求解一元一次方程教案
初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇初中七年级上册数学《解一元一次方程》教案优质篇一一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。
符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。
学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。
同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。
学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。
二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。
为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。
教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。
本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。
教学方法是“引导分类归纳”。
本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。
《解一元一次方程》教案

《解一元一次方程》教案1教学目标知识与技能感受一元一次方程的定义,进一步理解并掌握解一元一次方程的方法.过程与方法经历含括号的一元一次方程求解过程,能用去括号、移项、系数化为1等步骤来解一元一次方程.情感、态度与价值观通过解方程,体会转化思想在数学中的重要作用,培养学生自觉反思求解和自觉检验方程的解是否正确的良好习惯.重点难点重点:含括号的一元一次方程的解法.难点:括号前是负号的处理教学设计一、回顾1.解下列方程:(1)-2x=4;(2)-x=-2;(3)4x=-12(4)12x=4;(5)5x-2=8i;(6)5+2x=4x.2.去括号的法则是什么?移项应注意什么?第1题的前4个题学生口答,后两个学生板演,其余学生自己完成.学生思考后回答.二、探究交流1.观察:以下是我们前面遇到的方程(投影几个前面所出现的一元一次方程).思考:这些方程有什么共同点?(1)只含有一个未知数;(2)含有未知数的式子是整式(3)未知数的次数是1.学生思考、讨论、交流、归纳.二、探究交流总结:具有以上特点的方程叫做一元一次方程.应用:判断下列哪些是一元一次方程,并说明理由:(1)3142x=;(2)3x-2;(3)2+y=1-3y;(4)1121753xx-=-;(5)5x2-3x+1=0;(6)21x-=5.学生观察后,回答,可作适当的讨论.独立求解后再相互交流.学生体会方法的不同特点.教师引导学生从一元一次方程的三个特点予以分析观察是否具备以上特点.2.例题讲解解方程:(1)-2(x-1)=4;(2)3(x-2)+1=x-(2x—1).方程(1)怎样求解?教师点评,有两种解法:解法1:先去括号,再移项,系数化为1.解法2:方程两边先同时除以-2,再移项,合并同类项.可让学生口述步骤的完成过程.方程(2)的解答:3(x-2)+1=x-(2x-1),解:去括号得:3x-6+1=x-2x+1,即:3x-5=-x+1,移项得:3x+x=1+5,4x=6,系数化为1得:x=32.学生讨论,然后回答.教师板书解方程的过程,同时强调:①解题格式;②去括号时易错处.3.判断正误下面方程的解法对不对?如不对,应怎样改正?2(x+3)-5(1-x)=3(x-1),2x-5x-3x=-3+5-3,-6x=-1,x=16.学生先独立解答,后交流自主纠错.教师针对学生的回答作点评.4.知识拓展解方程:3x-[3(x+1)-(x+4)]=1.教师巡回指导:可以先去中括号,再去小括号;也可以先去小括号,再去中括号.三、巩固1.解方程:(1)5(x+2)=2(5x-1);(2)(x +1)-2(x -1)=1-3x .2.列方程求解:x 取何值时,代数式2x -3(x +1)与(1-x )的值相等? 学生完成后,再集中反馈纠正.四、小结1.一元一次方程的概念.2.一元一次方程的解答步骤:去括号、移项、系数化为1.3.注意检验,注意去括号时的符号.学生总结、体会.五、布置作业教材第10页练习第1、2、3题. 《解一元一次方程》教案2教学目标知识与技能经历解方程基本思路是把“复杂”转化为“简单”,把“新”转化为“旧”的过程,进一步理解并掌握如何去分母的解题方法.过程与方法1.通过解方程去分母的过程,体会转化思想.2.进一步体会解方程方法的灵活多样性,培养解决不同问题的能力.情感、态度与价值观培养学生自觉反思求解和自觉检验方程的解是否正确的良好习惯,养成团队合作的精神.重点难点重点:运用去分母解方程.难点:去分母时需解决的几个问题.教学设计一、回顾1.去括号和添括号法则.2.去括号的法则是什么?移项应注意什么?3.求几个数的最小公倍数的方法.4.解下列方程:(1)y +4=12;(2)34x -1=7;(3)2-(1-x )=2;(4)-5(x +1)=12. 学生回忆,口答前三个问题,第4个问题学生先独立完成,后交流讨论.1.解方程32123x x -+-=1. 问题:(1)这个方程与12(x -3)-13(2x +1)=1是一样吗? (2)可以去括号解答吗?(3)能否在方程的两边同时乘以6呢?其依据是什么?(4)以上两种解法有何不同?答案是一样的吗?相比而言,哪一种比较简便呢?学生按提示中的两种解法去解答,并讨论以上问题.教师巡回指导,针对学生的具体情况做总评,点明易错点及注意点:①要注意先添括号,再去括号,不易出错;②确定方程两边同时所乘的数时,应选定各分母的最小公倍数;③在同时乘以分母的最小公倍数时,方程中单项式常数项也要乘以分母的最小公倍数.学生体会,理解注意点和易错点.2.运用先去括号以及先去分母的办法解下面方程,并比较两种解法的优劣.13735x x x -+-=-. 两名学生板演,并讲解每一步是怎样变形的,其余在练习本上完成.教师巡回指导.3.问题:想一想,解一元一次方程有哪些步骤?学生自己总结,互相交流,得出结论.师针对学生得出的结论点评.4.小结:解一元一次方程,一般要通过去分母、去括号、移项、合并同类项、未知数系数化为1等步骤,把一个一元一次方程转化为x =a 的形式.5.辨别:指出下列解方程过程中的错误,并加以纠正:(1)3142125x x -+=-;(2)124362x x x -+--=. 解:15x -15=8x +4-1,解:2x -2-x +2=12-3x ,15x -8x =4-1+5, 2x -x +3x =12+2+2,7x =8, 4x =16,87x =. x =4. 学生先观察、思考,然后分组讨论,互相交流,得出结论,各推选一人发表见解. 教师点评学生发表的见解.问题:通过对上题的解答,你认为解带分母的一元一次方程应注意什么问题?学生回答.解方程:15(x+15)=12-13(x-7).学生选择一种合适的方法解答.教师巡回指导.四、小结1.解一元一次方程有哪些步骤,其先后顺序是确定的吗?2.去分母解方程时,去分母的这一步是最易出错的地方:①方程两边同时乘以各分母的最小公倍数,防止两边乘以不同的数;②防止漏乘不含分母的项;③分子是多项式时,应先添括号,再去括号,防止符号出错.学生理解,思考,体会本节所学的知识.五、布置作业教材第11页练习第1、2题.《解一元一次方程》教案3教学目标知识与技能体会用方程来解决问题的便捷与直观,培养运用数学建模思想解决问题的能力.过程与方法经历探究用一元一次方程解决简单实际问题的一般方法与基本过程,会列出一元一次方程解简单的应用题.情感、态度与价值观培养学生乐于思考,不怕困难的精神.重点难点重点:探究用方程来解决实际问题的一般步骤与方法.难点:找出并根据题目中的等量关系列出方程.教学设计一、回顾1.一元一次方程的定义.2.x的50%比它的27多6,列出等式为______.学生回答.二、探索1.投影教材例6.问题:(1)这道题你能用算术方法求解吗?怎样求解?51-51452=3.(2)若设从A盘拿出盐x克,请分析题目中已知量以及未知量,思考:怎样用x表示出未知量?已知量:A盘原有51克盐,_____;未知量:A盘现有_____克盐,B盘现有_____克盐.(3)题目中的等量关系是什么?能否建立方程,完成教材中的表格.(4)列出方程后,实际问题就变成一个数学问题,解一元一次方程,此时我们应注意什么?学生先独立思考,然后小组内讨论,最后由组内代表回答结论.教师巡回指导学生完成以上问题,并让学生辨别算术方法与方程方法解决实际问题的区别.2.投影教材例7.问题:(1)此题你能用算术法解决吗?说说你的思路.(1800-65×6×4)÷4÷2=30.学生回答.(2)若设新团员中男同学有x名,则女同学有多少名?男同学每人搬了多少块砖?男同学撰搬了多少块砖?女同学每人搬了多少块砖?女同学共搬了多少块砖?能否用x表示出来?学生思考、讨论、交流,完成.问题.(3)题目中有着怎样的等量关系?能否跟据以上关系列出方程?(4)完成表格(投影教材例7中的表格),并列出方程解决问题;(5)从上题中你发现,运用方程来解决实际问题有什么优点?可以将实际问题转化为数学问题解决.师在学生交流讨论的过程中巡回指导.三、归纳列方程解应用题通常有哪些步骤?学生讨论.教师指导..四、反馈教材第13页练习第1题.分析:(1)题目中各路段不清楚,可以画线段图来分析,怎样画?(2)从题目中(或图中)可以找出的等量关系是什么?先让学生独立做,然后在教师的引导下,学生逐步完成.AB+BC=AC.(3)怎样分别表示出AB、BC的路程?需知道什么?路程=速度×时间,需分别知道小刚在前后两段路程所需时间.(4)若设小刚在冲刺阶段花了x秒,则在前一段路程(即AB)花了多长时间?怎样表示出AB、BC的路程?(5)可列出什么方程?6(65-x)+8x=400.(6)解答完毕后,应注意什么?五、小结通过本节课的学习,我们感受到用方程解决实际问题在思维、列式上的直观、便捷的特点,在列方程前应找出题目中的等量关系,在设出未知数后,用未知数去表示题目中的未知量,再根据等量关系列出方程,将实际问题转化为数学问题来解决.学生理解体会.六、布置作业教材习题6、2、.2第3、4、5题.。
一元一次方程教案(通用11篇)

一元一次方程教案一元一次方程教案(通用11篇)作为一名老师,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
怎样写教案才更能起到其作用呢?以下是小编精心整理的一元一次方程教案范文,希望对大家有所帮助。
一元一次方程教案篇1教学目标:1、能说出什么叫一元一次方程;2、知道“元”和“次”的含义;3、熟练掌握最简一元一次方程的解法及理论依据;能力目标:1、培养学生准确运算的能力;2、培养学生观察、分析和概括的能力;3、通过解方程的教学,了解化归的数学思想.德育目标:1、渗透由特殊到一般的辩证唯物主义思想;2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;重点:1、一元一次方程的概念;2、最简方程的解法;难点:正确地解最简方程。
教学方法:引导发现法教学过程一、旧知识的复习:1.什么叫等式?等式具有哪些性质?2.什么叫方程?方程的解?解方程?二、新知识的教学:(1)只含有一个未知数;(2)未知数的次数都是一次。
想一想:(1)你认为最简单的一元一次方程是什么样的?(2)怎样求最简方程(其中是未知数)的解?三、巩固练习1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2、检测:3、课堂小结:四、本节学习的主要内容1、一元一次方程定义;2、最简方程(其中是未知数);3、解最简方程的主要思路和解题的关键步骤及依据。
五、课堂作业。
一元一次方程教案篇2一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、知识与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。
(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。
初中七年级上册数学《解一元一次方程》教案优质范文五篇

初中七年级上册数学《解一元一次方程》教案优质范文五篇星星从不嫉妒太阳的灿烂辉煌,它在自己的岗位上尽力发光。
今天小编为大家带来的是初中七年级上册数学《解一元一次方程》教案优质范文,希望可以帮助到大家。
初中七年级上册数学《解一元一次方程》教案优质范文一教材分析:《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。
在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。
这为过渡到本节的学习起着铺垫作用。
合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。
因而,解方程是初中数学中必须要掌握的重点内容。
设计思路:《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。
其基本程序设计为:复习回顾、设问题导入探索规律、形成解法例题讲解、熟练运算巩固练习、内化升华回顾反思、进行小结达标测试、反馈情况作业布置、反馈情况。
教学目标:1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。
2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。
3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。
教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。
《解一元一次方程》教案优秀7篇

《解一元一次方程》教案优秀7篇元一次方程篇一一元一次方程的复习复习目标:(1)了解方程、一元一次方程以及方程的解等基本概念。
(2)会解一元一次方程。
(3)会根据具体问题中的数量关系列出一元一次方程并求解。
重点、难点:1. 重点:一元一次方程及方程的解的基本概念。
一元一次方程的解法。
会用一元一次方程解决实际问题。
2. 难点:一元一次方程的解法的灵活应用。
寻找实际问题中的等量关系。
【典型例题】例1.分析:明确一元一次方程的概念。
方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。
在这里特别注意:未知数的次数及系数。
这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。
解:例2.分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。
(2)方程的解,即使方程左右两边相等的未知数的值。
此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。
解:将m=1代入关于x的方程,得:例3.解:注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。
例4.分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。
解:例5.分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。
解:注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。
解:例6. 已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。
一元一次方程优质教案

一元一次方程优质教案【篇一:一元一次方程优质教案】【教学目标】 1.知识与技能(1)通过观察,归纳一元一次方程的概念.(2)根据方程解的概念,会估算出简单的一元一次方程的解. 2.过程与方法通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义. 3.情感态度与价值观鼓励学生进行观察思考,发展合作交流的意识和能力.【重、难点与关键】1.重点:了解一元一次方程的有关概念,会根据已知条件,设未知数, ? 列出简单的一元一次方程,并会估计方程的解. 2.难点:找出问题中的相等关系,列出一元一次方程以及估计方程的解. 3.关键:找出能表示实际问题的相等关系.【教具准备】多媒体课件【教学过程】一、情景引入 1、在小学里,我们已学习了像 2x=50,3x+1=4 等简单方程,那么什么叫方程呢?什么叫方程的解和解方程呢?答:含有未知数的等式叫方程;能使方程等号两边相等的未知数的值叫方程的解,求方程解的过程叫解方程. 2、上周的平均气温是 11℃,比去年同期气温的 1.5 倍低了 19℃,你知道去年同时期的气温是多少吗?请同学们尝试解决。
五、作业布置 1.课本第 82 页练习 2.课本第 83 页习题 3.1 第 1 题【板书设计】【教学反思】【篇二:一元一次方程优质教案】一元一次方程教学设计一、教学目标 1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步; 2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念; 3、培养学生获取信息,分析问题,处理问题的能力。
二、教学难点、知识重点 1、重点:建立一元一次方程的概念。
2、难点:理解用方程来描述和刻画事物间的相等关系。
三、教学方法讲练结合、注重师生互动。
四、教学准备课件五、教学过程(师生活动)(一)情境引入教师提出教科收第 79 页的问题,并用多媒体直观演示。
问题1:从视频中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。
一元一次方程教案最新7篇
一元一次方程教案最新7篇元一次方程教学设计篇一一、教材分析1、教材地位和作用本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。
是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。
并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。
要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。
2、教学目标综上分析及教学大纲要求,本课时教学目标制定如下:⒈.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义⒈.会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念⒈.体会解决问题的一种重要的思想方法----尝试检验法⒈.回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程3、教学重点和难点重点:一元一次方程的概念和用尝试检验法求方程的解难点:利用等式的两个性质解一元一次方程二、教法与学法分析:教法方法与手段:本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。
从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。
采用教师引导,学生自主探索、观察、归纳的教学方式。
利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。
学法指导:根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。
通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。
一元一次方程教案优秀7篇
一元一次方程教案优秀7篇元一次方程教案篇一一、背景与意义分析本课安排在第1章有理数之后,属于《全日制义务教育数学课程标准(实验稿)中的数与代数领域。
方程有悠久的历史,它随着实践需要而产生,被广泛应用。
从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展。
从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础。
本课中引出了方程、一元一次方程等基本概念,并且对根据实际问题中的数量关系,设未知数,列出一元一次方程的分析问题过程进行了归纳。
以方程为工具分析问题、解决问题,即建立方程模型是全章的重点,同时也是难点。
分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于全章主线,而对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的。
列方程中蕴涵的数学建模思想是本课始终渗透的主要数学思想。
在小学阶段,已学习了用算术方法解应用题,还学习了最简单的方程。
本小节先通过一个具体行程问题,引导学生尝试如何用算术方法解决它,然后再一步一步引导学生列出含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等式方程。
这样安排目的在于突出方程的根本特征,引出方程的定义,并使学生认识到方程是最方便、更有力的数学工具,从算术方法到代数方法是数学的进步。
算术表示用算术方法进行计算的程序,列算式是依据问题中的数量关系,算术中只能含已知数而不能含未知数。
列方程也是依据问题中的数量关系(特别是相等关系),它打破了列算式时只能用已知数的限制,方程中可以根据需要含有相关的已知数和未知数,未知数进入式子是新的`突破。
正因如此,一般地说列方程要比列算式考虑起来更直接、更自然,因而有更多优越性。
二、学习与导学目标1、知识积累与疏导:通过现实生活中的例子,体会到方程的意义,领悟一元一次方程的定义,会进行简单的辨别。
2、技能掌握与指导:能根据具体问题中的数量关系,列出方程,感悟到方程是刻画现实世界的一个有效模型。
求解一元一次方程数学教案(优秀7篇)
求解一元一次方程数学教案(优秀7篇)解一元一次方程的教案篇一教学目标知识技能:1.用一元一次方程解决“数字型”问题;2.能熟练的通过合并,移项解一元一次方程;3.进一步学习、体会用一元一次方程解决实际问题。
过程方法通过学生自主探究,师生共同研讨,体验将实际问题转化成数学问题,学会探索数列中的规律,建立等量关系并加以解决,同时进一步渗透化归思想。
情感态度经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,体会数学对实践的指导意义。
重点建立一元一次方程解决实际问题的模型。
难点探索并发现实际问题中的等量关系,并列出方程。
环节教学问题设计教学活动设计情境引入牵线搭桥,解下列方程:(1)-5x+5=-6x;(2);(3)0.5x+0.7=1.9x;总结解“ax+b=cx+d”类型的一元一次方程的步骤方法。
引出问题即课本例3问:你能利用所学知识解决有关数列的问题吗?教师:出示题目,提出要求。
学生:独立完成,根据讲评核对、自我评价,了解掌握情况。
探究一:数字问题例3有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?1.引导学生观察这列数有什么规律?①数值变化规律?②符号变化规律?结论:后面一个数是前一个数的-3倍。
2.怎样求出这三个数?①设三个相邻数中的第一个数为x,那么其它两个数怎么表示?②列出方程:根据三个数的和是-1701列出方程。
③解略变式:你能设其它的数列方程解出吗?试一试。
比比较哪种设法简单。
探究二:百分比问题(习题3.2第8题)某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元。
这个乡去年农民人均收入是多少元?①若设这个乡去年农民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;②因为今年的人均收入比去年的1.5倍少1200元,所以今年的收入又可以表示为_________元。
解一元一次方程 教学设计【优秀3篇】
解一元一次方程教学设计【优秀3篇】篇一:解一元一次方程教学设计1白话文的我细心为您带来了解一元一次方程教学设计【优秀3篇】,希望能够帮助到大家。
篇一:解一元一次方程教案设计篇一一。
教学目标:1。
学问目标:了解一元一次方程的概念,驾驭含括号的一元一次方程的解法。
2。
实力目标:培育学生的运算实力与解题思路。
3。
情感目标:通过主动探究,合作学习,相互沟通,体会数学的严谨,感受数学的魅力,增加学习数学的爱好。
二。
教学的重点与难点:1。
重点:了解一元一次方程的概念,解含有括号的一元一次方程的解法。
2。
难点:括号前面是负号时,去括号时遗忘变号。
移项法则的敏捷运用。
三。
教学方法:1。
教法:讲课结合法2。
学法:看中学,讲中学,做中学3。
教学活动:讲授四。
课型:新授课五。
课时:第一课时六。
教学用具:彩色粉笔,小黑板,多媒体七。
教学过程1。
创设情景:今日让我们一起做个小小的嬉戏,这个嬉戏的名字叫:猜猜你心中的她心里想一个数将这个数+2将所得结果最终+7将所得的结果告知老师(抽一个同学,让他把他计算的`结果告知老师,由老师通过计算得到他最起先所想的数字。
)老师:同学们知道老师是怎样猜到的吗?同学:不知道。
老师:那同学们想知道老师是怎样猜到的吗?这就是我们今日所要学习的内容解一元一次方程。
2。
探究新知:一元一次方程的概念:前面我们遇到的一些方程,例如 3老师:大家视察这些方程,它们有什么共同特征?(提示:视察未知数的个数和未知数的次数。
)(抽同学起来回答,然后再由老师概括。
)只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程。
老师:同学们从这个概念中,能找出关键的字吗?能用它来推断一个式子是否是一元一次方程吗?再次强调特征:(1)只含一个未知数;(2)未知数的次数为1;(3)是一个整式。
(留意:这几个特征必需同时满意,缺一不行。
)3。
例题讲解:例1推断如下的式子是一元一次方程吗?(写在小黑板上,让学生推断,并分别抽同学起来回答,假如不是,要说出理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求解一元一次方程第2课时
教学重点与难点教学重点:用去括号法解方程.
教学难点:去括号法则和分配律的正确使用.
学情分析由于本节第一课时的学习重点是用移项法则解一元一次方程,所以上节课学生接触到的方程形式相对简单,不足以代表方程的一般类型,因此本节课内容的发展应在学生的意料之中,过渡会比较自然.不过学生掌握去括号法则的情况参差不齐,特别是括号前是“-”的就更容易搞错,需要认真复习。
教学目标
1.会解含有括号的一元一次方程.
2.领悟解方程是运用方程解决实际问题的重要环节.
3.进一步体会同一方程有多种解决方法,渗透整体化一的数学思想.4.通过对与学生生活贴近的数学问题的探讨,使学生在动手、独立思考的过程中,进一步体会方程模型的作用,体会学习数学的实用性.教学方法本节课的开篇继续采用复习导入,新课部分则是设计了“初步探究——深入探究——掌握方法”的层层递进环节,配以问题串的引导,使学生的目标学习自然完成由已知向未知的过渡.同时把新旧知识融合在一起,在练中学,学中练,既巩固了以往所学,又教会学生如何学以致用,而不孤立某一个知识点.
教学过程一、复习导入设计说明本节的主要内容是用去括号法解方程,因此课前的复习内容里必须有去括号的练习,以帮助学生回忆熟悉这个知识.另外,移项也是解方程的重要步骤之一,又是上节课的
新学内容,在此一并复习. 1.去括号: (1)2(x+3)=__________;
(2)-3(2y+3)=__________; (3)-(6b-12a)=__________;
(4)-[-(-a)-3]=__________. 答案:(1)2x+6 (2)-6y-9 (3)-2b+4a (4)-a+3 2.
利用移项法则解下列方程: (1)2-y=-11;(2)3x+3=2x+7. 答案:(1)y=13;(2)x=4. 教学说明建议两个练习做题之前,先分别让学生叙述去括号法则及移项法则的内容.复习题1的四个小题包括了括号前带“+”“-”,带系数及多重括号的类型,第(4)题较易出错,需要让学生注意去括号的顺序及每次去括号时每项是否变号.复习题2的两个方程目的在于让学生进一步熟悉移项要变号这个关键,操作时可以让学生先独立完成,然后在小组内由组长负责批改反馈即可.
二、讲授新课设计说明这个环节设计了三个层层递进的步骤,先是从贴近生活的引例中提取新类型的方程,实际问题的“数学化”,再将其与第一课时的方程比较不同,发展学生的自主分析能力及强化差异意识,到最后借助例题,掌握去括号解方程的方法,把学生思维性、实践性的训练融为一体.
1.情境引入,初步探究引例:(配合投影显示)小明家来客人了,爸爸给了小明20元钱,让他买1听果奶和4听可乐.从商店回来后,小明交给爸爸3元钱.如果我们知道1听可乐比1听果奶多0.5元,能不能求出1听果奶是多少钱呢?设臵问题串: (1)小明买东西共用去多少元? (2)如何用未知数x表示1听果奶或者1听可乐的价钱?
(3)这个问题中有怎样的等量关系?小组充分讨论交流后回答: (1)买东西用去20-3=17(元). (2)若设1听果奶为x元时,则1听可乐为(x+0.5)元;若设1听可乐为x元时,则1听果奶为(x-0.5)元. (3)如:买可乐的钱+买果奶的钱=用去的钱.(学生的思路很广泛,也可列成其他形式,只要合理即可) 教师在学生回答的基础上,确定出一个方程:设1听果奶x元,则方程为4(x+0.5)+x=20-3. 2.问题拓展,深入探究问题串: (1)这个方程与上节课解过的方程在形式上有什么不同?它们有什么联系? (2)它的主要特点是什么?怎样解这个方程?学生可以讨论出以下结论:本节课的方程中含有括号,如果去掉括号,就化成上节课所学的内容了,因此这两节课在内容上有承接关系,关键步骤就是去括号. 3.例题解析例1 解方程4(x+0.5)+x=17. 解:去括号,得4x+2+x=17. 移项,得4x+x=17-2. 合并同类项,得5x=15. 方程两边同除以5,得x=3. 例2 解方程-2(x-1)=4. 解法一:去括号,得-2x+2=4. 移项,得-2x=4-2. 合并同类项,得-2x=2. 方程两边同除以5,得x=-1. 解法二:方程两边同除以-2,得x-1=-2. 移项,得x=-2+1,即x=-1. 本题提倡由学生独立探索解法,并互相交流.此方程既可以先去括号求解,也可以视作关于(x-1)的一元一次方程进行求解.例3 解方程=x+1. 解:先去中括号,得-6=x+1. 再去小括号,得x--6=x+1. 移项,得x-x=1+6+. 合并同类项,得-x=7. 方程两边同除以-1,得x=-7. 本题也可以使用先去小括号,再去中括号的顺序解答,此处不再赘述.教学说明以上
教学过程两次使用问题串引导学生思考,使新问题的导出和学生思维的发展流畅自然,较好的实现了新课的过渡.注重发挥小组合作学习的优势,让学生自主参与探索解方程的一般过程和规律,不仅掌握了知识,还培养了积极的情感与态度,以及合作意识和能力.例题2和例题3都是可一题多解的题目,学生的反应情况不一定一样.教学时,教师可以在学生自主探索的基础上,有针对性地引导学生利用前面所学过的相关知识,如怎样去括号,去括号应注意什么等进行解答,让学生一定自觉理解每一步解答的依据.对一些没有想到简便解法的学生要做适时指导或给予有启示的建议,不应急于求成,掌握好基本的去括号解方程的方法才是这节课的重点.
三、变式训练,熟练技能 1.(1)5(x-1)=1;(2)11x+1=5(2x+1);
(3)5(x+8)-5=0;(4)-3(x+3)=24. 答案:(1)x=;(2)x=4;
(3)x=-7;(4)x=-11. 2.若x-2(m-6)与x3(m-1)是同类项,求m的值.简答:由-2(m-6)=3(m-1),解得m=3. 3.解方程:7(2x-1)-3(4x-1)-5(3x+2)=-1. 答案:x=-1. 4.解方程:(3x+2)+2[(x-1)-(2x+1)]=6,则x等于( ) A.2 B.4 C.6 D.8 答案:D 教学说明第1题的目的就是巩固基本技能,设计的题目形式、类型均与例题配套,要求学生熟练运算.第2题以同类项的知识为背景,需先通过其定义得到关于字母m的方程,再进一步求解,这种题型及其表达在中考试卷中常见,目的在于考查学生对知识整合的应用与理解.第3题中的易错点在于去后两个小括号时,学生是否都乘以了系数并改变了每一项的符号.通过以上四个题目的练习,注
意让学生反思自己基本技能的熟练情况,做好自我评价与小组评价.四、总结反思通过今天的学习你有哪些收获?你认为应该提醒同学注意哪些事项?组织学生先在小组内反思讨论,然后互相补充,总结以下几点: 1.去括号时要注意括号系数为负数的问题. 2.去括号后即把方程化成上节课所学类型,可总结有关步骤为:去括号、移项、合并同类项,但各步骤之间没有固定顺序.评价与反思 1.本节课涉及到的方程一题多解的情况较多,所以教学中应充分发挥学生的主体性,除了要显示出集体智慧的力量,更需突出学生的个性,让每个学生充分理解和掌握这些基本知识和技能.小组活动必须合理有效,既有学生充分独立思考的时间,又有小组之间充分讨论交流的时间,教师还应提供适当的问题,适时加以点拨与指导. 2.去括号是一个学生出错非常集中的知识点,单凭课上的训练不足以解决所有学生的问题,所以课下的辅导练习一定要及时到位,不怕重复,对于基础比较弱的学生,甚至还可以补充练习前面去括号的题目,以加深学生对去负括号要变号的意识,在基本功扎实以后,再继续集中训练本节解方程中的去括号步骤.。