职高二年级数学试卷答案
中职数学2年级试卷【含答案】

中职数学2年级试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. 0B. 1C. -1D. 22. 下列函数中,奇函数是:A. f(x) = x³B. f(x) = x²C. f(x) = |x|D. f(x) = x² + 13. 若直线y = 2x + 3与x轴的交点为A,与y轴的交点为B,则三角形OAB的面积是:A. 3B. 4.5C. 6D. 94. 若一组数据2, 3, 5, 7, 11, x的平均数为6,则x的值为:A. 4B. 6C. 8D. 105. 在直角坐标系中,点(3, -4)关于原点的对称点是:A. (3, 4)B. (-3, 4)C. (-3, -4)D. (3, -4)二、判断题(每题1分,共5分)1. 若a > b,则a² > b²。
()2. 任何实数的平方都是非负数。
()3. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ = b² 4ac。
()4. 函数f(x) = 2x + 3的图像是一条直线。
()5. 对角线互相垂直的四边形一定是菱形。
()三、填空题(每题1分,共5分)1. 若sinθ = 1/2,且θ为第二象限角,则cosθ = _______。
2. 方程x² 5x + 6 = 0的解为x₁ = _______,x₂ = _______。
3. 若一组数据1, 3, 5, 7, 9的平均数为a,则数据2a 1, 2a + 1, 2a + 3, 2a + 5, 2a + 7的平均数为_______。
4. 在ΔABC中,若∠A = 30°,∠B = 60°,则∠C = _______°。
5. 若函数f(x) = 3x² 12x + 9,则f'(x) = _______。
职高二年级上学期期中考试数学试卷(含答案)

高二第一学期期中考试数学试卷满分:120分 分数:一、选择题(每题3分,共45分) 1.在投掷骰子的试验中,可以定义许多事件,例如: 1C ={出现1点} 2C ={出现的点数小于1} 3C ={出现的点数小于7}4C ={出现的点数大于6} 5C ={出现的点数是偶数} 以上5个事件中的随机事件个数为( ). A .1 B .2 C .3 D .42.在一次抛硬币的试验中,同学甲用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了45次,那么出现正面朝上的频率和概率分别为( ) A .0.45,0.45 B .0.5,0.5C .0.5,0.45D .0.45,0.5 3.已知数列{}n a 中,12a =则8a 等于( ) A .-12 B .12 C .-16 D .164.已知数列{}n a 为等比数列,若2102,8a a ==,则6a =( )A .4±B .4-C .4D .55.sin 70cos 40cos70sin 40-=( )A .12-B .12C .32-D .326.在ABC 中,内角A B C 的对边分别为a b c 已知2b = 5c = 3A π=,则a =( ) A .19B .19C .39D .397.若tan α,tan β为方程23520x x +-=的两根,则()tan αβ+=( )A .1-B .13C .1D .13- 8.已知3cos 5α=-,且0απ<<,则sin 2α=( ) A .2425 B .2425- C .1516D .1516- 9.已知中,a =4,b =4,∠A =30°,则∠B 等于A .60°或120B .30°或150°C .60°D .30° 10.在等差数列{}n a 中,若252,5a a ==,则数列{}n a 的通项公式为A .n a n =B .2n a n =C .1n a n =-D .21n a n =-11.ABC 的内角,,A B C 的对边分别为,,a b c ,且1a = 3c = 6B π=,则ABC 的面积为( ) A .32 B .34 C .32D .3412.把函数sin 2)6y x π=+(的图象沿x 轴向右平移4π个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的12,可得函数()y g x = 的图象,则()g x 的解析式为( ) A .()sin(4)12g x x π=- B .()sin(4)6g x x π=- C .()sin(4)3g x x π=- D .2()sin(4)3g x x π=- 13.下列函数中最小正周期为π的偶函数是( ) A .sin 2x y = B .cos 2x y = C .cos y x =D .cos 2y x = 14.sin15sin30sin75︒︒︒=( )A .12B .14C .18D .11615.对于锐角α,若tan 2α=,则2cos sin 2αα+等于( ).A .35B .53C .1D .35±二、填空题(每题3分,共30分)三、解答题(每题9分,共45分)29.已知函数()2sin cos 1f x x x =+.(1)求函数()f x 的最小正周期和最大值;(2)求函数()f x 的单调减区间.30.已知等差数列{}n a 满足32a =,前4项和47S =.(1)求{}n a 的通项公式;(2)设公比为正数的等比数列{}n b 满足23b a = 415b a =,数列{}n b 的通项公式.2023-2024学年度第一学期高二期中考试数学答案。
中职数学2年级试卷

中职数学2年级试卷专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = 2x + 3,则f(4)的值为()A. 5B. 11C. 6D. 122. 已知等差数列的前三项分别为1, 3, 5,则第四项为()A. 4B. 6C. 7D. 83. 下列哪个图形不是正多边形()A. 正方形B. 正五边形C. 正六边形D. 等边三角形4. 若a, b为实数,且a > b,则下列哪个选项一定成立()A. a^2 > b^2B. a + b > 0C. a b > 0D. a/b > 15. 若一个三角形的两边长分别为3和4,则第三边的长度可能是()A. 1B. 5C. 6D. 7二、判断题(每题1分,共5分)1. 若两个角互为补角,则这两个角的和为90度。
()2. 任何两个奇数之和都是偶数。
()3. 一元二次方程ax^2 + bx + c = 0(a ≠ 0)的判别式Δ = b^2 4ac,若Δ > 0,则该方程有两个实数根。
()4. 两个等腰三角形的面积相等,则它们的周长也相等。
()5. 若函数f(x) = x^3,则f(-x) = -f(x)。
()三、填空题(每题1分,共5分)1. 若函数f(x) = x^2 2x + 1,则f(1) = _____。
2. 一个等差数列的前三项分别为2, 5, 8,则公差为_____。
3. 若一个三角形的三个内角分别为45度,45度和90度,则这个三角形是_____三角形。
4. 若a, b为实数,且a ≠ b,则下列哪个选项一定成立:_____。
5. 若一个圆的半径为r,则这个圆的周长为_____。
四、简答题(每题2分,共10分)1. 简述等差数列和等比数列的定义。
2. 什么是勾股定理?请给出一个具体的例子。
3. 请简述一元二次方程的求根公式。
4. 什么是函数的单调性?请给出一个具体的例子。
5. 什么是三角形的内角和定理?请给出一个具体的例子。
中职二年级上学期数学期末模拟试题一(含答案)

中职二年级上学期期末模拟试卷一(数学)姓名__________ 班级_________ 分数___________一、选择题(本大题共10小题,每小题3分共30分)1、数列22221111,31415161----,,,的一个通项公式为( )A ()2111n a n =+- B 1(2)n a n n =+C 21(2)1n a n =+- D 211n a n =- 2、在等差数列{}n a 中,若254785,9,a a a a S +=+==则( ) A 12 B 28 C 24 D 303、等比数列{}n a 中,若135528,q a a a a ===且则( ) A 2 B 4 C 8 D 164、化简AB AC BD CD -+-=( )A 2ADB 2CBC 0D 05、下列说法中不正确的是( ) A 零向量和任何向量平行B 平面上任意三点,,,A BC 一定有AB BC AC += C 若()AB mCD m R =∈,则//AB CD D 若1122,a x e b x e ==,当12x x =时a b =6、若4,2,22a b a b =-==,则,a b =( ) A 00 B 090 C 0120 D 01807、设()5,5,,62a m b ⎛⎫==-- ⎪⎝⎭且13,a a b =⊥,则m =( )A 12B 12-C 12±D 88、直线过两点((,A B -,则该直线的倾斜角是( ) A 060 B 090 C 00 D 01809、直线230ax y +-=与直线10x y ++=互相垂直,则a 等于( )A 1B 2-C 23-D 13-10、以点()()1,3,5,1A B -为端点的线段的垂直平分线的方程为( ) A 380x y -+= B 260x y --= C 340x y ++= D 1220x y ++=二、填空题(本大题共6小题,每小题4分共24分)11、在数列{}n a 中,前n 项和22n n S =+则567a a a ++=____________;12、在数列{}n a 中满足()1302n n a a n -+=≥,且13a =,则它的通项公式为____________;13、已知()()()2,2,3,4,1,5a b c =-=-=,则()3a b c -+=____________;14、已知向量()()1,,,2a x b x =-=-,且a 与b 反向共线,则x 的值为____________;15、已知直线l 与直线310x y -+=平行,且直线l 的横截距为5-,则直线l 的纵截距为____________;16、两条平行直线34206870x y x y --=-+=与的距离是____________;三、解答题(本大题共4小题,共46分)17、⑴在等差数列{}n a 中,275,20a a ==,求15S ;(5分)⑵已知等比数列{}n a 中,531,42a q ==-,求7S ;(5分)18、解答下列问题:(1) nS 是等差数列{}n a 的前n 项和,已知548=+S S ,328=-S a ,求该数列的通项公式;(6分)(2)在等比数列{}n b 中,已知1323=b b b ,且5227=b b ,求该数列的前n 项和n T .(6分)19、()1已知向量()()()1,2,3,1,21,1a b c m n =-=--=++,且,//a c b c ⊥,求实数,m n 的值;(6分) ()2已知()()21,2,1,2a m n b =+-=,且()235,5a b +=,求,a b ;(6分)20、已知直线123:210,:2330,:3470l x y l x y l x y -+=+-=-+=,直线12l l 与的交点为点P, ⑴求点P 的坐标;(6分)⑵设直线3l l 与平行且经过点P ,求直线l 的一般式方程;(6分)中职二年级上学期期末模拟试卷一参考答案二、填空题11.11212.a n=3*(-3)n-113.(-14,23)14.√215.5/316.11/10三、解答题17.(1)S15=345 (2)S7=129/16=4n-12 18.(1)an(2)Tn=1/2(3n-1) 19.(1)m=-1/2;n=-1(2)90°20.(1)P(0,1)(2)3x-4y+4=0。
2024年浙江省中职高二数学试卷(模拟测试)

浙江省中职高二数学试卷(模拟测试)注意事项:1.本试卷分问卷和答卷两部分,满分150分,时间120分钟.2.所有试题均需在答题纸上作答,在试卷和草稿纸上作答无效.3.答题前,考生务必将自己的姓名、准考证号等用黑色字迹的签字笔或钢笔填写在答题卷上,并涂好准考证号码.一、单项选择题(共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分.)1. 已知集合{}{}2,0,1,32A B x x =-=-<<∣,则A B ⋃=( )A. {}2,0,1-B. RC.{}31x x -<<∣ D. {}32x x -<<∣ 2. 若0a b <<,则下列不等式正确的是( )A. ||||a b >B. ||||a b <C. 33a b <D. 22a b <3. 520︒角的终边所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 已知|2|2x +<,则x 的取值范围是( )A. 0x ≥B. 20x -<<C. 40x -<<D. 2x ≤-5.下列函数中,与函数()f x = ) A. ()lg f x x = B. 1()f x x = C. ()||f x x = D. ()10x f x =6. 已知(1,2)AB =,且点A 的坐标为(2,3),点B 的坐标为( )A (1,1) B.(3,5) C. (1,1)-- D. (4,4) 7. “3x <”是“22x -<<”( )A. 充分条件B. 必要条件C. 充要条件D. 既非充分又非必要条件 8. 在ABC 中,若sin sin cos 0A B C =,则ABC 的形状是( )A. 等腰三角形B. 钝角三角形C. 锐角三角形D. 直角三角形 9. 在1012x x ⎛⎫- ⎪⎝⎭的展开式中,4x 的系数为( ) A. 120 B. 120- C. 15 D. 15- .的10. 在数列{}n a 中,若1111,2n n a a a +==+,则101a =( ) A. 51 B. 52 C. 53 D. 5411. 直线过点(1,1)-,(2,1,则此直线的倾斜角为( ) A. π6 B. π4 C. π3 D. 5π612. 直线340x y +=与圆22()(34)9x y ++-=的位置关系是( )A. 相切B. 相离C. 相交但不过圆心D. 相交且过圆心 13. 5位同学排成一排照相,要求甲,乙两人必须站相邻的排法有( )种A. 20B. 24C.36 D. 48 14. 以双曲线221169x y -=的焦点为两顶点,顶点为两焦点的椭圆的方程是( ) A. 2212516x y += B. 221259x y += C. 2251162x y += D. 221925x y += 15. 已知角α的终边过点(6,8)-,则sin cos αα+=( ) A. 58- B. 15- C. 85 D. 43- 16. 若方程22124x y m m+=--表示焦点在y 轴上的椭圆,则( ) A. 23m << B. 34m << C. 24m << D. 3m >17. 下列命题中正确的是( )A. 平行于同一平面的两直线平行B. 垂直于同一直线的两直线平行C. 与同一平面所成的角相等的两直线平行D. 垂直于同一平面的两直线平行18. 盒子中有2个白球,3个红球,从中任取两个球,则至少有一个白球的概率为( ) A. 25 B. 23 C. 35 D. 71019. 已知函数2(1)2f x x x +=-+,则(3)f =( )A. 8B. 6C. 4D. 220. 已知双曲线22221x y a b-=的一条渐近线方程是43y x =.则双曲线的离心率为( )A. 53B. 43C. 54D. 32 二、填空题(共7小题,每小题4分,共28分)21. 函数2log (1)y x =-的定义域为____________.22. 已知0x >,则41x x++的最小值是____________. 23. 使2sin 1x a =+有意义的a 的取值范围是____________.24. 圆22(2)(2)2x y -++=截直线50x y --=所得的弦长为____________.25. 公比2q =-的等比数列{}n a 中,已知34,32n a a =-=,则n =____________.26. 如果圆锥高为4cm ,底面周长为10πcm ,那么圆锥的体积等于____________.27. 直线2y x =-与双曲线2213x y -=交于A 、B 两点,求弦长||AB =____________. 三、解答题(共8小题,共72分.解答应写出文字说明及演算步骤)28. 计算:22lg137114π125log 3432cos (2π)23-⎛⎫+-++- ⎪⎝⎭. 29. 已知函数2()22f x x bx c =++,当=1x -时,()f x 有最小值8-.(1)求b 、c 值;(2)解不等式:()0f x >. 30.已知n ⎛+ ⎝展开式中各项二项式系数之和64. (1)求n 的值.(2)求展开式中的常数项.31. 在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,且222b c a bc +-=.(1)求角A 的度数;(2)若c =2ABC S = ,求b 边长. 32. 已知过点(2,0)的直线l 与圆224x y +=相交,所得弦长为2,求直线l 的方程.33. 已知数列{}n a 是等差数列,前n 项和2n S n =,求: 的为第4页/共6页(1)4a 的值;(2)数列的通项公式;(3)求前25项的和25S .34. 如图,已知ABCD 是正方形,P 是平面ABCD 外一点,且PA ⊥面ABCD ,3PA AB ==.求:(1)二面角P CD A --的大小;(2)三棱锥P ABD -的体积.35. 如图,已知抛物线22(0)y px p =>的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)以AF 为直径作圆C ,请判断点M 与圆C 位置关系,并说明理由.的浙江省中职高二数学试卷(模拟测试)注意事项:1.本试卷分问卷和答卷两部分,满分150分,时间120分钟.2.所有试题均需在答题纸上作答,在试卷和草稿纸上作答无效.3.答题前,考生务必将自己的姓名、准考证号等用黑色字迹的签字笔或钢笔填写在答题卷上,并涂好准考证号码.一、单项选择题(共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分.) DCBCABBDDAACDBBADDCA二、填空题(共7小题,每小题4分,共28分)【答案】{1}x x >∣【答案】5【答案】[3,1]-【答案】6 【答案】3100πcm 3【答案】6三、解答题(共8小题,共72分.解答应写出文字说明及演算步骤)【28题答案】【答案】26【29题答案】【答案】(1)2,6b c ==-(2){3x x <-∣或1}x >【30题答案】【答案】(1)6n =.(2)540.【31题答案】【答案】(1)60A =︒(2)3b =【32题答案】0y --=0y +-=【33题答案】【答案】(1)7 (2)21n a n =- (3)625【34题答案】【答案】(1)45︒(2)92【35题答案】【答案】(1)24y x =(2)点M 在圆C 上,理由见解析。
职业二年级期末考试题及答案

(1)求直线l的方程;
(2)求直线l与两坐标轴围成三角形的面积.
18.(10分)如图,已知正四棱锥V- 中, , 若 , ,求正四棱锥 - 的体积.
19、(12分)已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点。(1)求AB边所在的直线方程;(2)求中线AM的长。
三、解答题
17、(1)
(2)
18.解法1: 正四棱锥 - 中,ABCD是正方形,
(cm).
且 (cm2).
,
Rt△VMC中, (cm).
正四棱锥V- 的体积为 (cm3).
解法2: 正四棱锥 - 中,ABCD是正方形,
(cm).
且 (cm).
(cm2).
,
Rt△VMC中, (cm).
正四棱锥 - 的体积为 (cm3).
A、30oB、45oC、60oD、90o
3、如果直线 与直线 互相平行,则实数a的值等于
A、1 B、2 C、-2 D、1或-2
4、圆C1: 与圆C2: 的公切线有
A、0条B、2条C、3条D、4条
5、下列命题为真命题的是()
A、平行于同一平面的两条直线平行;B、垂直于同一平面的两条直线平行;
C、与某一平面成等角的两条直线平行;D、垂直于同一直线的两条直线平行。
故M(1,1)………………………8
…………………………………………10
20.(1)证明:因为D,E分别是AB,PB的中点,
所以DE∥PA.
因为PA 平面PAC,且DE 平面PAC,
所以DE∥平面PAC.
(2)因为PC⊥平面ABC,且AB 平面ABC,
中职二年级数学月考试卷及答案

一、 选择题(每小题4分,共48分)1、cos118cos58sin118sin58+=( )A. BC .12- D .122、112sin 22-π=( )A 23-B 23C 21D 21- 3、已知tan α=3,tan β=2,则tan(α-β)=( )A51 B 71C 51-D 75 4、cos150-sin150的值是( )A26 B 26- C 22- D 225、函数x x x f 3cos 33sin 4)(+=的最大值是( )A 4B 5C 6D 76、函数)32sin(4)(π+=x x f 的最大值和周期分别为( )A 4,2πB 4,πC 2,πD 2,3π7、已知=-=-ααααcos sin ,45cos sin 则( )A .47 B .169-C .329-D .329 8、将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,则ϕ等于( ) A .12π-B .3π-C .3πD .12π9、0015tan 115tan 1+-的值是 ( ) A 、3 B 、3- C 、33 D 、33- 10、△ABC 中,已知a=3,b=5,c=7,则∠C 的度数是( )A. 300B. 600C. 1200D. 150011、△ABC 中,已知∠A=300, ∠B=1050,a=6,则c=( )A.√2B.32√2 C.6√2 D.12√2 12、设sin α=√32, 且α∈(0,π),则sinα2=( )A.12 B.√32 C. 12 或√32 D ±12二、 填空题(每小题4分,共36分)13.sin1050=__________14.sin130cos470+cos130sin470=二__________ 15.已知sinx-cosx=23-,则sin2x=__________ 16.函数232sin(3+--=)πx y 的最大值为__________ 17.在△ABC 中,a=6,b=3, ∠C=1200则c=__________ 18.在面积为8的锐角△ABC 中,AB=4,AC=5,则BC=______ 19.等于则)2cos(),,0(,31cos θππθθ+∈=_________20.若α是第三象限角,则)πcos()πsin(21αα---=_________21. 函数)32sin(4)(π+=x x f 的振幅 ,初相 。
职业高中高二下学期期末数学试题卷5(含答案)

职业高中下学期期末考试 高二《数学》试题5一 选择题(3*10=30)1.某班有男生23人,女生26人,从中选一人担任班长,共有( )种选法。
A. 23 B.26 C.49 D.162.有5件产品,其中A 型产品3件,B 型产品2件,从中抽两件,他们都是A 型的概率是( )A.35 B.25 C. 310 D.320 3.sin 15°-cos 15°=( )A.√62 B.- √62 C.- √22 D.√22 4.如果cos α=12,则(sin α2)2=( )A.34 B.14 C.12 D.2−√345.在∆ABC 中,已知AB=2,AC=√7,BC=3,则 B =( ) A.π6 B. π4 C.π3 D.2π3 6.函数y=sin 2x +√3cos 2x 的最大值为( )A. -2B.√3C.2D.1 7.椭圆x 23+y 24=1的焦距为( )A.4B.3C. 1D.28. 已知P n 2=56,则n=( )A. 6B. 7C.8D.99.双曲线x 27−y 29=1的离心率是( )A.√74 B.74 C.4√77 D.4310.设方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 二 .填空题(3*8=24)11.用1,2,3,4,5,6这六个数字组成无重复数字的四位数,共有 个。
12.cos π12sin 5π12+sin π12cos 5π12=13.正弦型曲线y =2sin (3x −π6)是 由正弦型曲线y =2sin 3x 向右平移 个单位得到的。
14.若sin α+cos α=√2,则sin 2α= 15.(x −2x 2)8展开式的第四项为16.在(a +b )11的展开式中,与第三项二项式系数相等的项是第 项。
17.顶点在原点,关于x 轴对称,顶点与焦点的距离为3的抛物线的标准方程 是18.已知定点Q (5,2),动点P 为抛物线y 2=4x 上的点,F 为该抛物线的焦点,则使得︱︱PQ ︱+︱PF ︱︱取得最小值的点P 的坐标为 三.解答题(7*5=32)19.抛掷一颗骰子,观察掷出的点数,求C={点数是奇数或4}的概率专业 班级 姓名 学籍号 考场 座号20.抛掷两次骰子,求①两次都出现1点的概率②恰有一次出现1点的概率③没有出现1点的概率21.用1,2,3,4,5这五个数,组成无重复数字的三位数,求在下列情况,各有多少个?①奇数②能被5整除22.已知sinα=13,α∈(π2,π),cosβ=−35,β∈(π,3π2),求sin(α+β)和cos(α−β)的值。