2018新人教版八年级下册数学期中测试卷

合集下载

人教版2018—2019学年初二下册期中考试数学试卷及答案

人教版2018—2019学年初二下册期中考试数学试卷及答案

2018-2019学年第二学期期中阶段测试初二数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)第Ⅲ卷附加题三部分,其中第Ⅰ卷(选择题)和第Ⅱ卷共100分,第Ⅲ卷20分,考试时间100分钟。

第Ⅰ卷(共30分)一、选择题:(本大题共10小题,每小题3分,共30分. 在每小题的四个选项中,只有一个选项是符合题目要求的).1.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ). A .1,2,3B .3,4,5C .5,12,13D .2,2,31. 2.下列各式中,运算正确的是( ).A .3333-=B .822=C .2+323=D .2(2)2-=- 3.下列二次根式中,是最简二次根式的是(). A .15 B .12 C .13D .94.如图,矩形ABCD 中,对角线AC ,BD 交于O 点. 若∠AOB =60°,AC =8,则AB 的长为( ).A .4B .43C .3D .55.如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连接AB 、AD 、CD ,则四边形ABCD 一定是( ).A .平行四边形B .矩形C .菱形D .正方形 6.用配方法解方程2230x x --=,原方程应变形为( ).A .2(1)2x -=B .2(1)4x +=C .2(1)4x -= D .2(1)2x +=7.如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F ,若BF =12,AB =10, 则AE 的长为( ). A .13B .14 C .15 D .16 8.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形9.如图,一根木棍斜靠在与地面(OM )垂直的墙(ON )上,设木棍中点为P ,若木棍A 端沿墙下滑,且B 沿地面向右滑行. 在此滑动过程中,点P 到点O 的距离( ).A .不变B .变小C .变大D .无法判断10.如图,在菱形ABCD 中,∠BAD =60°,AB =2,E 是DC 边上一个动点,F 是AB 边上一点,∠AEF =30°.设DE =x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图所示,则这条线段可能是图中的( ). A .线段EC B .线段AE C .线段EF D .线段BF第9题图 第10题图第Ⅱ卷(共70分)二、填空:(每小题2分,共10个小题,共20分)11.写出一个以0,1为根的一元二次方程.12.如果3x -在实数范围内有意义,那么x 的取值范围是________. 13.一元二次方程2x +kx -3=0的一个根是x=1,则k 的值是.14.如图,为了检查平行四边形书架ABCD 的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线AC ,BD 的长度,若二者长度相等,则该书架的侧边与上、下边都垂直, 请你说出其中的数学原理.15.某城2016年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,预计到2018年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程是 .16.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为.17.如果关于x 的一元二次方程210ax x +-=有实数根,则a的取值范围N M OA PEC'DCBAPFE DCBA 是________.18.如图,矩形ABCD 中,AB=3,BC=5.过对角线交点O 作OE ⊥AC 交AD 于E, 则AE 的长是.19.如图,将矩形ABCD 沿对角线BD 所在直线折叠,点C 落在同一平面内,落点记为C’,BC’与AD 交于点E ,若 AB=3,BC =4,则DE 的长为.20.如图,正方形ABCD 的面积是2,E ,F ,P 分别是AB ,BC ,AC 上的动点, PE +PF 的最小值等于.第18题图 第19题图 第20题图三、解答题:(21,22题每小题4分,23,24,25每题5分, 26,27每题6分,28题7分;共计50分) 21.计算(1)188(31)(31)-++-; (2)1(123)622+⨯-22.解方程: (1)2650x x -+=;(2) 22310x x --=.23.如图,在四边形ABCD 中,∠B =90º,AB=BC=2,AD =1,CD =3.求∠DAB 的度数.24.列方程或方程组解应用题如图,要建一个面积为40平方米的矩形花园 ABCD ,为了节约材料,花园的一边AD 靠着 原有的一面墙,墙长为8米(AD <8),另三 边用栅栏围成,已知栅栏总长为24米, 求花园一边AB 的长.25.如图,四边形ABCD 中,AB//CD ,AC 平分∠BAD ,CE//AD 交AB 于E.求证:四边形AECD 是菱形.D26.已知关于x的一元二次方程22(22)40x m x m+++-=有两个不相等的实数根.(1)求m的取值范围;(2)若m为负整数,且该方程的两个根都是整数,求m的值.27.如图,四边形ABCD是矩形,点E在CD边上,点F在DC延长线上,AE=BF.(1)求证:四边形ABFE是平行四边形(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的长.28.如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.(1)①依题意补全图形;②求证:BE⊥AC.(2)请探究线段BE,AD,CN所满足的等量关系,并证明你的结论.(3)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为______________(直接写出答案).第Ⅲ卷附加题(共20分)DACBM附加题(1题6分,2题7分,3题7分,共20分)1. 如图1,将边长为1的正方形ABCD 压扁为边长为1的菱形ABCD .在菱形ABCD 中,∠A 的大小为α,面积记为S .30° 45°60° 90° 120°135°150° S12122由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A 大小的变化而变化,不妨把菱形的面积S 记为S (α).例如:当α=30°时,1(30)2S S =︒=;当α=135°时,2(135)2S S ο==.由上表可以得到 (60)S S ︒=( ______°);(150)S S ︒=( ______°),…,由此可以归纳出(180)()S S α︒-=.(3) 两块相同的等腰直角三角板按图2的方式放置,AD =2,∠AOB =α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).图2图22.已知:关于x 的一元二次方程23(1)230(3)mx m x m m --+>-=. (1)求证:方程总有两个不相等的实数根; (2)设方程的两个实数根分别为1x ,2x ,且12x x <. ①求方程的两个实数根1x ,2x (用含m 的代数式表示); ②若1284mx x <-,直接写出m 的取值范围. 3. 阅读下列材料:问题:如图1,在平行四边形ABCD中,E是AD上一点,AE=AB,∠EAB=60°,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.求证:EG =AG+BG.小明同学的思路是:作∠GAH=∠EAB交GE于点H,构造全等三角形,经过推理解决问题.参考小明同学的思路,探究并解决下列问题:(1)完成上面问题中的证明;(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EG、AG、BG之间的数量关系,并证明你的结论.(1)证明:图1(2)解:线段EG、AG、BG之间的数量关系为____________________________.证明:图22018-2019学年第二学期期中阶段测试初二数学答案及评分标准一、选择题(本题共30分每小题3分,)二、填空题(每小题2分,共20分请将答案写在横线上)21.(11);=(31)-…………………………………………………3分=2……………………………………………………………4分(2)原式=2 ----2分==3⨯3分== …………………………………………………………………4分22.(1)解:2650x x -+=移项,得265x x -=-.配方,得26959x x -+=-+,…………………………………………………1分 所以,2(3)4x -=.………………………………………………………………2分 由此可得32x -=±,所以,15x =,21x =.…………………………………………………………4分 (2)解:2a =,3b =-,1c =-.………………………………… 1分224(3)42(1)170b ac ∆=-=--⨯⨯-=>.………………………2分方程有两个不相等的实数根x==,1x2x .……………………………………4分23.解:连接AC在Rt △ABC 中,∠B =90º,AB =BC =2,∴∠BAC =∠ACB =45°,………………………………………………1分∴222AC AB BC =+.∴AC =2分∵AD =1,CD =3,∴222AC AD CD +=.…………………………3分在△ACD 中,222AC AD CD +=,∴△ACD 是直角三角形,即∠DAC =90º.……………………………………4分 ∵∠BAD =∠BAC +∠DAC ,∴∠BAD =135º.………………………………………………………………5分 24.解:设AB 的长为x 米,则AD=BC=(242x -)米.(242)240x x -⋅=………………………………2分 212200x x -+=C(10)(2)0x x --=1210,2x x ==………………………………4分当110,4x AD == 当22,20x AD ==8,4AD AD <∴=Q10x ∴=………………………………5分答:AB 的长为10米.25.证明:∵AB ∥CD ,CE ∥AD∴四边形ADCE 是平行四边形…………………1分 ∵AC 平分∠BAD∴∠DAC=∠EAC ………………2分 ∵AB ∥CD∴∠DCA=∠EAC ………………3分 ∴∠DAC=∠DCA∴AD=DC …………………………4分 ∴四边形ADCE 是菱形…………5分26. 解:(1)∵一元二次方程22(22)40x m x m +++-=有两个不相等的实数根, ∴2224(22)41(4)b ac m m ∆=-=+-⨯⨯-………………………………1分 8200m =+>……………………………………………………………2分∴52m >-.……………………………………………………………………3分(2)∵m 为负整数,∴1m =-或2-.……………………………………………………………4分当1m =-时,方程230x -=的根为13x =,23x =-不是整数,不符合题意, 舍去.…………………………………………………………………………5分当2m =-时,方程220x x -=的根为10x =,22x =都是整数,符合题意.综上所述2m =-.…………………………………………………………6分27.(1)证明:∵四边形ABCD 是矩形,∴AD =BC , ∠D =∠BCD =90°. ∴∠BCF =180°-∠BCD =180°-90°=90°.∴∠D =∠BCF .------------------------------------------------------------------1分 在Rt △ADE 和Rt △BCF 中,,.AE BF AD BC =⎧⎨=⎩∴Rt △ADE ≌Rt △BCF . ---------------------------------------------------------2分∴∠1=∠F . ∴AE ∥BF .∵AE =BF ,∴四边形ABFE 是平行四边形. ---------------------------------------------------3分(2)解:∵∠D =90°, ∴∠DAE +∠1=90°.∵∠BEF =∠DAE , ∴∠BEF +∠1=90°.∵∠BEF +∠1+∠AEB =180°, ∴∠AEB =90°. --------------------------------------------------------------------------4分在Rt △ABE 中, AE =3,BE =4, AB =2222345AE BE +=+=. ∵四边形ABFE 是平行四边形,∴EF =AB =5. --------------------------------------------------------------------------6分28.(1)①依题意补全图形.---------------------------------------------------------1分②解法1: 证明:连接CE .∵四边形ABCD 是正方形, ∴∠BCD =90°, AB =BC . ∴∠ACB =∠ACD =12∠BCD =45°. ∵∠CMN =90°, CM =MN , ∴∠MCN =45°.∴∠ACN =∠ACD +∠MCN =90°. ∵在Rt △ACN 中,点E 是AN 中点,∴AE =CE =12AN . ----------------------------------------------------------------------------2分 ∵AE =CE ,AB =CB ,∴点B ,E 在AC 的垂直平分线上.∴BE 垂直平分AC .∴BE ⊥AC . --------------------------------------------------------------------------------------3分 解法2:证明:连接CE .∵四边形ABCD 是正方形,∴∠BCD =90°, AB =BC .∴∠ACB =∠ACD =12∠BCD =45°. ∵∠CMN =90°,CM =MN ,∴△CMN 是等腰直角三角形.∴∠MCN =45°.∴∠ACN =∠ACD +∠MCN =90°.∵在Rt △ACN 中,点E 是AN 中点,∴AE =CE =12AN . 在△ABE 和△CBE 中,,,.AE CE AB CB BE BE =⎧⎪=⎨⎪=⎩∴△ABE ≌△CBE (SSS ). -----------------------------------------------------------------2分 ∴∠ABE =∠CBE .∵AB =BC ,∴BE ⊥AC . --------------------------------------------------------------------------------------3分(2)BE =2AD +12CN (或2BE =2AD +CN ). -------------------------------------4分 证明:∵AB =BC , ∠ABE =∠CBE ,∴AF =FC .∵点E 是AN 中点,∴AE=EN.∴FE是△ACN的中位线.∴FE=12 CN.∵BE⊥AC,∴∠BFC=90°.∴∠FBC+∠FCB=90°.∵∠FCB=45°,∴∠FBC=45°.∴∠FCB=∠FBC.∴BF=CF.在Rt△BCF中,222BF CF BF+=,∴BF BC. -----------------------------------------------------------------------------5分∵四边形ABCD是正方形,∴BC=AD.∴BF AD.∵BE=BF+FE,∴BE AD+12CN. -------------------------------------------------------------------6分(3)34.---------------------------------------------------------------------------------------7分附加题:1.(1;12.(说明:每对两个给1分)----------------------------------2分(2)120;30;α. -----------------------------------------------------------------------------------4分(说明:前两个都答对给1分,最后一个α答对给1分)(3)答:两个带阴影的三角形面积相等.证明:将△ABO沿AB翻折得到菱形AEBO, 将△CDO沿CD翻折得到菱形OCFD.∴S△AOB=12S菱形AEBO=12S(α)---------------------------------------------------5分S△CDO=12S菱形OCFD=12S(180α︒-)-----------------------------------------6分由(2)中结论S(α)=S(180α︒-)∴S △AOB =S △CDO .2.(1)证明:∵23(1)230(0)mx m x m m --+≠-=是关于x 的一元二次方程,∴2[3(1)]4(23)m m m ∆=---- ···························································· 1分 269m m =-+2(3)m =-. ······························································································· 2分 ∵3m >,∴2(3)0m ->,即0∆>.∴方程总有两个不相等的实数根. ··························································· 3分(2)①解:由求根公式,得3(1)(3)2m m x m-±-=. ∴1x =或23m x m -=. ∵3m >,∴23321m m m-=->. ∵12x x <,∴11x =,22332m x m m-==-. ····························································· 5分 ②323m << ··································································································· 7分 3.(1)证明:如图1,作∠GAH=∠EAB 交GE 于点H ,则∠GAB=∠HAE .……………………1分∵∠EAB=∠EGB ,∠AOE=∠BOF ,∴∠ABG=∠AEH .在△ABG 和△AEH 中 GAB HAE AB AEABG AEH⎧∠∠⎪⎨⎪∠∠⎩===∴△ABG ≌△AEH .……………………2分∴BG=EH ,AG=AH .∵∠GAH=∠EAB=60°,O∴△AGH是等边三角形.∴AG=HG.∴EG=AG+BG;……………………3分(2)线段EG、AG、BG之间的数量关系是EG+BG =AG.………4分证明:如图2,作∠GAH=∠EAB交GE的延长线于点H,则∠GAB=∠HAE.∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°.∴∠ABG=∠AEH.……………………5分在△ABG和△AEH中,∴△ABG≌△AEH.……………………6分∴BG=EH,AG=AH.∵∠GAH=∠EAB=90°,∴△AGH是等腰直角三角形.∴AG=HG,∴EG+BG =AG. (7)。

2018-2019学年新人教版八年级数学下册期中试题(含答案)

2018-2019学年新人教版八年级数学下册期中试题(含答案)

2018-2019学年八年级(下)期中数学试卷一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.2.以下各式不是代数式的是()A.0B.C.D.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.85.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.256.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF8.计算的结果是()A.2+B.C.2﹣D.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是.12.化简的结果是.13.若长方形相邻两边的长分别是cm和cm,则它的周长是cm.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有(填序号).15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.16.若成立,则x满足.17.若a﹣=,则a+=.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列式子为最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=,不是最简二次根式,故此选项错误;B、是最简二次根式,故此选项正确;C、=2,不是最简二次根式,故此选项错误;D、=2,不是最简二次根式,故此选项错误;故选:B.【点评】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.2.以下各式不是代数式的是()A.0B.C.D.【分析】代数式是指把数或表示数的字母用+、﹣、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.由此可得答案.【解答】解:A、0是单独数字,是代数式;B、是代数式;C、是不等式,不是代数式;D、是数字,是代数式;故选:C.【点评】此类问题主要考查了代数式的定义,只要根据代数式的定义进行判断,就能熟练解决此类问题.3.在△ABC中,AC2﹣AB2=BC2,那么()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定【分析】先把AC2﹣AB2=BC2转化为AC2=AB2+BC2的形式,再由勾股定理的逆定理可判断出△ABC是直角三角形,再根据大边对大角的性质即可作出判断.【解答】解:∵AC2﹣AB2=BC2,∴AC2=AB2+BC2,∴△ABC是直角三角形,∴∠B=90°.故选:B.【点评】本题考查的是勾股定理的逆定理,即果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如果是一个正整数,那么x可取的最小正整数的值是()A.2B.3C.4D.8【分析】首先化简,再确定x的最小正整数的值.【解答】解:=3,x可取的最小正整数的值为2,故选:A.【点评】此题主要考查了二次根式有意义的条件,关键是正确进行化简.5.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=64,S3=289,则S2为()A.15B.225C.81D.25【分析】根据正方形的面积公式求出BC、AB,根据勾股定理计算即可.【解答】解:∵S1=64,S3=289,∴BC=8,AB=17,由勾股定理得,AC==15,∴S2=152=225,故选:B.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.6.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选:C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.7.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF【分析】设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.【点评】考查了勾股定理逆定理的应用.8.计算的结果是()A.2+B.C.2﹣D.【分析】原式利用积的乘方变形为=[(+2)(﹣2)]2017•(﹣2),再利用平方差公式计算,从而得出答案.【解答】解:原式=(+2)2017•(﹣2)2017•(﹣2)=[(+2)(﹣2)]2017•(﹣2)=(﹣1)2017•(﹣2)=﹣(﹣2)=2﹣,故选:C.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则及积的乘方的运算法则.9.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选:A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.10.如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm【分析】根据折叠前后角相等可证AO=CO,在直角三角形ADO中,运用勾股定理求得DO,再根据线段的和差关系求解即可.【解答】解:根据折叠前后角相等可知∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠ACD,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,AB=CD=DO+CO=3+5=8cm.故选:C.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题(每小题4分,共20分)11.命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【分析】如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题,如果把其中一个叫做原命题,那么把另一个叫做它的逆命题.故只需将命题“若a=b,则a2=b2”的题设和结论互换,变成新的命题即可.【解答】解:命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【点评】写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.12.化简的结果是5.【分析】根据二次根式的性质解答.【解答】解:=|﹣5|=5.【点评】解答此题,要弄清二次根式的性质:=|a|的运用.13.若长方形相邻两边的长分别是cm和cm,则它的周长是14cm.【分析】直接化简二次根式进而计算得出答案.【解答】解:∵长方形相邻两边的长分别是cm和cm,∴它的周长是:2(+)=2(2+5)=14(cm).故答案为:14.【点评】此题主要考查了二次根式的应用,正确化简二次根式是解题关键.14.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有②④(填序号).【分析】勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,根据定义即可求解.【解答】解:①1、2、3不属于勾股数;②6、8、10属于勾股数;③0.3、0.4、0.5不属于勾股数;④9、40、41属于勾股数;∴勾股数只有2组.故答案为:②④【点评】本题考查了勾股数的定义,注意:作为勾股数的三个数必须是正整数,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.15.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了4步路(假设2步为1米),却踩伤了花草.【分析】本题关键是求出路长,即三角形的斜边长.求两直角边的和与斜边的差.【解答】解:根据勾股定理可得斜边长是=5m.则少走的距离是3+4﹣5=2m,∵2步为1米,∴少走了4步,故答案为:4.【点评】本题就是一个简单的勾股定理的应用问题.16.若成立,则x满足2≤x<3.【分析】根据二次根式有意义及分式有意义的条件,即可得出x的取值范围.【解答】解:∵成立,∴,解得:2≤x<3.故答案为:2≤x<3.【点评】本题考查了二次根式的乘除法及二次根式及分式有意义的条件,关键是掌握二次根式有意义:被开方数为非负数,分式有意义:分母不为零.17.若a﹣=,则a+=.【分析】根据完全平方公式即可求出答案.【解答】解:由题意可知:(a﹣)2=2017,∴a2﹣2+=2017∴a2+2+=2021∴(a+)2=2021∴a+=±故答案为:±【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.18.有一个边长为2m的正方形洞口,想用一个圆形盖住这个洞口,圆形盖的半径至少是m.【分析】根据圆形盖的直径最小应等于正方形的对角线的长,才能将洞口盖住,根据勾股定理进行解答.【解答】解:∵正方形的边长为2m,∴正方形的对角线长为=2(m),∴想用一个圆盖去盖住这个洞口,则圆形盖的半径至少是m;故答案为【点评】本题考查的是正多边形和圆、勾股定理的应用,根据正方形和圆的关系确定圆的半径是解题的关键.19.对于任意不相等的两个实数a、b,定义运算※如下:a※b=,如3※2=.那么8※12=﹣.【分析】根据所给的式子求出8※12的值即可.【解答】解:∵a※b=,∴8※12===﹣.故答案为:﹣.【点评】本题考查的是算术平方根,根据题意得出8※12=是解答此题的关键.20.如图,OP=1,过点P作PP1⊥OP,得PP1=1;连接OP1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,连接OP2,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,连接OP3,得OP3=2;…依此法继续作下去,得OP2013=.【分析】根据勾股定理分别求出每个直角三角形斜边长,根据结果得出规律,即可得出答案.【解答】解:∵OP1=,由勾股定理得:OP2==,OP3==,…OP2013=,故答案为:.【点评】本题考查了勾股定理的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方,解此题的关键是能根据求出的结果得出规律.三、解答题(本大题共6个小题,共70分)21.(12分)(1)5.(2).【分析】(1)先化简各二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除运算法则计算可得.【解答】解:(1)原式=5×+4﹣=5﹣;(2)原式=×()=×==.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.22.(12分)将Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的三条边.(1)已知a=,b=3,求c的长.(2)已知c=13,b=12,求a的长.【分析】(1)利用勾股定理计算c边的长;(2)利用勾股定理计算a边的长;【解答】解:(1)∵∠C=90°,a=,b=3.∴c==4(2))∵∠C=90°,c=13,b=12,∴a==5【点评】本题主要考查了勾股定理的应用,属于基础题.23.(10分)先化简,再求值:(a2b+ab)÷,其中a=+1,b=﹣1.【分析】根据分式的除法可以化简题目中的式子,然后将a、b代入化简后的式子即可解答本题.【解答】解:(a2b+ab)÷=ab(a+1)=ab,当a=+1,b=﹣1时,原式==3﹣1=2.【点评】本题考查分式的化简求值、分母有理化,解答本题的关键是明确分式化简求值的方法.24.(10分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.【分析】过A作CD⊥AB.修建公路CD,则工厂C到公路的距离最短,首先证明△ABC是直角三角形,然后根据三角形的面积公式求得CD的长.【解答】解:过A作CD⊥AB,垂足为D,∵6002+8002=10002,∴AC2+BC2=AB2,∴∠ACB=90°,S=AB•CD=AC•BC,△ACB×600×800=×1000×DB,解得:BD=480,∴新建的路的长为480m.【点评】此题主要考查了勾股定理逆定理以及三角形的面积公式,关键是证明△ABC是直角三角形.25.(12分)如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD的长.【分析】先设CD=x,则BD=BC+CD=9+x,再运用勾股定理分别在△ACD与△ABD中表示出AD2,列出方程,求解即可.【解答】解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得x=6,∴AD2=102﹣62=64,∴AD=8.故AD的长为8.【点评】本题主要考查了勾股定理的运用,根据AD的长度不变列出方程是解题的关键.26.(14分)阅读下面的问题:﹣1;=;;……(1)求与的值.(2)已知n是正整数,求与的值;(3)计算+.【分析】(1)根据分母有理化可以解答本题;(2)根据分母有理化可以解答本题;(3)根据(2)中的结果可以解答本题.【解答】解:(1)==,==;(2)==,==;(3)+==﹣1+=﹣1+10=9.【点评】本题考查二次根式的化简求值、分母有理化,解答本题的关键是明确二次根式化简求值的方法.。

2018人教版八年级数学下册期中试卷含答案

2018人教版八年级数学下册期中试卷含答案

期中检测数学试题(本试卷共五大题,26小题,共150分,考试时间120分钟)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卡上的表格中.1、在代数式23451,,,,23x b x x y x y a π+-+-中,分式有 ( ) A 、 2个 B 、3个 C 、4 个 D 、5个2、成人体内成熟的红细胞的平均直径一般为0.000007245m 保留三个有效数字的近似数,可以用科学记数法表示为 ( ) A 、57.2510m -⨯ B 、67.2510m ⨯ C 、67.2510m -⨯ D 、67.2410m -⨯ 3、下面正确的命题中,其逆命题不成立的是( )A 、同旁内角互补,两直线平行B 、全等三角形的对应边相等C 、对顶角相等D 、角平分线上的点到这个角的两边的距离相等 4、 反比例函数y=-5x的图象位于( ) A 、第一,二象限 B 、第一,三象限 C 、第二,三象限 D 、第二,四象限 5、计算:329632-÷--+m m m m 的结果为( ) A 、1 B 、33+-m m C 、33-+m m D 、33+m m6、一支蜡烛长20厘米,点燃后每小时燃烧掉5厘米.若用t (时)表示燃烧时间,用h (厘米)表示剩余长度,则下列图象能反映这一变化过程的是( ).7、在同一直角坐标系中,函数y=kx+k 与(0)ky k x =≠的图像大致是( )8、在下列以线段a 、b 、c 的长为边,能构成直角三角形的是( )A 、a = 3,b = 4,c = 6B 、a = 5,b = 6,c = 7C 、a = 6,b = 8,c = 9D 、a = 7,b = 24,c = 25 9、已知113x y -=,则55x xy y x xy y+---的值为( ) A 、 72-B 、 72C 、 27D 、 ―2710、如图,有一块直角三角形纸片,两直角边6,8AC cm BC cm ==, 现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE重合。

人教版八年级数学下册2018--2019学年第二学期期中考试题及答案详解

人教版八年级数学下册2018--2019学年第二学期期中考试题及答案详解

人教版2018—2019学年度第二学期 八年级数学下册期中考试题及答案详解一、选择题(共10小题,每题3分,共30分)1.(3分)下列各组三条线段组成的三角形是直角三角形的是( ) A .2,3,4B .1,1,C .6,8,11D .2,2,32.(3分)下列式子是最简二次根式的是( ) A .B .C .D .3.(3分)的值是( )A .2B .﹣2C .±2D .44.(3分)下列二次根式中,x 的取值范围是x ≥3的是( ) A .B .C .D .5.(3分)如图所示,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前( )米.A .15B .20C .3D .246.(3分)如图,已知圆柱底面的周长为6cm ,圆柱高为3cm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )cm .A .3B .6C .D .67.(3分)下列各式计算错误的是( ) A .B .C .D .8.(3分)下列三个命题:①对顶角相等;②两直线平行,内错角相等;③相等的两个实数的平方也相等.它们的逆命题成立的个数是( ) A .0个B .1个C .2个D .3个9.(3分)已知,如图,△ABC 中,∠A =90°,D 是AC 上一点,且∠ADB =2∠C ,P 是BC 上任一点,PE ⊥BD 于E ,PF ⊥AC 于F ,下列结论:①△DBC 是等腰三角形;②∠C =30°;③PE +PF =AB ;④PE 2+AF 2=BP 2,其中正确的结论是( )A .①②B .①③④C .①④D .①②③④10.(3分)如图,动点P 从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A .(1,4)B .(5,0)C .(7,4)D .(8,3)二、填空题(共6小题,每题3分,共18分)11.(3分)已知是整数,则满足条件的最小正整数n 是 .12.(3分)直角三角形中有两条边分别为5和12,则第三条边的长是 . 13.(3分)= .14.(3分)在四边形ABCD 中,AB =CD ,AD =BC ,∠A =50°,则∠C = ..............密..............封..............线..............内..............不..............要.............答.............题..............15.(3分)如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是.16.(3分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为.三、解答题(共8题,共72分)17.(8分)在△ABC中,AB=13,BC=10,BC边上的中线AD=12,求AC长.18.(8分)计算:(1)2(2)19.(8分)如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)连接BE交AC于点F,求证:AC平分BE.20.(8分)如图,直角坐标系中的网格由单位正方形构成,△ABC中,A点坐标为(2,3),B点坐标为(﹣2,0),C点坐标为(0,﹣1).(1)AC的长为;(2)求证:AC⊥BC;(3)若以A、B、C及点D为顶点的四边形为平行四边形ABCD,画出平行四边形ABCD,并写出D点的坐标.21.(8分)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.22.(10分)如图,△ACB与△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边所在射线ED上运动.(1)当∠ACE<90°时,求证:AE2+AD2=2AC2;(2)当∠ACE>90°时,问题(1)中的结论,是否还成立?若成立,请画出图形,并证明;若不成立,请说明理由.(3)若EC=3,点A从点E运动到点D时,点B运动的路径长为.23.(10分)如图,在平行四边形ABCD 中,E 是AD 上一点,连接BE ,F 为BE 中点,且AF =BF . (1)求证:四边形ABCD 为矩形;(2)过点F 作FG ⊥BE ,垂足为F ,交BC 于点G ,若BE =BC ,S △BFG =5,CD =4.求CG .24.(12分)如图,在平面直角坐标系中,有一个Rt △ABC ,点B 和原点重合.其中,∠B =90°,∠C =30°,C (,0).点D 从点C 出发沿CA 方向以每秒2个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(t >0).过点D 作DF ⊥BC 于点F ,连接DE 、EF . (1)求证:AE =DF(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由. (3)当t 为何值时,△DEF 为直角三角形?请说明理由.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每题3分,共30分)1.(3分)下列各组三条线段组成的三角形是直角三角形的是()A.2,3,4B.1,1,C.6,8,11D.2,2,3【解答】解:A、22+32≠42,不能构成直角三角形,故选项错误;B、12+12=()2,能构成直角三角形,故选项正确;C、62+82≠112,不能构成直角三角形,故选项错误;D、22+22≠32,不能构成直角三角形,故选项错误.故选:B.2.(3分)下列式子是最简二次根式的是()A.B.C.D.【解答】解:A、=,此选项不符合题意;B、是最简二次根式,符合题意;C、=|a|,此选项不符合题意;D、=2,此选项不符合题意;故选:B.3.(3分)的值是()A.2B.﹣2C.±2D.4【解答】解:∵表示4的算术平方根,∴=2.故选:A.4.(3分)下列二次根式中,x的取值范围是x≥3的是()A.B.C.D.【解答】解:A、根据二次根式有意义的条件可得:3﹣x≥0,解得x≤3,故此选项错误;B、根据二次根式有意义的条件可得:6+2x≥0,解得x≥﹣3,故此选项错误;C、根据二次根式有意义的条件可得:x﹣3≥0,解得x≥3,故此选项正确;D、根据二次根式有意义的条件可得:x+3≥0,解得x≥﹣3,故此选项错误;故选:C.5.(3分)如图所示,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前()米.A.15B.20C.3D.24【解答】解:因为AB=9米,AC=12米,根据勾股定理得BC==15米,于是折断前树的高度是15+9=24米.故选:D.6.(3分)如图,已知圆柱底面的周长为6cm,圆柱高为3cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()cm.A.3B.6C.D.6【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为6cm,圆柱高为3cm,∴AB=3cm,BC=BC′=3cm,∴AC2=32+32=18,∴AC=3cm,∴这圈金属丝的周长最小为2AC=6cm.故选:B.7.(3分)下列各式计算错误的是()A.B.C.D.【解答】解:A、4﹣=3,此选项计算正确;B、×=,此选项计算正确;C、=()2﹣()2=3﹣2=1,此选项计算错误;D、÷==3,此选项计算正确;故选:C.8.(3分)下列三个命题:①对顶角相等;②两直线平行,内错角相等;③相等的两个实数的平方也相等.它们的逆命题成立的个数是()A.0个B.1个C.2个D.3个【解答】解:①对顶角相等的逆命题是相等的角是对顶角,不成立;②两直线平行,内错角相等的逆命题是内错角相等,两直线平行,成立;③相等的两个实数的平方也相等的逆命题是两个实数的平方相等,这两个数相等,不成立;故选:B.9.(3分)已知,如图,△ABC中,∠A=90°,D是AC上一点,且∠ADB=2∠C,P是BC上任一点,PE⊥BD于E,PF⊥AC于F,下列结论:①△DBC是等腰三角形;②∠C=30°;③PE+PF=AB;④PE2+AF2=BP2,其中正确的结论是()A.①②B.①③④C.①④D.①②③④【解答】解:在△BCD中,∠ADB=∠C+∠DBC,∵∠ADB=2∠C,∴∠C=∠DBC,∴DC=DB,∴△DBC是等腰三角形,故①正确;无法说明∠C=30°,故②错误;连接PD,则S△BCD=BD•PE+DC•PF=DC•AB,∴PE+PF=AB,故③正确;过点B作BG∥AC交FP的延长线于G,则∠C=∠PBG,∠G=∠CFP=90°,∴∠PBG=∠DBC,四边形ABGF是矩形,∴AF=BG,在△BPE和△BPG中,,∴△BPE≌△BPG(AAS),∴BG=BE,∴AF=BE,在Rt△PBE中,PE2+BE2=BP2,即PE2+AF2=BP2,故④正确.综上所述,正确的结论有①③④.故选:B.10.(3分)如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A .(1,4)B .(5,0)C .(7,4)D .(8,3)【解答】解:如图,经过6次反弹后动点回到出发点(0,3), ∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹, 点P 的坐标为(7,4). 故选:C .二、填空题(共6小题,每题3分,共18分) 11.(3分)已知是整数,则满足条件的最小正整数n是 2 .【解答】解:∵8=22×2,∴n 的最小值是2. 故答案为:2.12.(3分)直角三角形中有两条边分别为5和12,则第三条边的长是 13或.【解答】解:①当12为斜边时,则第三边==;②当12是直角边时,第三边==13.故答案为:13或. 13.(3分)= 2.【解答】解:==×=2.14.(3分)在四边形ABCD 中,AB =CD ,AD =BC ,∠A =50°,则∠C = 50° .【解答】解:∵AB =CD ,AD =BC , ∴四边形ABCD 是平行四边形, ∴∠C =∠A , ∴∠A =50°, ∴∠C =50°,故答案为50°15.(3分)如图,在矩形纸片ABCD 中,AB =2,AD =3,点E 是AB 的中点,点F 是AD 边上的一个动点,将△AEF 沿EF 所在直线翻折,得到△A ′EF ,则A ′C 的长的最小值是﹣1 .【解答】解:以点E 为圆心,AE 长度为半径作圆,连接CE ,当点A ′在线段CE 上时,A ′C 的长取最小值,如图所示.根据折叠可知:A ′E =AE =AB =1.在Rt △BCE 中,BE =AB =1,BC =3,∠B =90°,∴CE ==,∴A ′C 的最小值=CE ﹣A ′E =﹣1. 故答案为:﹣1.16.(3分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为6.【解答】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,则AB=6.故答案为:6.三、解答题(共8题,共72分)17.(8分)在△ABC中,AB=13,BC=10,BC边上的中线AD=12,求AC长.【解答】解:∵AD是中线,AB=13,BC=10,∴BD=BC=5.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13.18.(8分)计算:(1)2(2)【解答】解:(1)原式=4﹣2+12=14;(2)原式==15.19.(8分)如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)连接BE交AC于点F,求证:AC平分BE.【解答】证明:(1)∵DE∥AC,CE∥BD,∴四边形DOCE是平行四边形,∵矩形ABCD的对角线AC、BD相交于点O,∴OC =AC =BD =OD ,∴四边形OCED 为菱形; (2)连接BE 交AC 于点F ,∵四边形OCED 为菱形, ∴OD =CE ,OD ∥CE , ∴∠OBF =∠CEF , ∵矩形ABCD , ∴BO =OD , ∴OB =CE , 在△BOF 与△ECF 中,∴△BOF ≌△ECF , ∴BF =EF , 即AC 平分BE .20.(8分)如图,直角坐标系中的网格由单位正方形构成,△ABC 中,A 点坐标为(2,3),B 点坐标为(﹣2,0),C 点坐标为(0,﹣1). (1)AC的长为2;(2)求证:AC ⊥BC ;(3)若以A 、B 、C 及点D 为顶点的四边形为平行四边形ABCD ,画出平行四边形ABCD ,并写出D 点的坐标 (0,4),(4,2),(﹣4,﹣4). .【解答】(1)解:AC =,故答案为:2;(2)∵BC 2=12+22=5,AB 2=32+42=25,AC 2=20, ∵BC 2+AC 2=AB 2, ∴△ABC 是直角三角形, ∴AC ⊥BC ;(3)如图所示:D 点的坐标(0,4),(4,2),(﹣4,﹣4), 故答案为:(0,4),(4,2),(﹣4,﹣4).21.(8分)已知x =2﹣,求代数式(7+4)x 2+(2+)x +的值.【解答】解:x 2=(2﹣)2=7﹣4, 则原式=(7+4)(7﹣4)+(2+)(2﹣)+=49﹣48+1+=2+.22.(10分)如图,△ACB与△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边所在射线ED上运动.(1)当∠ACE<90°时,求证:AE2+AD2=2AC2;(2)当∠ACE>90°时,问题(1)中的结论,是否还成立?若成立,请画出图形,并证明;若不成立,请说明理由.(3)若EC=3,点A从点E运动到点D时,点B 运动的路径长为3.【解答】(1)证明:连接BD,∵△ACB和△ECD都是等腰直角三角形∴∠ACB=∠ECD=90°,AC=BC,EC=DC,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS)∴BD=AE,∠BDC=∠E,∵∠E+∠CDE=90°,∴∠BDC+∠CDE=90°,即∠ADB=90°,在Rt△ADB中,BD2+AD2=AB2,∵AB2=2AC2,∴AE2+AD2=2AC2.(2)结论仍然成立.如图所示:理由:∵△ACB和△ECD都是等腰直角三角形∴∠ACB=∠ECD=90°,AC=BC,EC=DC,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS)∴BD=AE,∠BDC=∠E,∵∠E+∠CDE=90°,∴∠BDC+∠CDE=90°,即∠ADB=90°,在Rt△ADB中,BD2+AD2=AB2,∵AB2=2AC2,∴AE2+AD2=2AC2.(3)∵△ACE≌△BCD,∴EA=BD,∵DE=3,∴点B运动的路径长为3,故答案为3.23.(10分)如图,在平行四边形ABCD 中,E 是AD 上一点,连接BE ,F 为BE 中点,且AF =BF . (1)求证:四边形ABCD 为矩形;(2)过点F 作FG ⊥BE ,垂足为F ,交BC 于点G ,若BE =BC ,S △BFG =5,CD =4.求CG .【解答】(1)证明:∵F 为BE 中点,AF =BF , ∴AF =BF =EF ,∴∠BAF =∠ABF ,∠FAE =∠AEF ,在△ABE 中,∠BAF +∠ABF +∠FAE +∠AEF =180°, ∴∠BAF +∠FAE =90°, 又四边形ABCD 为平行四边形, ∴四边形ABCD 为矩形;(2)解:连接EG ,过点E 作EH ⊥BC ,垂足为H , ∵F 为BE 的中点,FG ⊥BE , ∴BG =GE ,∵S △BFG =5,CD =4,∴S △BGE =10=BG •EH ,∴BG =GE =5,在Rt △EGH 中,GH ==3,在Rt △BEH 中,BE ==BC ,∴CG =BC ﹣BG =4﹣5.24.(12分)如图,在平面直角坐标系中,有一个Rt △ABC ,点B 和原点重合.其中,∠B =90°,∠C =30°,C (,0).点D 从点C 出发沿CA 方向以每秒2个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(t >0).过点D 作DF ⊥BC 于点F ,连接DE 、EF . (1)求证:AE =DF(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由. (3)当t 为何值时,△DEF 为直角三角形?请说明理由.【解答】(1)证明:在△DFC 中,∠DFC =90°,∠C =30°,DC =2t , ∴DF =CD =t .又∵AE =t , ∴AE =DF .(2)解:四边形AEFD 能够成为菱形.理由如下: 设AB =x ,∵∠B =90°,∠C =30°, ∴AC =2AB =2x .由勾股定理得,(2x )2﹣x 2=(5)2,解得:x =5,∴AB=5,AC=10.∴AD=AC﹣DC=10﹣2t.∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.若使四边形AEFD为菱形,则需AE=AD,即t=10﹣2t,解得:t=.即当t=时,四边形AEFD为菱形.(3)解:当t=秒或4秒时,△DEF为直角三角形,理由如下:分情况讨论:①当∠EDF=90°时,AD=2AE,即10﹣2t=2t,∴t=.②∠DEF=90°时,AD=AE,即10﹣2t=t,∴t=4.③∠EFD=90°时,此种情况不存在.故当t=秒或4秒时,△DEF为直角三角形.。

2018年最新人教版八年级(下)期中数学试卷

2018年最新人教版八年级(下)期中数学试卷

2013-2014学年贵州省毕节地区大方四中八年级(下)期中数学试卷一、选择题(每题3分,共30分)1. 不等式2x<4的解集是()A.x<2B.x>2C.x>12D.x<122. 在数轴上表示不等式x≥−2的解集,正确的是()A.B.C.D.3. 将图形按顺时针方向旋转90∘后的图形是()A. B. C. D.4. 下列四幅图案中,能通过轴对称由图案1得到的是()A. B.C. D.5. 面积相等的两个三角形()A.必定全等B.必定不全等C.不一定全等D.以上答案都不对6. 已知等腰三角形的两边长分别为5cm、2cm,则该等腰三角形的周长是()A.7cmB.9cmC.12cm或者9cmD.12cm7. 下列图形中,旋转120∘后能与原图形重合的是()A.等边三角形 B.正方形C.正五边形D.正八边形8. 若等腰三角形的顶角为40∘,则它的底角度数为( )A.40∘B.50∘C.60∘D.70∘9. 已知△ABC的三边长分别是6cm、8cm、10cm,则△ABC的面积是()A.24cm2B.30cm2C.40cm2D.48cm210. 到三角形三条边的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高线二、填空题(每题4分,共40分)若3a>3b,则a________b(填不等号).如图,ED为△ABC的AC边的垂直平分线,且AB=5,△BCE的周长为8,则BC=________.不等式2x−1<0的解集是________.用不等式表示:m的2倍与n的差是非负数:________.不等式−3x<6的负整数解是________.如图,△ABC沿BC方向平移到△DEF的位置,若BE=2cm,则CF=________.9点30分,时钟的时针和分针的夹角是________.在△ABC中,∠A:∠B:∠C=1:2:3,AB=6cm,则BC=________cm.“等边对等角”的逆命题是________.用反证法证明“一个三角形中不能有两个是直角或钝角”时应假设________.三、解答题解不等式.(1)5x−6≤2(x+3)(2)x2−x3≤1.解不等式组,并把解集在数轴上表示出来. (1){x −5<−32x <−2(2){3+x ≤2(x −2)+75x −1<3(x +1).(1)如图1,经过平移,△ABC 的边AB 移到了EF ,作出平移后的三角形.(2)如图2所示,在边长为1的网格中作出△ABC 绕点A 按逆时针方向旋转90度后的图形△A 1B 1C 1.如图,DC ⊥CA ,EA ⊥CA ,CD =AB ,CB =AE .求证:△BCD ≅△EAB .已知:如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD =CD .求证:D 点在∠BAC 的平分线上.在同一坐标系中画出一次函数y 1=−x +1与y 2=2x −2的图象,并根据图象回答下列问题: (1)写出直线y 1=−x +1与y 2=2x −2的交点P 的坐标. (2)直接写出:当x 取何值时y 1>y 2;y 1<y 2.某单位要制作一批宣传材料,联系了两家设计公司,甲公司提出:每份材料收费20元,另外加收3000元设计费,乙公司提出:每份材料收费30元,不收设计费. (1)什么时候选甲公司比选乙公司合算?(2)什么时候选乙公司比选甲公司合算?(3)什么时候选甲公司与选乙公司费用相等?参考答案与试题解析2013-2014学年贵州省毕节地区大方四中八年级(下)期中数学试卷一、选择题(每题3分,共30分)1.【答案】A【考点】解一元一次不等式【解析】利用不等式的基本性质,把不等号两边直接除以2即可.【解答】解:2x<4,2x2<4÷2,∴x<2.故选:A.2.【答案】C【考点】在数轴上表示不等式的解集【解析】根据在数轴上表示不等式解集的方法利用排除法进行解答.【解答】解:∵不等式x≥−2中包含等于号,∴必须用实心圆点,∴可排除A,B,∵不等式x≥−2中是大于等于,∴折线应向右折,∴可排除D.故选C.3.【答案】D【考点】生活中的旋转现象旋转对称图形【解析】根据旋转的性质,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变;图片按顺时针方向旋转90∘,分析可得答案.【解答】解:根据旋转的意义,图片按顺时针方向旋转90∘,分析可得D符合.故选D.4. 【答案】D【考点】利用轴对称设计图案【解析】利用轴对称图形的性质可得出能通过轴对称由已知图案得到则其形状完全一样,进而判断即可.【解答】解:能通过轴对称由已知图案得到的是:选项D.故选:D.5.【答案】C【考点】全等三角形的判定【解析】两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边和对应高不一定相等,故面积相等的两个三角形不一定全等.【解答】解:因为两个面积相等的三角形,则面积的2倍也相等,也就是底乘高相等;但是一个数可以有许多不同的因数,所以说这两个三角形的对应边、对应高不一定相等;故面积相等的两个三角形不一定全等.故选C.6.【答案】D【考点】三角形三边关系等腰三角形的性质【解析】题目给出等腰三角形有两条边长为4cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.∴其周长是12cm.7.【答案】A【考点】旋转对称图形【解析】根据旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.【解答】解:∵等边△ABC的中心角为360÷3=120∘,∴旋转120∘后即可和原来的正多边形重合.故选:A.8.【答案】 D【考点】等腰三角形的性质 【解析】根据等腰三角形的性质和三角形内角和定理可直接求出其底角的度数. 【解答】解:因为等腰三角形的两个底角相等, 又因为顶角是40∘, 所以其底角为180∘−40∘2=70∘.故选D . 9.【答案】 A【考点】勾股定理的逆定理 【解析】因为三角形的边长是6cm 、8cm 、10cm ,根据勾股定理的逆定理可求出此三角形为直角三角形,从而可求出面积. 【解答】∵ 62+82=102,∴ △ABC 是直角三角形.∴ △ABC 的面积为:12×6×8=24. 10.【答案】 A【考点】三角形的内切圆与内心 【解析】到三角形三条边距离相等的点是三角形的内心. 【解答】到三角形三条边距离相等的点是三角形的内心,即三个内角平分线的交点. 二、填空题(每题4分,共40分) 【答案】 >【考点】 不等式的性质 【解析】根据不等式的基本性质2进行解答即可. 【解答】解:∵ 3a >3b , ∴ 3a3>3b 3,即a >b .故答案为:>. 【答案】 3【考点】线段垂直平分线的性质 【解析】根据ED 为AC 上的垂直平分线,得出AE =CE ,再根据AB =5,△BCE 的周长为AB +BC =8,即可求得BC . 【解答】解:∵ ED 为AC 上的垂直平分线, ∴ AE =EC ,∵ AB =AE +EB =5,△BCE 的周长=AE +BE +BC =AB +BC =8, ∴ BC =8−5=3. 故答案为:3. 【答案】 x <12【考点】解一元一次不等式 【解析】首先移项,然后化系数为1即可求解. 【解答】解:∵ 2x −1<0, ∴ 2x <1, ∴ x <12. 故答案为:x <12.【答案】 2m −n ≥0 【考点】由实际问题抽象出一元一次不等式 【解析】m 的2倍为2m ,与n 的差为2m −n ,非负数即≥0,据此列不等式. 【解答】解:由题意得,2m −n ≥0. 故答案为:2m −n ≥0. 【答案】 x >−2 【考点】一元一次不等式的整数解 【解析】不等式两边同时除以−3,把不等式中未知数的系数化成1即可求解.【解答】解:不等式两边同时除以−3,得:x>−2.故答案是:x>−2.【答案】2cm【考点】平移的性质【解析】根据平移的性质可得BC=EF,然后求出BE=CF.【解答】解:∵△ABC沿BC方向平移得到△DEF,∴BC=EF,∴BC−EC=EF−EC,即BE=CF,∵BE=2cm,∴CF=2cm.故答案为:2.【答案】105∘【考点】钟面角【解析】画出草图,利用钟表表盘的特征解答.【解答】解:9:30,时针和分针中间相差3.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30∘,∴9:30分针与时针的夹角是3.5×30∘=105∘.【答案】3【考点】含30度角的直角三角形【解析】先根据已知和三角形内角和定理求出∠A、∠C,根据含30度角的直角三角形性质求出即可.【解答】解:∵∠A+∠B+∠C=180∘,∠A:∠B:∠C=1:2:3,∴∠A=30∘,∠C=90∘,∵AB=6cm,∴BC=12AB=3cm,故答案为:3.【答案】等角对等边【考点】命题与定理【解析】交换命题的题设和结论即可得到该命题的逆命题;【解答】“等边对等角”的逆命题是等角对等边;【答案】这个三角形中有两个角是直角或钝角【考点】反证法【解析】熟记反证法的步骤,直接填空即可.【解答】解:用反证法证明一个三角形中不能有两个是直角或钝角时,应先假设这个三角形中有两个角是直角或钝角.故答案为:这个三角形中有两个角是直角或钝角.三、解答题【答案】解:(1)去括号得,5x−6≤2x+6,移项得,5x−2x≤6+6,合并同类项得,3x≤12,把x的系数化为1得,x≤4;(2)去分母得,3x−2x≤6.把x的系数化为1得,x≤6.【考点】解一元一次不等式【解析】(1)先去括号,再移项、合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,再移项、合并同类项,把x的系数化为1即可.【解答】解:(1)去括号得,5x−6≤2x+6,移项得,5x−2x≤6+6,合并同类项得,3x≤12,把x的系数化为1得,x≤4;(2)去分母得,3x−2x≤6.把x的系数化为1得,x≤6.【答案】解:(1){x−5<−32x<−2,由①得,x<2,由②得,x<−1,故不等式组的解集为:x<−1;(2){3+x≤2(x−2)+75x−1<3(x+1),由①得,x≥0,由②得,x<2,故不等式组的解集为:0≤x<2.【考点】解一元一次不等式组在数轴上表示不等式的解集【解析】 (1)、(2)分别求出各不等式的解集,再求出其公共解集即可. 【解答】解:(1){x −5<−32x <−2,由①得,x <2,由②得,x <−1,故不等式组的解集为:x <−1;(2){3+x ≤2(x −2)+75x −1<3(x +1),由①得,x ≥0,由②得,x <2,故不等式组的解集为:0≤x <2. 【答案】 解:(1)如图1,连接AE ,BF ,过C 点作线段CG // BF ,且CG =BF , 连接FG ,EG ,△EFG 即为所求. (2)如图2,【考点】作图-旋转变换作图-平移变换 【解析】(1)连接AE ,BF ,利用平移时,对应点的连线段平行且相等,作线段CG // BF ,且CG =BF ,得出G 点,△EFG 即为所求;(2)据网格结构找出点A 、B 、C 绕点A 按逆时针方向旋转90∘后的对应点A 1、B 1、C 1的位置,然后顺次连接即可. 【解答】 解:(1)如图1,连接AE ,BF ,过C 点作线段CG // BF ,且CG =BF , 连接FG ,EG ,△EFG 即为所求. (2)如图2,【答案】解:如图,∵ DC ⊥CA ,EA ⊥CA , ∴ ∠C =∠A =90∘,∴ 在△BCD 与△EAB 中{CD =AB,∠C =∠A,CB =AE,∴ △BCD ≅△EAB(SAS). 【考点】全等三角形的判定 【解析】根据全等三角形的判定定理SAS 证得结论. 【解答】解:如图,∵ DC ⊥CA ,EA ⊥CA , ∴ ∠C =∠A =90∘,∴ 在△BCD 与△EAB 中{CD =AB,∠C =∠A,CB =AE,∴ △BCD ≅△EAB(SAS). 【答案】证明:∵ CE ⊥AB ,BF ⊥AC , ∴ ∠BED =∠CFD =90∘, 在△BDE 和△CDF 中, {∠BED =∠CFD =90∘∠BDE =∠CDF BD =CD, ∴ △BDE ≅△CDF(AAS), ∴ DE =DF ,又∵ CE ⊥AB ,BF ⊥AC ,∴D在∠BAC的平分线上.【考点】全等三角形的性质角平分线的性质等腰三角形的判定与性质【解析】首先根据已知条件易证Rt△BDE≅Rt△CDF(AAS),则DE=DF,再由角平分线性质的逆定理可得D在∠BAC的平分线上.【解答】证明:∵CE⊥AB,BF⊥AC,∴∠BED=∠CFD=90∘,在△BDE和△CDF中,{∠BED=∠CFD=90∘∠BDE=∠CDFBD=CD,∴△BDE≅△CDF(AAS),∴DE=DF,又∵CE⊥AB,BF⊥AC,∴D在∠BAC的平分线上.【答案】解:如图;由图知:①P(1, 0);②当x<1时,y1>y2;当x>1时,y1<y2.【考点】一次函数与二元一次方程(组)一次函数与一元一次不等式【解析】本题要先画出函数图象,然后通过观察图象,得出结论.【解答】解:如图;由图知:①P(1, 0);②当x<1时,y1>y2;当x>1时,y1<y2.【答案】解:设制作宣传材料数为x,由“甲广告公司提出:每份材料收费20元,另收设计费3000元;乙广告公司提出:每份材料收费30元,不收设计费”得:甲广告公司的收费为20x+3000,乙广告公司收费为30x.∴20x+3000−30x≥0,∴x≤300.故(1)x>300时选择甲公司比较合算;(2)x<300时选择乙公司比较合算;(3)x=300时两公司的收费相同.【考点】一次函数的应用【解析】设制作宣传材料数为x,则甲广告公司的收费为20x+3000,乙广告公司收费为30x.根据20x+3000−30x≥0来判断选择哪家公司合算或者一样.【解答】解:设制作宣传材料数为x,由“甲广告公司提出:每份材料收费20元,另收设计费3000元;乙广告公司提出:每份材料收费30元,不收设计费”得:甲广告公司的收费为20x+3000,乙广告公司收费为30x.∴20x+3000−30x≥0,∴x≤300.故(1)x>300时选择甲公司比较合算;(2)x<300时选择乙公司比较合算;(3)x=300时两公司的收费相同.。

2018年新人教版数学八年级下册册期中检测题及答案

2018年新人教版数学八年级下册册期中检测题及答案

2017-2018学年八年级数学下册期中测试题
(时间:120分钟满分:150分) 一、选择题(每小题3分,共36分)
1.下列式子中,二次根式有( )
(1)1
3
;(2)-3;(3)-x2+1;(4)
3
8

(5)(-1
3
)2;(6)1-x(x>1).
A.2个B.3个C.4个D.5个
2.以下列线段a,b,c的长为三角形的三边长,不能构成直角三角形的是( )
A.a=9,b=41,c=40 B.a=5,b=5,c=5 2
C.a∶b∶c=3∶4∶5 D.a=11,b=12,c=15
3.下列计算结果正确的是( )
A.3+4=7 B.3 5-5=3
C.2×5=10
D.18÷2=3
4.下列判断错误的是( )
A.两组对边分别相等的四边形是平行四边形
B.四个内角都相等的四边形是矩形
C.四条边都相等的四边形是菱形
D.两条对角线垂直且平分的四边形是正方形
5.若x-1-1-x=(x+y)2,则x-y的值为( )
A.-1 B.1 C.2 D.3
6.如图,?ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )
A.10 B.14 C.20 D.22
7.如图,在△ABC中,点D,E分别是边AB,BC的中点,若△DBE的周长是6,则△ABC的周长是( )
1。

2018最新人教版数学八下期中测试题(含答案)

2018最新人教版数学八下期中测试题(含答案)

期中检测题一、选择题(每小题3分,共36分)1.在实数范围内,若错误!未找到引用源。

有意义,则错误!未找到引用源。

的取值范围是()A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

2.已知2x=3)32()347(2++++xx的值是()A.0B.3C.32+D.32-3.下列计算正确的是()A.错误!未找到引用源。

BC=D.错误!未找到引用源。

4.下列条件中,能判定四边形是平行四边形的是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直5.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分別为E,F,连接EF,则△AEF的面积是()A.4错误!未找到引用源。

B.3错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

6.直角三角形两直角边长的和为7,面积为6,则斜边长为()A.5B.错误!未找到引用源。

C.7D.错误!未找到引用源。

7.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶58.已知直角三角形两边的长分别为3和4,则此三角形的周长为()A.12B.7+7C.12或7+7D.以上都不对9.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到10.地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙11.根O的距离等于3m,同时梯子的顶端B下降至B′,那么BB′()A.小于1m B.大于1m C.等于1m D.小于或等于1m10.如图所示,将一根长为24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度为h,则h的取值范围是()A.h≤17cm B.h≥8cm C.15cm≤h≤16cm D.7cm≤h≤16cm11. 如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则C′D的长为()A.1B.2C.3D.4第10题图12. 如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14B.15C.16D.17二、填空题(每小题3分,共24分)13.x的取值范围是.14.当x=2211xx x---=_____________.15.(2015•江苏泰州中考)如图,在矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为__________.第15题图第16题图16.如图所示,在△ABC中,AC=6,AB=BC=5,则BC边上的高AD=______.17.在△错误!未找到引用源。

新人教版2018年春八年级下册数学期中试卷及答案

新人教版2018年春八年级下册数学期中试卷及答案

新人教版2018年八年级下数学期中考试题一、选择题(每小题2分,共12分)1.下列式子中,属于最简二次根式的是( ) A.9 B. 7 C. 20 D.31 2. 如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上, 连接BM 、DN.若四边形MBND 是菱形,则MDAM等于( ) A.83 B.32 C.53D.543.若代数式1-xx 的取值范围是( ) A. x ≠ 1B. x ≥0C. x >0D. x ≥0且x ≠14. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是 ( ) A.12 B. 24 C. 312 D. 316 5. 如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5 º, EF ⊥AB ,垂足为F ,则EF 的长为( ) A .1 B . 2 C .4-2 2 D .32-4 6.在平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是( ) A.1:2:3:4 B.1:2:2:1 C.1:2:1:2 D.1:1:2:2 二、填空题:(每小题3分,共24分) 7.计算:()()3132-+-= .8.若x 31-在实数范围内有意义,则x 的取值范围是 . 9.若实数a 、b 满足042=-++b a ,则ba= . 10.如图,□ABCD 与□DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数书为 . 11.如图,在直角坐标系中,已知点A (﹣3,0)、B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为 . 12.如图,ABCD 是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCD 成为菱形.(只需添加一个即可)NMDBCA4题图5题图10题图13 .如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为2cm,∠A=120°,则EF= .14.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_________.三、解答题(每小题5分,共20分)15.计算:121128-⎪⎭⎫⎝⎛+--+π16. 如图8,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.17.先化简,后计算:11()ba b b a a b++++,其中12a=,12b=.E CDBAB′OFEDCBA 11题图12题图13题图14题图16题图18. 如图,在平行四边形ABCD 中,对角线AC,BD 交于点O,经过点O 的直线交AB 于E ,交CD 于F.求证:OE=OF.四、解答题(每小题7分,共28分)19. 在矩形ABCD 中,将点A 翻折到对角线BD 上的点M 处,折痕BE 交AD 于点E .将点C 翻折到对角线BD 上的点N 处,折痕DF 交BC 于点F . (1)求证:四边形BFDE 为平行四边形;(2)若四边形BFDE 为菱形,且AB =2,求BC 的长.20. 如图,在四边形ABCD 中,AB =BC ,对角线BD 平分 ∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂 足分别为M 、N 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年八年级下册数学期中测试卷
姓名: (90分钟,总分120) 得分:
一、选择答案:(每题3分,共30分)
1、化简后,与2的被开方数相同的二次根式的是( )
A . 12
B . 18
C . 41
D . 3
2 2、有意义的条件是二次根式
3 x ( )A .x>3 B. x>-3 C. x ≥-3 D.x ≥3
3、正方形面积为36,则对角线的长为( ) A .6 B
. C .9 D

4、矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为( )
A. 12
B. 10
C. 7.5
D. 5
5、下列命题中,正确的个数是( )
①若三条线段的比为1:1:2,则它们组成一个等腰直角三角形;②两条对角线相等的平行四边形是矩形;③对角线互相垂直的四边形是菱形;④有两个角相等的梯形是等腰梯形;⑤一条直线与矩形的一组对边相交,必分矩形为两个直角梯形。

A 、2个
B 、3个
C 、4个
D 、5个
6、下列条件中 能判断四边形是平行四边形的是( ) (A ) 对角线互相垂直(B )对角线相等(C )对角线互相垂直且相等(D )对角线互相平分
7、在□ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( )
(A)1cm (B)2cm (C)3cm (D)4cm
8、如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是( )
A .12
B .16
C .20
D .24
9、如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D’处,则重叠部分△AFC 的面积为( ).A .6 B .8 C .10 D .12
10、如图,正方形ABCD 中,AE =AB ,直线DE 交BC 于点F ,则∠BEF =( )
A .45°
B .30°
C .60°
D .55°
A B C D F D
O E
F D A B C
二、填空:(每题3分,共30分)
11、ABCD 中一条对角线分∠A 为35°和45°,则∠B= __ 度。

12、矩形的两条对角线的夹角为600,较短的边长为12cm,则对角线的长为__________cm.
13、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m ,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为_____m.
14、已知菱形的两条对角线长为8cm 和6cm,那么这个菱形的周长是 cm,面积是
cm 2.
15、在平面直角坐标系中,点A (-1,0)与点B (0,2)的距离是_______。

16、 如图,每个小正方形的边长为 1.在∆ABC 中,点D 为AB 的中点,则线段CD 的长
为 ;
17、AD 是△ABC 的角平分线,DE∥AC 交AB 于E ,DF∥AB 交AC 于F 。

且AD 交EF 于O ,则∠AOF= 度.
18、若AD =8,AB =4,那么当BC =( ),AD =( )时,四边形ABCD 是平行四边

19、若AC =10,BD =8,那么当AO =( ),DO =( )时,四边形ABCD 是平行四边形。

20、 观察下列各式:11111112,23,3, (334455)
+=+=+=请你找出其中规律,并将第n (n ≥1)个等式写出来 .
三、 解答题:(共60分)(21--23每题3分) 21、)227(328--+ 22.()01528-22-18++ 22、23. ()86-331-21++ 24、(6分)已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形). D A C
B
(1)四边形EFGH 的形状是 , 证明你的结论.
证明:
(2)当四边形ABCD 的对角线满足 条件时,四边形EFGH
是矩形; (3)你学过的哪种特殊四边形的中点四边形是矩形? .
25、(6分)求证:矩形的对角线相等。

已知: 如图:
求证:
证明:
26、(8分)如图,一架2.5米长的梯子AB ,斜靠在一竖直的墙AO 上,这时梯足B 到墙底端O 的距离为0.7米, 如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移动了多少米?
27(7分)、计算:(1)在RT ∆ABC 中,∠C =90°,a=8,b=15,求c .
(2)在RT ∆ABC 中,∠C =90°,a=3,b=4,求c.
(3)一个直角三角形的两边长分别为3cm 和5cm ,求这个三角形的第三边长
H G F
E D
A
28(6分)、已知215-=x ,215+=y ,求y
x x y +的值。

29(9分)、如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB 、CD 的延长线分别
交于E 、F.
(1) 证明:△BOE ≌△DOF. (2)当EF 与AC 满足什么条件时,四边形AECF 是菱形,为什么?
30(9分)、在矩形ABCD中,E 是BC 的中点,将△ABE 沿AE 折叠后得到△AFE,点F 在矩形ABCD 内部,延长AF 交CD 于点G.(1)猜想线段GF 与GC 有和数量关系?并证明你的结论;
(2)若AB=3,AD=4.求线段GC 的长。

A D
G
B C
E。

相关文档
最新文档