液漏斗中,加入一定量的提取溶剂。

3. 摇匀:轻轻摇动漏斗,使混合物中的成分充分接触和混合。

摇匀的时间一般为1-2分钟。

4. 混合物分离:停止摇匀后,将漏斗放置在一个支架上,使其静置一段时间,等待混合物中的液相和固相发生分离。

5. 分离两相:打开漏斗的开关,将分液漏斗中的底层液相慢慢放出。

需要注意的是,在放液的过程中,要停下来,观察提取溶剂是否已经滴干,并视情况控制分离速度。

6. 溶剂回收:将分离得到的上层液相转移到一只锥形瓶中,使用适当的方法回收提取溶剂。

回收的溶剂可以进行进一步使用。

以上就是蒸发蒸馏和萃取的操作方法。

蒸发蒸馏通过加热和冷凝的方法,实现了挥发性成分和非挥发性成分的分离。

水蒸气蒸馏的三种方法及区别

水蒸气蒸馏的三种方法及区别

水蒸气蒸馏的三种方法及区别
水蒸气蒸馏是一种常见的物质分离方法,广泛应用于化学、生物、食品等领域。

它以水蒸气为介质,利用不同物质的沸点差异,从混合物中分离出目标物质。

本文将介绍三种常用的水蒸气蒸馏方法及其区别。

一、简单水蒸气蒸馏
简单水蒸气蒸馏是最常用的一种方法,它通常用于提取温度较低(小于200℃)的挥发物质。

该方法的原理是,将混合物加热至沸腾,产生大量水蒸气,并将水蒸气冷却后与混合物共同流入冷凝器,在冷凝器中冷却并收集目标物质溶液。

简单水蒸气蒸馏的优点是操作简便、设备成本低廉,并且不需要高压设备,适合于小规模实验或生产。

二、气相色谱水蒸气蒸馏
气相色谱水蒸气蒸馏是一种高效的物质分离方法,特别适用于分析含有许多组分、难以分离的混合物。

该方法的原理是将混合物加热至高温,使其挥发成气态,再将挥发物通过气相色谱柱进行分离和检测。

这种方法的优点是分离效果好、分析速度快、可检测微量物质,并且可以实现自动化分析。

三、蒸馏-萃取联用技术
蒸馏-萃取联用技术是一种组合应用蒸馏和萃取两种技术的方法,通常用于分离和提纯含有多种有机物质和水的混合物。

该方法的原理是,在加热的条件下,将混合物中的有机物质和水分别提取至两个液相中,再利用蒸馏技术将两个液相分离,从而得到纯净的有机物质和水。

这种方法的优点是分离效果好、操作简便,并且可以实现连续、高效的分离和提纯。

总之,水蒸气蒸馏是一种常用的分离技术,在不同的领域和实验中可以选择合适的方法进行应用。

简单水蒸气蒸馏、气相色谱水蒸气蒸馏和蒸馏-萃取联用技术是其中比较常用的三种方法,根据实际需要选择合适的方法和设备可以达到较好的分离和提纯效果。

反流蒸馏法:实现多组分同时分离的常用方法

反流蒸馏法:实现多组分同时分离的常用方法

反流蒸馏法:实现多组分同时分离的常用方法反流蒸馏法是一种常用的分离技术,用于将多组分混合物分离为纯组分。

通过反复蒸馏过程中的液态和气态相变,利用不同组分的挥发性差异来实现分离。

这种方法的特点是可以同时分离多个组分,提高分离效率,下面将详细介绍反流蒸馏法的原理和应用。

反流蒸馏法基于沸点的差异性原理,它是在常规蒸馏法的基础上改进而来的。

常规蒸馏法实际上是一个连续蒸馏过程,通过在加热器中加热混合物并将产生的蒸汽冷凝回液相,然后收集液体。

反流蒸馏法则在这个基础上加入了回流装置,在装置内产生气相和液相间的交替流动。

液体从蒸馏釜底部不断蒸发上升,当蒸汽与冷凝器中的冷却液接触时,会迅速冷却成液相,然后重新进入蒸馏釜,这个过程是持续进行的。

反流蒸馏法适用于多组分混合物的分离,因为在不同的温度下,不同的组分会产生不同的蒸汽压。

举个例子,假设有一个二元混合物,其中组分A的沸点较高,组分B的沸点较低,通过反流蒸馏法可以使得组分A在较低的温度下转化为液态,而组分B在较高的温度下转化为气态,这样就实现了两个组分的分离。

实际进行反流蒸馏时,需要根据混合物的性质和分离的需求进行合理的设备选择和操作参数设定。

其中关键的设备是回流装置,它的作用是将冷却液与蒸气充分接触,使其迅速冷却成液态。

另外,冷却液的选择也很重要,可以根据混合物的性质选择适合的冷却液,一般常用的有冰水和冰盐水。

反流蒸馏法在化工领域广泛应用,特别是在石油化工和精细化工中。

例如,在石油炼制过程中,原油经过蒸馏塔进行分馏分离,可以得到不同沸点的石油产品,如汽油、柴油和煤油等。

在精细化工领域,反流蒸馏法也常用于分离纯化有机合成反应产物,提供高纯度的化学品。

总之,反流蒸馏法是一种常用的分离技术,通过利用不同组分的挥发性差异实现多组分同时分离。

它的原理是在常规蒸馏法的基础上加入回流装置,利用液态和气态之间的相互转换进行连续分离。

该方法具有分离效率高、操作简便等优点,广泛应用于石油化工和精细化工等领域。

分子蒸馏 原理

分子蒸馏 原理

分子蒸馏原理分子蒸馏是一种先进的分离技术,它基于不同物质分子运动平均自由程的差别实现分离。

以下将详细解释这一过程:1. 分子蒸馏原理分子蒸馏利用了不同物质分子运动平均自由程的差异。

在常压下,轻分子的平均自由程比重分子要大得多,这就意味着在相同的距离上,重分子需要的时间比轻分子长。

因此,通过控制合适的操作条件,我们可以让轻分子在液面上方逸出进入气相,而重分子则留在液相中。

2. 不同物质分子运动平均自由程的差别实现分离不同物质分子运动平均自由程的差别是实现分离的关键。

轻、重分子由于其不同的分子量和分子特性,会有不同的平均自由程。

在分子蒸馏过程中,轻、重分子会根据其平均自由程的不同,移动不同的距离。

3. 轻、重分子逸出液面进入气相在分子蒸馏过程中,轻、重分子会根据其特性从液面逸出进入气相。

由于轻分子的平均自由程较大,它们更容易从液面逸出进入气相。

相反,重分子的平均自由程较小,它们更难从液面逸出进入气相。

4. 轻、重分子自由程不同,移动距离不同由于轻、重分子的平均自由程不同,它们在液面上的移动距离也不同。

轻分子的平均自由程较大,它们可以在液面上方移动较远的距离。

而重分子的平均自由程较小,它们在液面上方移动的距离较短。

5. 设置冷凝板,轻分子被冷凝排出,重分子沿混合液排出在分子蒸馏设备中,通常会设置冷凝板以收集轻分子。

当轻分子从液面逸出进入气相后,它们会碰到冷凝板并被冷凝排出。

而重分子则沿混合液排出。

6. 沸腾的薄膜和冷凝面之间的压差是蒸汽流向的驱动力在分子蒸馏过程中,沸腾的薄膜和冷凝面之间的压差是蒸汽流向的驱动力。

由于轻、重分子的特性不同,它们在沸腾的薄膜和冷凝面之间的移动距离也不同。

轻分子可以移动较远的距离,而重分子则移动较短的距离。

这种移动距离的差异使得轻、重分子得以分离。

7. 微小的压力降引起蒸汽的流动在分子蒸馏过程中,微小的压力降会引起蒸汽的流动。

当轻、重分子从液面逸出进入气相后,它们会随着蒸汽流动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蒸馏分离方法
一.蒸馏原理
蒸馏是分离两种或两种以上沸点相差较大的液体的常用方法,液体的分子由于分子运动有从表面逸出的倾向,这种倾向随着温度的升高而增大,即液体在一定温度下,具有一定的蒸汽压,当其温度达到沸点时,也即液体的蒸气压等于外压是(达到饱和蒸气压)就有大量气泡从液体内部逸出,即液体沸腾。

一种物质在不同温度下的饱和蒸气压变化是蒸馏分离的基础。

将液体加热至沸腾,使液体变为蒸气,然后使蒸气冷却再凝结为液体,这两个过程的联合操作称为蒸馏。

蒸馏可将易挥发和不易挥发的物质分离开来,也可将沸点不同的液体混合物分离开来。

蒸馏能分离沸点相差30度以上的两种液体。

纯粹的液体有机化合物在一定压力下具有一定的沸点。

但由于有机化合物常和其他组分形成二元或三元共沸混合物(或恒沸混合物),这些恒沸混合物也有一定的沸点(高于或低于其中的每一部分)。

因此具有固定沸点的液体不一定都是纯粹的化合物(常见的几种共沸混合物见表2-2)。

一般不纯物质的沸点取决于杂质的物理性质以及它和纯物质间的相互作用。

假如杂质是不挥发的,溶液的沸点比纯物质的沸点略有提高(但在蒸馏时,实际上测量的并不是溶液的沸点。

而是逸出蒸气与其冷凝液平衡时的温度,即是馏出液的
沸点而不是瓶中蒸馏液的沸点);若杂质是挥发性的,则蒸馏时液体的沸点会逐渐上升;或者由于组成了共沸混合物在蒸馏过程中温度可保持不变,停留在某一范围。

二.减压蒸馏
在蒸馏操作中,一些有机物加热到其正常沸点附近时,会由于温度过高而发生氧化、分解或聚合等反应,使其无法在常压下蒸馏。

若将蒸馏装置连接在一套减压系统上,在蒸馏开始前先使整个系统降低到只有常压的十几分之一或几十分之一,那么这类有机物就可以子啊较其正常沸点低得多的温度下进行蒸馏。

(1)减压蒸馏原理
液体的温度越高其蒸气压越大,当液体的温度升高到其蒸气压与外界压强相等时,液体沸腾,液体的沸点是液体的蒸气压与外压相等时的温度。

因此,物质的沸点将随外界气压的升高而升高,随外界气压的降低而降低。

相关文档
最新文档