第11章时序逻辑电路
电工电子技术基础 第2版 第11章 触发器与时序逻辑电路

RD
SD
Q
0
1
0
1
0
1
1
1
不变
0
0
禁用
基本 RS 触发器状态表
节首页 上一页 下一页
第11章 触发器和时序逻辑电路——双稳态触发器
逻辑功能
RD SD 00 01 10 11
Q 不定
0 1 保持
功能 不允许
置0 置1 记忆
第一节 双稳态触发器 第二节 寄存器 第三节 计数器
节首页 上一页 下一页
第11章 触发器和时序逻辑电路
思政引例ห้องสมุดไป่ตู้
非学无以广才, 非志无以成学。
——诸葛亮
章目录 上一页 下一页
第11章 触发器和时序逻辑电路
思政引例
触发器(Flip-Flop,FF)具有记忆功能的时序逻辑 组件,记录二进制数字“0”和“1”。触发器由逻辑门 电路组合而成,电路在任一时刻输出信号不仅取决于该 时刻电路输入信号,而且还决定于电路原来状态。时序 逻辑电路具有记忆功能。计数器、寄存器电路。RS触发 器、K触发器和D触发器逻辑符号和逻辑功能,弄清触 发器翻转条件。了解数码寄存器和移位寄存器及二进制 计数器和二一十进制计数器的工作原理。
电路结构
四门钟控型 维持阻塞型
主从型
T触发器
章目录 上一页 下一页
第11章 触发器和时序逻辑电路——双稳态触发器
11.1 双稳态触发器
两个稳定的工作状态(1态和0态 分类: a. 按逻辑功能
RS 触发器、 JK 触发器、D 触发器
b. 按其结构 主从型触发器、维持阻塞型触发器
第11章 数字电路综合案例

第11章数字电路综合案例内容提要前面的章节介绍了数字电路的基本知识、基本理论、常用器件,以及数字电路分析和设计的基本方法。
本章涉及到复杂数字系统的设计。
数设计对象从译码器、计数器等这些基本逻辑功能电路到了数字钟等综合的数字逻辑系统的设计;设计方法也由采用真值表到求逻辑表达式、画出电路图的方式到通过确定总体方案,采取从局部到整体,用各种中、大规模集成电路来满足要求的数字电路系统的方式。
本章结合数字钟这一实际的案例来介绍数字电路系统的设计方法,进一步提高学生的综合能力和解决实际问题的能力。
基本教学要求1.了解中小规模集成电路的作用及实用方法。
2.了解数字钟电路的原理。
3.掌握综合数字电路系统的设计流程和设计方法。
11.1概述数字系统的设计,采用从整体到局部,再从局部到整理的设计方法。
首先对系统的目标、任务、指标要求等进行分析,确定系统的总体方案;然后把系统的总体方案分成若干功能部件,绘出系统的方框图;之后运用数字电路的分析和设计方法分别进行设计,或者是直接选用集成器件去构成功能部件;最后把这些功能部件连接组合起来,便构成了完整的数字系统,通过对电路的分析和测试修改,完善与优化整个系统。
这是传统的数字系统的设计方法,也是下面要介绍的内容。
随着计算机技术的发展,电子设计自动化EDA成为了现代电子系统设计与仿真的重要手段,对于复杂系统的设计十分有效,尤其是硬件描述语言的使用,使硬件软件化,让数字系统的设计更加方便、高效。
下面以数字钟系统设计为例,介绍综合数字电路系统的设计方法。
数字钟是一种用数字电子技术实现时、分、秒计时的装置,与传统的机械式时钟相比具准确、直观、寿命长等特点。
目前广泛用于个人家庭以及车站、码头、剧场、办公室等公共场所,给人们的生活、学习、工作、娱乐带来极大的方便。
数字钟也是一种典型的数字电路,其中包括了组合逻辑电路和时序逻辑电路。
通过数字钟的设计进一步了解数字系统设计时用到的中小规模集成电路的使用方法,进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法。
第11章触发器和时序逻辑电路

第11章 触发器和时序逻辑电路 11章
基本RS触发器图形符号如图11-1b所示,图中 RD S下标的D , D 表示直接输入,非号表示触发信号0时对电路有效,RD 故称 S D 称直接置"1"(直接置位)端, 直接置"0"(直接复位)端, Q 逻辑符号中的小圆圈"○" 表示非号,在 端同样加 "○". 输 入 输 基本RS触发器的逻辑功能表,如下表所示. 出
第11章 触发器和时序逻辑电路 11章
11.1.3. 边沿型JK触发器
边沿触发器是利用电路内部速度差来克服"空翻"现 象的时钟触发器.它的触发方式为边沿触发,通常为下降 沿触发方式,即输入数据仅在时钟脉冲的下降沿这一"瞬 间"起作用.在图11-4b的逻辑符号中,CP输入端用小圆 圈表示低电平有效,而加一三角来表示边沿触发,则CP表 示为下降沿触发. JK触发器是应用最广的基本"记忆"部件,用它可以 组成多种具有其它功能的触发器和数字器件.集成JK触发 器有各种型号和规格,常用的有74HC73A,74HC107A, 74HC76A,等TTL触发器;CC4027,CC4013等CMOS触 发器.
由表11-2可见,R,S全是"1"的输入组合是应当禁止的, 因为当CP=1时,若R=S=1,则导引门G3,G4均输出"0"态, 致使Q==1,当时钟脉冲过去之后,触发器恢复成何种稳态 是随机的.在同步RS触发器中,通常仍设有RD和SD,它们只 允许在时钟脉冲的间歇期内使用,采用负脉冲使触发器置 "1"或置"0",以实现清零或置数,使之具有指定的初始状 态.不用时"悬空",即高电平.R,S端称同步输入端,触 发器的状态由CP脉冲来决定. 同步RS触发器结构简单,但存在两个严重缺点:一是会出 现不确定状态.二是触发器在CP持续期间,当R,S的输入 状态变化时,会造成触发器翻转,造成误动作,导致触发器 的最后状态无法确定.
时序电路逻辑功能描述方式

时序电路逻辑功能描述方式时序电路是一种电子电路,其逻辑功能在不同时间点上发生变化。
在时序电路中,电路的输出不仅依赖于当前的输入信号,还依赖于过去的输入信号和电路的内部状态。
时序电路通常由触发器(Flip-Flop)和组合逻辑门组成。
触发器是一种存储元件,可以存储一个二进制位的状态。
组合逻辑门通过将触发器的输出连接起来,并根据输入信号的条件决定是否改变触发器的状态。
通过这种方式,时序电路可以实现复杂的逻辑功能。
为了描述时序电路的逻辑功能,我们可以使用状态图、状态表和状态方程等方式。
状态图(State Diagram)是时序电路的一种图形表示方法。
它通过节点和有向边来表示电路的不同状态和状态之间的转换关系。
每个节点表示一个电路的状态,每条边表示一种条件下的状态转换。
状态图可以直观地描述时序电路的逻辑功能。
状态表(State Table)是时序电路的一种表格表示方法。
它列出了电路的每个状态和每个状态下的输出。
状态表通常包括当前状态、下一个状态和输出信号等列。
状态表可以清晰地描述电路的逻辑功能,并方便进行状态迁移和输出信号的计算。
状态方程(State Equation)是时序电路的一种数学描述方法。
它通过逻辑代数或布尔代数的形式表示电路的当前状态、输入信号和输出信号之间的关系。
状态方程可以使用逻辑门的真值表或卡诺图来推导得到。
在描述时序电路的逻辑功能时,我们通常需要确定以下几个方面的内容:1.电路的输入信号:输入信号是时序电路的触发条件,决定触发器状态的改变。
输入信号可以是外部输入,如开关和按钮,也可以是其他逻辑电路的输出。
2.电路的内部状态:内部状态是触发器的状态,它存储了电路的前一时刻的信息。
内部状态可以是一个或多个触发器的组合。
3.电路的输出信号:输出信号是根据当前输入信号和内部状态计算得到的结果。
输出信号可以是一个或多个逻辑电平。
4.电路的逻辑功能:逻辑功能是指输入信号和输出信号之间的关系,在不同的状态和条件下,输出信号如何发生改变。
第11章++硬件描述语言VHDL简介

实体部分最核心的内容是由关键字port引导的端口说明。A和B是输入引脚,使 用了关键字in来描述。Bit的意思是指A和B的数据类型是位类型。位类型数据只可取 0和1这两个数值。S和CO是输出信号,用out来描述,数据类型也是bit型。 实体说明的是部件的名称和端口信号类型,它可以描述小至一个门,大到一个复杂 的CPU芯片、一块印制电路板甚至整个系统。实体的电路意义相当于器件,在电路 原理图上相当于元件符号,它是一个完整的、独立的语言模块,并给出了设计模块 和外部接口。 具体语法如下: entity 实体名 is ——实体名自选,通常用反映模块功能特征的名称 port(端口名称1:端口方式1 端口类型1; 端口名称2:端口方式2 端口类型2;…); end 实体名; ——这里的实体名要和开始的实体名一致 其中端口方式可以有5种,分别是: in:输入端口,信号从该端口进入实体。 out:输出端口,信号从实体内部经该端口输出。 inout:输入输出(双向)端口,信号既可从该端口输入也可从该端口输出。 buffer:缓冲端口,工作于缓冲模式。 Linkage:无指定方向,可与任何方向的信号连接。
(2)用户自定义的数据类型 VHDL语言允许用户自定义数据类型。其书写格式为: type 数据类型名 is 数据类型定义; 例如: type digit is integer range 0 to 9; ——定义digit的数据类型是0~9的整 数 可由用户定义的数据类型有: 枚举(Enumerated)类型; 整数(Integer)类型; 实数(Real)、浮点数(Floating)类型; 数组(Array)类型; 存取(Access)类型; 文件(File)类型; 记录(Record)类型; 时间(Time)类型(物理类型)。
11.1 VHDL语言基础
时序逻辑电路知识要点复习

《时序逻辑电路》知识要点复习一、时序逻辑电路1、时序逻辑电路:电路的输出状态不仅与同一时刻的输入状态有关,也与电路原状态有关。
时序逻辑电路具有记忆功能。
2、时序逻辑电路分类:可分为两大类:同步时序电路与异步时序电路。
(1)同步时序电路:各触发器都受到同一时钟脉冲控制,所有触发器的状态变化都在同一时刻发生。
(2)异步时序电路:各触发器没有统一的时钟脉冲(或者没有时钟脉冲),各触发器状态变化不在同一时刻发生。
计数器、寄存器都属于时序逻辑电路。
3、时序逻辑电路由门电路和触发器组成,触发器是构成时序逻辑电路的基本单元。
二、计数器1、计数器概述:(1)计数器:能完成计数,具有分频、定时和测量等功能的电路。
(2)计数器的组成:由触发器和门电路组成。
2、计数器的分类:按数制分:二进制计数器、十进制计数器、N 进制(任意进制)计数器;按计数方式分:加法计数器、减法计数器、可逆计数器;按时钟控制分:同步计数器、异步计数器。
3、计数器计数容量(长度或模):计数器能够记忆输入脉冲的数目,就称为计数器的计数容量(或计数长度或计数模),用 M 表示。
3 位二进制同步加法计数器:M=23=8,n 位二进制同步加法计数器:M=2n,n 位二进制计数器需要用n个触发器。
4、二进制计数器(1)异步二进制加法计数器:如下图电路中,四个JK触发器顺次连接起来,把上一触发器的Q 端输出作为下一个触发器的时钟信号,CP0=CP CP1=QCP2=Q1CP3=Q2,J=K=1J1=K1=1 J2=K2=1 J3=K3=1Q3Q2Q1Q为计数输出,Q3为进位输出,Rd 为异步复位(清0)这样构成了四位异步二进制加计数器。
在计数前清零,Q3Q2Q1Q=0000;第一个脉冲输入后,Q3Q2Q1Q=0001;第二个脉冲输入后,Q3Q2Q1Q=0010;第三个脉冲输入后,Q3Q2Q1Q=0011,……,第15个脉冲输入后,Q3Q2Q1Q=1111,第16个脉冲输入后,Q3Q2Q1Q=0000,并向高位输出一个进位信号,当下一个脉冲来时,进入新的计数周期。
电工学2第11章组合逻辑电路

分析 逻辑图 设计 功能
已知函数的逻辑图如图所示, 例 : 已知函数的逻辑图如图所示,试求它的逻辑 函数式。 函数式。 从输入端A、 解: 从输入端 、 B开始逐个写出每 开始逐个写出每 个图形符号输出端 的逻辑式,即得: 的逻辑式,即得:
Y = A+ B+ A+ B
Y = A + B + A + B = ( A + B)( A + B) = ( A + B)( A + B)
第11章 组合逻辑电路 11章
脉 冲 信 号 模拟信号:在时间上和 数值上连续的信号。
u
数字信号:在时间上和 数值上不连续的(即离 散的)信号。
u t
数字信号波形(正脉冲) 数字信号波形(正脉冲)
t
模拟信号波形
对模拟信号进行传输、 对模拟信号进行传输、 处理的电子线路称为 模拟电路。 模拟电路。
对数字信号进行传输、 对数字信号进行传输、 处理的电子线路称为 数字电路。 数字电路。
数字电路的分类
按半导体类型可分为: a、按半导体类型可分为: 双极型电路和单极型电路 按半导体类型可分为 b、按电路的集成度可分为: 按电路的集成度可分为: 按电路的集成度可分为 SSI(Small Scale Integrated )电路 数十器件 片) 电路(数十器件 电路 数十器件/片 MSI(Medium Scale Integrated)电路 数百器件 片) 电路(数百器件 电路 数百器件/片 LSI(Large Scale Integrated )电路 数千器件 片) 电路(数千器件 电路 数千器件/片 VLSI (Very Large Scale Integrated )电路 数万器件 片) 电路(数万器件 电路 数万器件/片 ASIC(Application Specific Integrated Circuit,专用集成电路) CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件 ) FPGA(Filed Programmable Gate Array,现场可编程门阵列 ) IP核(Intellectual Property,知识产权) 硬件设计包 SoC(System on a Chip,单片电子系统) CPLD/FPGA—可编程专用IC,或可编程ASIC。 EDA(Electronic Design Automation,电子设计自动化)
时序逻辑电路

输出 F
0 0 0 0 0 1 0 1
/0
100
/0 /0
011
正常情况下,触发器状态在000~101循环, 但若由于干扰使电路的状态为110或111, 也可以在1、2个时钟后回到以上的主循环。
这称为电路具有自启动能力
例2.2
分析图示时序逻辑电路
解:状态表的另一种形式:
CP
0 1
Q3 Q2 Q1
0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1
0 0 0
0
可见,每来一个CP脉冲触发器作加1计算,每6个脉冲一个循环,所以这是一个6进 制加法计数器。
例2.2
分析图示时序逻辑电路
解:状态表的另一种 形式:
CP
0 1
Q3 Q2 Q1
0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1
F
0 0 0 0 0 1
画时序图:
CP Q1 Q2 Q3
J1 X J 2 XQ 1 K 1 XQ 2 K2 X
Q
n 1
JQ
n
KQn
得到各触发器的次态方程:
Q Q
n 1 1 n 1 2
X Q 1 XQ 2 Q 1 X Q 2 Q 1 XQ 2
例2.4
ቤተ መጻሕፍቲ ባይዱ
分析图示时序逻辑电路
Q Q
输入
X 0 0 0 0 1 1 1
时序逻辑电路
1 2 3 4 5 6 时序逻辑电路的基本概念 时序逻辑电路的分析 同步时序电路的设计 计数器 寄存器 算法状态机
时序逻辑电路
数字电路分为 1. 组合电路: 2. 时序电路:
电路在某一给定时刻的输出 还取决于前一时刻电路的状态
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q1
0Q
RS
Q
01
0
&
&
10
1
S0
1R
②R=1、S=0时:由于S=0,不论原来Q为0还是1,都有Q=1; 再由R=1、Q=1可得Q=0。即不论触发器原来处于什么状态都 将变成1状态,这种情况称将触发器置1或置位。S端称为触发 器的置1端或置位端。
Q 10
01 Q
RS
Q
01
0
&
&
10
1
11
不变
S1
电工电子技术基础
主编 李中发 制作 李中发
2003年7月
第11章 时序逻辑电路 学习要点
•触发器的工作原理及逻辑功能 •寄存器、计数器的工作原理及构成 •555定时器的工作原理及其应用
•数模/模数转换器的组成和工作原理
第11章 时序逻辑电路
11.1 双稳态触发器 11.2 寄存器 11.3 计数器 11.4 555定时器 11.6 数模和模数转换
S2 C2
从 触
Q2
发
Q
K
&R1 器 Q1 RD R2 器 Q2
Q
1
(2) J 0 、K 1 。设触发器的初始状态为 0,此时主触发 器的 R1 0 、S1 0 ,在CP 1 时主触发器保持为 0 状态不变;当 CP 从 1 变 0 时,由于从触发器的R2 1 、S 2 0 ,从触发器也保 持为 0 状态不变。如果触发器的初始状态为 1,则由于 R1 1 、 S1 0 ,在CP 1 时将主触发器翻转为 0 状态;当 CP 从 1 变 0 时,由于从触发器的R2 1 、S 2 0 ,从触发器状态也翻转为 0 状 态。可见不论触发器原来的状态如何,当J 0 、K 1 时,输入 CP 脉冲后,触发器的状态均为 0 状态,即Q n1 0 。
点 的情况,否则会使触发器处于不确定的状态。
CP
波R 形S 图
Q
Q
不 置 不 置不置 不置 不不不 变 1 变 0 变 1 变 0 变变变
11.1.3 主从JK触发器
J CP
1
&S1 C1
主 触
Q1
SD
发
S2 C2
从 触
Q2
发
Q
K
&R1 器 Q1 RD R2 器 Q2
Q
Q
Q
SD J C K RD
10
功能表
RS
0
0
0
1
1
0
1
1
Q 不定
0 1 不变
功能 不允许
置0 置1 保持
波形图
反映触发器输入信号取值和状态之间对应关系的图形称为 波形图
R S Q
Q
置1 保持 置1 置0 置1 不允许 置1
基本RS触发器的特点
(1)触发器的次态不仅与输入信号状态有关,而且与触 发器的现态有关。 (2)电路具有两个稳定状态,在无外来触发信号作用时, 电路将保持原状态不变。 (3)在外加触发信号有效时,电路可以触发翻转,实现 置0或置1。 (4)在稳定状态下两个输出端的状态和必须是互补关系, 即有约束条件。
11.1.1 基本RS触发器
信号输出端,Q=0、Q=1的状态称0
状态,Q=1、Q=0的状态称1状态,
电
路
Q
Q
Q
Q
组
成
和
&
&
S
R
逻
辑
S
符
R (a) 逻辑图
S
R
(b) 逻辑符号
号
信号输入端,低电平有效。
工作原理
Q
Q
0
1
RS
Q
01
0
&
&
S1
0R
①R=0、S=1时:由于R=0,不论原来Q为0还是1,都有Q=1; 再由S=1、Q=1可得Q=0。即不论触发器原来处于什么状态都 将变成0状态,这种情况称将触发器置0或复位。R端称为触发 器的置0端或复位端。
11.1 双稳态触发器
触发器是构成时序逻辑电路的基本逻辑部件。 它有两个稳定的状态:0状态和1状态; 在不同的输入情况下,它可以被置成0状 态或1状态; 当输入信号消失后,所置成的状态能够保 持不变。
所以,触发器可以记忆1位二值信号。根据逻 辑功能的不同,触发器可以分为RS触发器、 D触发器、JK触发器、T和T´触发器;按照结 构形式的不同,又可分为基本RS触发器、同 步触发器、主从触发器和边沿触发器。
1R
③R=1、S=1时:根据与非门的逻辑功能不难推知,触发器保 持原有状态不变,即原来的状态被触发器存储起来,这体现了 触发器具有记忆能力。
? Q 1
1Q
&
&
S0
0R
RS 01 10 11 00
Q 0 1 不变 不定
④R=0、S=0时:Q=Q=1,不符合触发器的逻辑关系。并且由 于与非门延迟时间不可能完全相等,在两输入端的0同时撤除 后,将不能确定触发器是处于1状态还是0状态。所以触发器不 允许出现这种情况,这就是基本RS触发器的约束条件。
能 分
触发器的 R2 1 、S 2 0 ,也保持为 0 状态不变。如果触 发器的初始状态为 1,当 CP 从 1 变 0 时,触发器则保持 1 状态不变。可见不论触发器原来的状态如何,当
析 J K 0 时,触发器的状态均保持不变,即Q n1 Q n 。
J CP
&S1 C1
主 触
Q1
SD
发
J CP
&S1 C1
主 触
Q1
SD
发
S2 C2
从 触
Q2
发
Q
K
&R1 器 Q1 RD R2 器 Q2
Q
1
逻
(1) J 0 、 K 0 。设触发器的初始状态为 0,此
辑 时主触发器的 R1 KQ 0 、S1 JQ 0 ,在CP 1 时主
功 触发器状态保持 0 状态不变;当 CP 从 1 变 0 时,由于从
SD
发
S2 C2
从 触
Q2
发
Q
&R1 器 Q1 RD R2 器 Q2
Q
11
(2)输出信号过程 当CP下降沿到来时,即CP由1变为0时,主触发器被封锁, 无论输入信号如何变化,对主触发器均无影响,即在CP=1期 间接收的内容被存储起来。同时,由于CP由0变为1,从触发 器被打开,可以接收由主触发器送来的信号,其输出状态由 主触发器的输出状态决定。在CP=0期间,由于主触发器保持 状态不变,因此受其控制的从触发器的状态也即Q、Q的值 当然不可能改变。
(a) 电路
(b) 逻辑符号
工 (1)接收输入信号的过程。
作
CP=1时,主触发器被打开,可以接收输入信号J、K,其 输出状态由输入信号的状态决定。但由于CP=0,从触发
原 器被封锁,无论主触发器的输出状态如何变化,对从触
理 发器均无影响,即触发器的输出状态保持不变。
J
0 CP
K
&S1 C1
主 触
Q1
功能表
CP
R S Qn+1
功能
0
× × Qn
保持
1Leabharlann 0 0 Qn保持1
01 1
置1
1
10 0
置0
1
1 1 不定 不允许
主 (1)时钟电平控制。在CP=1期间接收输入信号,
要 CP=0时状态保持不变,与基本RS触发器相比,对触
特
发器状态的转变增加了时间控制。 (2)R、S之间有约束。不能允许出现R和S同时为1
在数字电路中,凡根据输入信号R、S情况的 不同,具有置0、置1和保持功能的电路,都 称为RS触发器。
11.1.2 同步RS触发器
Q
G1 &
S'
G3 &
Q
& G2
R'
& G4
Q
Q
Q
Q
S CP R
S CP R (a) 逻辑电路
S CP R (b) 逻辑符号
CP=0时,R'=S'=1,触发器保持原来状态不变。 CP=1时,工作情况与基本RS触发器相同。