CHO细胞表达抗体
CD80鼠-人嵌合抗体的CHO细胞表达及体外生物学功能的初步研究

CE H NMi - i QU 一 n Xn, I g
.ntu Ist e fMei l ieho g , oco nv sy,uhu2 50 , h a it o d a o cnl y Sohw U irt Szo 10 7 C i c Bt o ei n
l bt c] O jcv :oep s hm nm ueciei atoyaa s hm nC 8 c4 5atoy nC O cl,n — s at A r bet e T xr s u a- os hm r nbd gi t u a D 0(h E nbd )i H esadt r i e c i n i l oe
c 4E o c n tu tsa l ell e sc eig c i rc n tb d Th h E5 a t o y wa u f d fo c lue s p maa twi o tftlc l h 5 t o src tbe c l i e rtn hme a io y. e c 4 ni d s p ri rm utr u e t t u ea af n i b i e n h
中国 图 书 分类 号 R 9 . 3 21 文献标识码 A 文章编号 10-8X(0 90-140 0044 20 )201.4
[ 摘
要 ] 目的: H C O细胞表达抗人 C 8 D 0鼠一 人嵌合抗体 c4 5 并研究 其在体外阻断 C 8 hE , D 0介导的共刺激信号转导 的生
物学功能 。方法: 构建 含有嵌合重 、 轻链基因的表 达载体 pR S c4 5 表达载体先转染 23 IE / hE ; 9T细胞 ,C F M检测到 c4 5抗体 的 hE 瞬时表达后 , 表达载体再转染 C O细胞 , H 构建稳定表达细胞株 C Oc4 5 Po i G亲和层析法从 C O c4 5 H —hE ;r e tn H —hE 细胞无血清培养 上清 中纯化 c4 5 h E 抗体 ,C F M检测 c4 5抗体对膜型 C 8 hE D0的识别 ; 以丝裂霉素处理 的正常人外周血单核细胞 P M s B C 为刺激细 胞, 以异体正常人外周血淋 巴细胞 P k 为反应细胞 , M F B 用 T 法分析 c4 5抗体的阻断作用。结果 :hF hE c45抗 体在 23 _ 9T细胞 的
CHO细胞基本知识

CHO细胞基本知识引言CHO细胞(Chinese Hamster Ovary cells)是一种常见的哺乳动物细胞系,常被用于生物技术领域的研究和应用。
CHO细胞具有诸多优点,如易于培养、较高的复制速度和稳定性等,使其成为生物药物生产的重要工具。
本文将介绍CHO细胞的基本知识,包括其来源、特点、培养条件和应用等方面。
来源CHO细胞最初来源于中国仓鼠卵巢组织,1957年被美国科学家狄利克(Dilworth)和哈普斯特(Hamster)首次成功培养。
经过多年的研究和改进,CHO细胞逐渐成为工业界主要采用的细胞系之一。
现在,CHO细胞已经被广泛应用于生物制药行业,特别是重组蛋白的生产。
特点CHO细胞有许多特点使其成为生物药物生产的理想细胞系。
1.易于培养:CHO细胞相对容易培养,可以在常规的培养基中生长。
其生长要求较为简单,包括适当的培养基、温度、pH值、营养物质等。
2.高繁殖速度:CHO细胞的繁殖速度较快,在适宜的培养条件下,细胞数量可以迅速增加。
这对于大规模的生物药物生产非常有利。
3.稳定性:CHO细胞在长期培养过程中具有较高的遗传和表达稳定性。
这对于生物药物的一致性和稳定性非常重要。
4.多样性:CHO细胞可以表达多种重组蛋白,包括抗体、生长因子、酶等。
这使得CHO细胞在生物制药领域有广泛的应用前景。
培养条件CHO细胞的培养条件对于细胞的生长和表达产物的质量具有重要影响。
以下是一些常用的培养条件:1.培养基:CHO细胞通常使用含有葡萄糖和氨基酸的培养基,如DMEM(Dulbecco’s Modified Eagle’s Medi um)或RPMI 1640。
培养基中还可以添加胎牛血清(FBS)或人血清蛋白(HSA)等血清成分,以提供细胞所需的营养和生长因子。
2.温度和湿度:CHO细胞通常在37摄氏度的恒温箱中培养,相对湿度约为90%。
温度和湿度的控制对细胞的生长和代谢活性至关重要。
3.pH值:CHO细胞在培养过程中的最适pH值通常在7.0-7.6之间。
CHO细胞培养生产抗体药物的工艺优化与放大研究工程

文献综述
CHO细胞大规模培养技术是近年来发展起来的真核细胞表达系统,被广泛应用 于单克隆抗体的生产。根据文献报道,影响CHO细胞大规模培养的主要因素包 括细胞培养基质、培养条件、细胞株选择和下游分离纯化工艺等。通过优化这 些因素,可有效提高CHO细胞培养的效率和单克隆抗体的产量。
研究方法
本研究采用CHO细胞系进行大规模培养,通过优化细胞培养基质、培养条件以 及下游分离纯化工艺,实现高效表达和纯化单克隆抗体。具体实验方法如下:
一、引言
乙肝疫苗是预防乙型肝炎病毒感染的重要手段。其中,重组CHO细胞乙肝疫苗 是一种高效、安全、易于生产的疫苗。然而,随着疫苗需求的不断增加,提高 生产效率和产品质量成为了亟待解决的问题。因此,本次演示将对重组CHO细 胞乙肝疫苗的生产工艺进行优化。
二、材料与方法
1、材料
重组CHO细胞乙肝疫苗生产所需材料包括CHO细胞、培养基、血清、胰蛋白酶、 葡萄糖、谷氨酰胺等。
参考内容二
摘要
本次演示旨在探讨重组CHO细胞乙肝疫苗生产工艺的优化。通过对现有生产工 艺的分析和研究,我们提出了一系列工艺优化方案,并对其进行了实验验证。 实验结果表明,优化后的生产工艺显著提高了乙肝疫苗的生产效率和产品质量。
关键词:重组CHO细胞乙肝疫苗, 生产工艺,优化
This article aims to explore the optimization of production process for recombinant CHO cell hepatitis B vaccine. Through the analysis and research of existing production processes, we propose a series of process optimization plans and experimentally verify them. The experimental results show that the optimized production proces
cho细胞表达系统及筛选原理

cho细胞表达系统及筛选原理Cho细胞表达系统及筛选原理一、引言Cho细胞表达系统是一种常用的哺乳动物细胞表达系统,被广泛应用于重组蛋白的生产。
本文将介绍Cho细胞表达系统的原理以及其在蛋白质筛选中的应用。
二、Cho细胞表达系统的原理Cho细胞是一种中国仓鼠卵巢细胞系,具有较高的生长速度和蛋白质表达能力。
Cho细胞表达系统主要包括以下几个关键步骤。
1. 转染将目标基因导入Cho细胞中,通常使用质粒转染法或病毒载体转染法。
质粒转染法通过将目标基因插入质粒DNA中,然后利用转染试剂将质粒DNA导入细胞内。
病毒载体转染法则通过构建携带目标基因的病毒载体,将其感染到Cho细胞中。
2. 选择性筛选为了确保只有转染成功的细胞能够表达目标蛋白,通常在培养基中添加适当的选择性抗生素,如G418或葡萄糖酸钾。
只有转染成功的细胞才能抵抗抗生素的作用,存活下来。
3. 扩增和表达经过筛选的细胞将被扩增培养,以获得足够数量的细胞进行大规模蛋白质表达。
通常选择合适的培养基和培养条件,以提高细胞的生长速度和蛋白质表达水平。
4. 蛋白质纯化经过表达的目标蛋白质需要进行纯化,以去除其他杂质。
常用的纯化方法包括亲和层析、离子交换层析、凝胶过滤层析等。
通过这些方法,可以获得高纯度的目标蛋白质。
三、Cho细胞表达系统在蛋白质筛选中的应用Cho细胞表达系统在蛋白质筛选中具有以下优势。
1. 高表达水平Cho细胞具有较高的蛋白质表达能力,能够快速产生大量目标蛋白。
这对于需要大量蛋白质的研究和工业应用非常有利。
2. 真核细胞表达与原核细胞表达系统相比,Cho细胞表达系统能够实现真核细胞蛋白质表达。
这使得Cho细胞表达系统适用于需要进行正确的蛋白质翻译修饰、蛋白质折叠和组装的蛋白质研究。
3. 可选择性筛选通过添加适当的选择性抗生素,可以筛选出成功表达目标蛋白的细胞。
这样可以确保筛选后的细胞具有较高的表达水平和纯度。
4. 灵活性Cho细胞表达系统可以应用于多种类型的蛋白质,包括单链抗体、重组蛋白、酶等。
CHO细胞表达抗体ppt课件

启动子下游有真核的 核糖体进入位点,通 常为GCCGCC A/GCCAUGG+4的 共有序列
IRES具有较强的起始 翻译的能力,研究发 现,某些动物的基因 前存在类似IRES的序 列,可以独立启动翻 译,并且翻译效率很 高,可称之为翻译型 增强子
CHO Cell CHO-K1 GS基因表达系统 瑞士的Lonza公司
宿主细胞:CHO-K1SV 质粒:PEE12.4(Amp抗性,GS标记 基因,¥2000) 筛选试剂:MSX(氨基亚砜蛋氨酸) 宿主细胞:CHO-s® Cells (cGMPbanked) 质粒:pCHO1.0(嘌呤霉素和DHFR标 记基因,¥10000) 筛选试剂:Puromycin/MTX(氨甲喋5 呤)
质粒:PEE12.4 筛选试剂:MSX(氨基亚砜蛋氨酸)
PEE12.4
12
PEE12.4 4 12.4
13
GS(谷氨酰胺合成酶)筛选原理
L-谷氨酸+氨+ATP
GS
L-谷氨酰胺+ADP+Pi
14
DHFR系统
宿主:CHO-S Cell (cGMP-banked) 培液:CD-FortiCHO Medium 限制性内切酶: AvrII/BstZ17I ,EcoRV /Pacl 线性化酶:NruI 转化:Neon® electroporation Transfection
表 达 盒
抗体基因表达盒的组织形式 已较为固定,但其中各元件 的选择仍有值得探讨的地方
9
PcDNA3.3/Poptiv
CHO细胞表达系统研究进展

生物技术进展2016年㊀第6卷㊀第4期㊀239~243CurrentBiotechnology㊀ISSN2095 ̄2341进展评述Reviews㊀收稿日期:2016 ̄02 ̄22ꎻ接受日期:2016 ̄04 ̄04㊀作者简介:郑惠惠ꎬ技术员ꎬ主要从事真核重组抗原研发研究ꎮE ̄mail:shanjvqiuming@163.comꎮ∗通信作者:江洪ꎬ工程师ꎬ主要从事重组抗原研发研究ꎮE ̄mail:jiang@wondergen.comCHO细胞表达系统研究进展郑惠惠ꎬ㊀江㊀洪∗北京万达因生物医学技术有限责任公司ꎬ北京141017摘㊀要:CHO细胞表达系统是目前重组糖蛋白生产的首选系统ꎮ随着无血清悬浮培养技术㊁基因工程技术和大规模培养技术的应用和不断发展ꎬCHO细胞表达系统已经成为生物技术药物最重要的表达或生产系统ꎬ并被广泛应用于抗体㊁重组蛋白药物和疫苗等产品的研发和生产中ꎮ近年来ꎬ针对CHO细胞表达系统在某些重组蛋白的表达和大规模生产中存在的不足ꎬ研究者们通过利用基因工程技术手段ꎬ结合重组蛋白表达机制的研究成果ꎬ为优化和应用CHO细胞表达系统做出了不懈努力ꎮ从培养基的优化㊁高产重组CHO细胞株的构建㊁大规模培养三个方面综述了CHO细胞表达系统的最近研究进展ꎬ以期为CHO细胞表达系统的研究与应用提供参考ꎮ关键词:CHO细胞培养ꎻ细胞改造ꎻ重组抗原表达DOI:10.3969/j.issn.2095 ̄2341.2016.04.03ProgressofCHOExpressionSystemZHENGHui ̄huiꎬJIANGHong∗BeijingWondergenBio ̄medicineTechnologyCo.Ltd.ꎬBeijing141017ꎬChinaAbstract:CHOcellexpressionsystemisthepreferredsystemforrecombinantglycoproteinproduction.Withtheevolvingdevelopmentandapplicationsofserum ̄freesuspensionculturetechnologyꎬgeneticengineeringandthelarge ̄scaleculturetechnologiesꎬCHOcellexpressionsystemhasbecomethemostimportantexpressionorproductionsystemofbiotechnologyproducts.Thissystemiswidelyusedintheresearchandproductionofantibodiesꎬrecombinantproteinsandvaccines.Inrecentyearsꎬresearchershavemadegreateffortstoimprovetheexpressionandlarge ̄scaleproductionofrecombinantproteinsbyusinglatestbioengineeringtechnologyandthedevelopmentoftherecombinantproteinexpressionmechanism.ThisarticlebrieflyreviewedtherecentdevelopmentoftheCHOcellexpressionsysteminthreeaspects:theoptimizationoftheculturemediumꎬconstructionofengineeredCHOstrainsforhigh ̄levelproductionandlarge ̄scalecultureresearchꎬwhichwasexpectedtoprovidereferenceforresearchandapplicationofCHOcellexpressionsystem.Keywords:CHOcellcultureꎻcellengineeringꎻrecombinantantigenexpression㊀㊀CHO细胞是由Puck于1957年建成的中国仓鼠卵巢成纤维细胞系ꎮ发展至今ꎬCHO细胞已成为生物技术药物最重要的表达或生产系统ꎮ随着无血清悬浮培养技术㊁基因工程技术㊁生物反应器设计放大与强化技术㊁大规模高密度流加和连续灌注培养技术等的发展ꎬCHO细胞系统被广泛应用于抗体㊁基因重组蛋白质药物㊁病毒疫苗等生物技术产品的研究开发和工业化生产中ꎮCHO细胞是目前重组糖基蛋白生产的首选体系ꎮ因为它具有准确的转录后修饰功能ꎬ表达的蛋白在分子结构㊁理化特性和生物学功能方面更接近于天然蛋白分子ꎮ但CHO细胞在无血清培养基中会出现活力差㊁分泌外源蛋白能力弱等问题ꎮ所以建立稳定㊁高产的重组CHO细胞成为很多研究者的目标ꎮ近年来ꎬ研究者从细胞营养㊁代谢㊁凋亡㊁信号传导等角度ꎬ结合蛋白表达机制等研究成果ꎬ对这一目标的实现做出了很多努力ꎮ本文从培养基优化㊁高产重组CHO细胞株的构. All Rights Reserved.建㊁大规模培养三个方面综述了CHO细胞表达系统的最新研究进展ꎬ以期为CHO细胞表达系统的应用提供参考ꎮ1㊀培养基的优化研究发现ꎬ不同的细胞株甚至克隆对营养成分的需求都有差别ꎮ通过筛选比较不同培养基成分对重组抗原生产的影响ꎬ并开发适用于不同重组CHO细胞株的培养基ꎬ成为很多研究者提高CHO细胞表达系统产量的重要方式ꎮ为了维持细胞在无血清培养基中的正常生长ꎬ需要在基础培养基中添加很多其他因子ꎬ如激素㊁生长因子㊁蛋白水解物等ꎮ蛋白质水解物含有丰富的营养成分ꎬ可有效缩短细胞对无血清培养基的适应过程ꎮDavami等[1]通过组合比较不同来源的蛋白水解物对细胞密度及表达产量的影响ꎬ优化得到更适于DG44的培养基ꎮ酵母水解物作为一种成本较低的非动物源蛋白水解物ꎬ可以使细胞密度增加的同时ꎬ使重组表达抗体的表达量大幅提高[2]ꎮ大豆水解物等都可以被添加到基础培养基中[1ꎬ3ꎬ4]ꎮ由于蛋白水解物的构成复杂ꎬ且批间差异大ꎬ因此蛋白水解物的添加会影响细胞培养基批次间的稳定性ꎮ如果去除培养基中的蛋白质水解物ꎬ需要添加氨基酸或微量元素等ꎬ通过优化调整其比例ꎬ仍能支持高密度的CHO细胞培养[5]ꎮ刘兴茂等[6]采用Plackett ̄Burman实验对影响细胞生长的培养添加成分进行了考察ꎬ确定了腐胺㊁胰岛素及转铁蛋白对11G ̄S细胞的悬浮培养有明显的生长促进作用ꎮ设计的培养基可以使细胞最大生长密度达到4.12ˑ106cells/mLꎮXu等[7]采用Plackett ̄Burman设计与支持向量机(SVM)预测并实验确定了硫酸锌㊁转铁蛋白及BSA对CHO ̄K1细胞的生长有促进作用ꎮ另有研究表明ꎬ使用柠檬酸铁作为转铁蛋白的替代物ꎬ可以使细胞的密度达到7.0ˑ106cells/mLꎬ但是会降低转染效率[8]ꎮMiki等[9]研究发现ꎬ添加生长因子IGF ̄1和脂类信号分子溶血磷脂酸(LPA)也可以有效加速CHO细胞生长ꎮ优化培养基能有效提高重组CHO细胞的培养密度ꎮ高密度的CHO细胞培养是CHO细胞表达系统实现工业化生产应用的必要条件之一ꎮ与大肠杆菌和酵母表达系统相比ꎬCHO细胞有生长较慢㊁培养周期较长㊁产量较低等缺点ꎮ为了提高重组蛋白产量㊁扩大CHO细胞表达系统的生产应用范围ꎬ研究者们在优化培养基的实验基础上ꎬ构建高产的重组CHO细胞系ꎬ为大规模的重组蛋白生产提供基础ꎮ2㊀高产重组CHO细胞株的构建研究者们利用发展迅速的基因编辑技术对CHO细胞进行筛选和改造ꎬ得到高产的重组细胞株ꎮ研究者们通过过量表达或敲除某个基因ꎬ调整代谢途径㊁延缓细胞凋亡㊁增强转录表达效率ꎬ有效的增加了重组蛋白产量ꎮ通过结合全基因组测序和基因敲除技术的研究成果ꎬ研究者们为得到反应性更好的糖基化重组蛋白做出了不懈努力ꎮ2.1㊀调整代谢途径乳酸作为糖酵解产生的代谢产物会影响细胞生长ꎮZhou等[10]使用siRNA技术降低乳酸脱氢酶A(LDHa)和丙铜酸脱氢酶激酶(PDHKs)基因的表达ꎬ使乳酸的产生降低了90%ꎬ并增加了单抗的产量ꎮToussaint等[11]通过在rCHO中表达酵母丙酮酸羧化酶(PYC2)ꎬ改变了流加培养方式中葡萄糖的代谢速率ꎬ增长了细胞的对数生长期ꎬ从而增加了细胞密度及产量ꎮ2.2㊀延缓细胞凋亡为了延长细胞培养的时间从而增加产量ꎬ有研究者建立了能表达抗凋亡基因的CHO细胞系ꎮMajos等[12]通过在CHO中表达1个Asp29Asn突变的抑制凋亡基因ꎬ有效延缓了细胞凋亡ꎮ也有研究者通过敲除细胞中的促凋亡基因来延缓细胞凋亡ꎬ如Cost等[13]敲除了BCL2相关蛋白X(BAX)和BAK的基因ꎬ使单克隆抗体产量增加了5倍ꎮRitter等[14]发现8号染色体端粒区的缺失也可以使产物产量成倍增加ꎮ2.3㊀增强转录表达效率有研究者在细胞信号通路研究成果的基础上ꎬ通过表达转录及翻译过程中的相关蛋白ꎬ增强转录和表达效率ꎬ以增加目的重组蛋白的产量ꎮLeFourn等[15]通过在CHO中表达人信号受体蛋白SRP14ꎬ成功增加了分泌表达的重组蛋白的产042生物技术进展CurrentBiotechnology. All Rights Reserved.量ꎮPeng等[16]通过表达转录翻译相关蛋白SLY1㊁MUNC18C和XBP1ꎬ使IgG的产量提高了20倍ꎻRahimpour等[17]在CHO细胞中表达神经酰胺转移蛋白(CERT)的突变基因使t ̄PA的产量增加了35%ꎮ2.4㊀表达糖基化酶能产生糖基化的重组蛋白是CHO细胞表达系统重要的优势ꎬ研究者们通过建立能表达N ̄糖基化途径中不同酶类的细胞系以增加糖基化重组蛋白的反应性ꎮ如Goh[18]建立的一个含有N ̄乙酰氨基葡萄糖转移酶I基因的突变体CHO ̄gmt4细胞系ꎬ其表达的重组葡萄糖脑苷脂酶将不需要多糖重构可直接用于治疗戈谢病患者ꎮZhang等[19]通过CHO ̄gmt5细胞株表达的重组抗体ꎬ其Fc的N ̄多糖缺少岩藻糖和唾液酸能增强ADCC的作用ꎮ根据CHO ̄K1的基因组信息ꎬYang等[20]通过锌指核酸酶(ZFNs)基因敲除的方法ꎬ研究了19种包括作用于N ̄糖基链分支㊁半乳糖基㊁聚LacNAc延伸㊁唾液酸化加盖的N ̄糖基转移酶对N ̄糖基化作用的影响ꎬ为更准确的表达特定糖基化方式的重组蛋白提供了重要参考ꎮ重组CHO细胞表达重组蛋白能力的高低ꎬ不能简单的归结为某些关键基因的作用ꎮ为了得到高产的重组细胞株ꎬ需要研究者们综合考虑细胞的代谢情况㊁培养条件㊁蛋白表达效率和蛋白加工修饰能力等诸多因素ꎮ3㊀大规模培养研究基因工程技术㊁细胞融合技术及抗体类药物的迅速发展ꎬ推进了生物反应器培养技术在生物制药中的应用ꎮ由于CHO细胞能以悬浮培养的方式高密度培养ꎬ培养体积可达1000L以上ꎬ所以在大规模培养和重组蛋白的高产量生产中ꎬCHO细胞表达系统拥有广阔的发展前景ꎮ在大规模生产中ꎬ通常采用流加培养方式ꎬ通过添加营养物质来延长培养时间ꎬ增加细胞密度和目的产品的浓度ꎮ为了更大程度的提高重组蛋白的生产效率ꎬ研究者们需要根据不同细胞株的生长代谢特点ꎬ选择和优化起始培养基㊁补料培养基及补料策略ꎮ现代计算机技术㊁数学算法及理论的应用ꎬ也为研究者对细胞流加培养的优化提供了很大帮助ꎮ3.1㊀优化培养参数选择合适的培养基㊁优化细胞培养的参数(如温度㊁pH㊁溶氧㊁CO2浓度㊁渗透压等)对生产至关重要ꎮ同时ꎬ流加工艺参数(如流加培养基成分㊁流加时间等)均需根据不同的细胞株及反应器的特点来设计优化ꎮFan等[21]采用分批补料方式培养CHO细胞ꎬ实验显示培养基中的氨基酸和葡萄糖浓度对细胞的生长㊁IgG浓度和N ̄糖基化生成都很重要ꎮKim等[22]使用分批补料培养使IgG的产量达到2.3g/Lꎮ通过用小麦蛋白水解物(WGH)代替补料中的谷氨酰胺可以使t ̄PA的产量达到422mg/L[23]ꎮ3.2㊀应用新的培养技术微载体培养是一种动物细胞大规模培养技术ꎮ培养液中大量的微载体为细胞提供了极大的附着表面ꎬ从而可实现细胞的高密度培养ꎮ胡显文等[24]在搅拌式反应器中无血清培养分泌u ̄PA的DNA重组CHO细胞ꎬ通过部分更换Cytopore多孔微载体ꎬ解决了大规模细胞培养中细胞凋亡的问题ꎮ并使用周期变压刺激技术使u ̄PA的产量提高了10倍ꎬ且可以降低葡萄糖厌氧代谢产生乳酸的转化率ꎮVentini等[25]通过Cytodex微载体培养CHO ̄hTSH细胞的实验表明ꎬ培养基中微载体的数量及在rhTSH合成期开始时的细胞浓度是提高目的蛋白产量的重要参数ꎮ李智等[26]利用CHO细胞能在培养过程中自然结团的特性ꎬ采用超声沉降柱二合一灌流系统促进细胞结团和加强截留的特性ꎬ用无血清培养基连续灌流培养基因重组CHO细胞MK3 ̄A2株ꎬ分泌表达的rhTNK ̄tPA生产率平均为89mg/L dꎮ3.3㊀添加保护剂聚醚F68可以有效减少生物反应器中搅拌对细胞产生的机械损伤ꎮ针对F68对某些细胞株的生长及产量降低的情况ꎬ研究者发现0.05%或0.075%的500kDa的γPGA可以替代F68应用于CHODG44细胞的培养中[27]ꎮ在细胞培养工艺逐级放大的过程中ꎬ每一步都需要研究者们监控细胞在生长和表达方面的相关指标ꎮ生物反应器在线监控pH㊁溶氧等参数的功能㊁色谱和在线蛋白分解监测等技术为大规模培养的过程控制提供了帮助ꎮ142郑惠惠ꎬ等:CHO细胞表达系统研究进展. All Rights Reserved.4 展望CHO细胞是表达外源蛋白最多也是最成功的一类细胞ꎬ有其不可比拟的优点ꎬ同时也存在现行技术手段不能弥补的不足之处ꎮ结合生物信息学㊁细胞生物学㊁基因工程技术和生物反应器技术的研究成果ꎬ研究者们可以通过综合考虑细胞代谢特性㊁蛋白表达特性等影响因素ꎬ通过研发个性化培养条件及培养工艺ꎬ构建高表达载体ꎬ筛选稳定高产的重组细胞株ꎬ改造宿主细胞等角度继续优化CHO细胞表达系统ꎬ为产业化生产重组蛋白提供基础ꎮ用于产业化生产的重组CHO细胞ꎬ需要具备生长特性良好㊁能在无血清培养基中高密度培养㊁表达重组蛋白能力强㊁能正确的进行翻译后修饰等特点ꎮ糖基化是蛋白翻译后最重要的修饰之一ꎬ直接影响重组蛋白的空间结构㊁生物活性㊁稳定性㊁免疫原性和生物反应性等ꎮ对重组蛋白的糖基化研究一直是研发和生产真核重组蛋白的热点课题ꎮ随着基因编辑技术的发展ꎬ研究者们通过表达特定糖基化相关酶从而得到完整㊁准确的特定形式的糖链结构ꎬ为糖基化蛋白在免疫诊断㊁临床治疗等领域的持续发展奠定了基础ꎮ随着基因技术的不断发展ꎬ对细胞代谢㊁信号传导等方面研究的持续深入ꎬ构建能表达准确修饰的糖基化重组蛋白的高产重组CHO细胞株仍将成为研究热点ꎮ参㊀考㊀文㊀献[1]㊀DavamiFꎬEghbalpourFꎬNematollahiLꎬetal..EffectsofpeptonesupplementationindifferentculturemediaongrowthꎬmetabolicpathwayandproductivityofCHODG44cells:anewinsightintoaminoacidprofiles[J].Iran.Biomed.J.ꎬ2015ꎬ19(4):194-205.[2]㊀SungYHꎬLimSWꎬChungJYꎬetal..Yeasthydrolysateasalow ̄costadditivetoserum ̄freemediumfortheproductionofhumanthrombopoietininsuspensionculturesofChinesehamsterovarycells[J].Appl.Microbiol.Biotechnol.ꎬ2004ꎬ63(5):527-536.[3]㊀DavamiFꎬBaldiLꎬRajendraYꎬetal..PeptonesupplementationofculturemediumhasvariableeffectsontheproductivityofCHOcells[J].Int.J.Mol.CellMed.ꎬ2014ꎬ3(3):146-156.[4]㊀ChunBHꎬKimJHꎬLeeHJꎬetal..Usabilityofsize ̄excludedfractionsofsoyproteinhydrolysatesforgrowthandviabilityofChinesehamsterovarycellsinprotein ̄freesuspensionculture[J].Bioresour.Technol.ꎬ2007ꎬ98(5):1000-1005.[5]㊀张大鹤ꎬ易小萍ꎬ张元兴ꎬ等ꎬ适于重组CHO细胞培养的无血清培养基的制备[J].中国生物制品学杂志ꎬ2011(10):1152-1156.[6]㊀刘兴茂ꎬ刘红ꎬ叶玲玲ꎬ等ꎬCHO工程细胞无血清悬浮分批培养的生长代谢特征及动力学模型[J].生物工程学报ꎬ2010ꎬ(1):85-92.[7]㊀XuJꎬYanFRꎬLiZHꎬetal..Serum ̄freemediumoptimizationbasedontrialdesignandsupportvectorregression[J].Biomed.Res.Int.ꎬ2014ꎬdoi:10.1155/2014/269305. [8]㊀EberhardySRꎬRadzniakLꎬLiuZ.Iron(III)citrateinhibitspolyethylenimine ̄mediatedtransienttransfectionofChinesehamsterovarycellsinserum ̄freemedium[J].Cytotechnologyꎬ2009ꎬ60:1-9.[9]㊀MikiHꎬTakagiM.Designofserum ̄freemediumforsuspensioncultureofCHOcellsonthebasisofgeneralcommercialmedia[J].Cytotechnologyꎬ2015ꎬ67(4):689-697.[10]㊀ZhouMꎬCrawfordYꎬNgDꎬetal..DecreasinglactatelevelandincreasingantibodyproductioninChineseHamsterOvarycells(CHO)byreducingtheexpressionoflactatedehydrogenaseandpyruvatedehydrogenasekinases[J].J.Biotechnol.ꎬ2011ꎬ153(1-2):27-34.[11]㊀ToussaintCꎬHenryOꎬDurocherY.MetabolicengineeringofCHOcellstoalterlactatemetabolismduringfed ̄batchcultures[J].J.Biotechnol.ꎬ2015ꎬ217:122-131.[12]㊀MajorsBSꎬChiangGGꎬPedersonNEꎬetal..Directedevolutionofmammaliananti ̄apoptosisproteinsbysomatichypermutation[J].ProteinEng.Des.Sel.ꎬ2012ꎬ25(1):27-38.[13]㊀CostGJꎬFreyvertYꎬVafiadisAꎬetal..BAKandBAXdeletionusingzinc ̄fingernucleasesyieldsapoptosis ̄resistantCHOcells[J].Biotechnol.Bioeng.ꎬ2010ꎬ105(2):330-40. [14]㊀RitterAꎬVoedischBꎬWienbergJꎬetal..Deletionofatelomericregiononchromosome8correlateswithhigherproductivityandstabilityofCHOcelllines[J].Biotechnol.Bioeng.ꎬ2016ꎬ113(5):1084-1093.[15]㊀LeFournVꎬGirodPAꎬBucetaMꎬetal..CHOcellengineeringtopreventpolypeptideaggregationandimprovetherapeuticproteinsecretion[J].Metab.Eng.ꎬ2014ꎬ21:91-102.[16]㊀PengRWꎬFusseneggerM.MolecularengineeringofexocyticvesicletrafficenhancestheproductivityofChinesehamsterovarycells[J].Biotechnol.Bioeng.ꎬ2009ꎬ102(4):1170-1181.[17]㊀RahimpourAꎬVaziriBꎬMoazzamiRꎬetal..EngineeringthecellularproteinsecretorypathwayforenhancementofrecombinanttissueplasminogenactivatorexpressioninChinesehamsterovarycells:effectsofCERTandXBP1sgenes[J].J.Microbiol.Biotechnol.ꎬ2013ꎬ23(8):1116-1122. [18]㊀GohJSꎬLiuYꎬChanKFꎬetal..ProducingrecombinanttherapeuticglycoproteinswithenhancedsialylationusingCHO ̄gmt4glycosylationmutantcells[J].Bioengineeredꎬ2014ꎬ5242生物技术进展CurrentBiotechnology. All Rights Reserved.(4):269-273.[19]㊀ZhangPꎬHaryadiRꎬChanKFꎬetal..IdentificationoffunctionalelementsoftheGDP ̄fucosetransporterSLC35C1usinganovelChinesehamsterovarymutant[J].Glycobiologyꎬ2012ꎬ22(7):897-911.[20]㊀YangZꎬWangSꎬHalimAꎬetal..EngineeredCHOcellsforproductionofdiverseꎬhomogeneousglycoproteins[J].Nat.Biotechnol.ꎬ2015ꎬ33(8):842-844.[21]㊀FanYꎬJimenezDelValIꎬMullerCꎬetal..Aminoacidandglucosemetabolisminfed ̄batchCHOcellcultureaffectsantibodyproductionandglycosylation[J].Biotechnol.Bioeng.ꎬ2015ꎬ112(3):521-535.[22]㊀KimBJꎬZhaoTꎬYoungLꎬetal..Batchꎬfed ̄batchꎬandmicrocarriercultureswithCHOcelllinesinapressure ̄cycledrivenminiaturizedbioreactor[J].Biotechnol.Bioeng.ꎬ2012ꎬ109(1):137-145.[23]㊀KimdoYꎬChaudhryMAꎬKennardMLꎬetal..Fed ̄batchCHOcellt ̄PAproductionandfeedglutaminereplacementtoreduceammoniaproduction[J].Biotechnol.Prog.ꎬ2013ꎬ29(1):165-175.[24]㊀胡显文ꎬ肖成祖ꎬ高丽华ꎬ等.用多孔微载体大规模长期培养动物细胞的方法[J].生物技术通报ꎬ2001ꎬ(1):45-48. [25]㊀VentiniDCꎬDamianiRꎬSousaAPꎬetal..ImprovedbioprocesswithCHO ̄hTSHcellsonhighermicrocarrierconcentrationprovideshigheroverallbiomassandproductivityforrhTSH[J].Appl.Biochem.Biotechnol.ꎬ2011ꎬ164(4):401-409.[26]㊀李智ꎬ肖成祖ꎬ杨琴ꎬ等.CHO细胞无血清结团灌流培养:超声-沉降柱二合一灌流系统[J].中国生物工程杂志ꎬ2008ꎬ(4):53-58.[27]㊀ChunBHꎬLeeYKꎬChungN.Poly ̄gamma ̄glutamicacidenhancesthegrowthandviabilityofChinesehamsterovarycellsinserum ̄freemedium[J].Biotechnol.Lett.ꎬ2012ꎬ34(10):1807-1810.342郑惠惠ꎬ等:CHO细胞表达系统研究进展. All Rights Reserved.。
CHO细胞表达体系特点及CHO细胞表达疫苗

CHO细胞表达体系特点及CHO细胞表达疫苗来源:易生物实验浏览次数:533 网友评论0 条CHO细胞表达体系特点及CHO细胞表达疫苗关键词:细胞疫苗CHO细胞表达体系CHO细胞表达分子生物学、分子免疫学等学科的发展使基因工程疫苗具有越来越重要的地位。
在基因工程疫苗研究的动物细胞表达系统中,最具代表性的就是中国仓鼠卵巢细胞(Chinese Hamster Ovary,CHO)。
它是用来表达外源蛋白最多也最成功的一类细胞。
本文就CHO细胞表达系统在疫苗研制中的应用做一综述。
1、CHO细胞表达体系及其特点CHO细胞属于成纤维细胞,既可以贴壁生长。
也可以悬浮生长。
目前常用的CHO细胞包括原始CHO和二氢叶酸还原酶双倍体基因缺失型(DHFR-) 突变株CHO。
近年来,为降低生产成本和减少血制品带来的潜在危害性,动物细胞生产开始使用无血清培养基(SFM),但SFM往往导致细胞活力差,贴壁性差,分泌外源蛋白的能力差等缺点。
另有研究者尝试将类胰岛素生长因子IGF基因和转铁蛋白基因转入CHO细胞获得能自身分泌必需蛋白的“超级CHO”,无需在培养基中转铁蛋白和胰岛素,细胞可在sFM 中生长良好。
与其他表达系统相比,CHO表达系统具有以下的优点:(1)具有准确的转录后修饰功能,表达的蛋白在分子结构、理化特性和生物学功能方面最接近于天然蛋白分子;(2)既可贴壁生长,又可以悬浮培养,且有较高的耐受剪切力和渗透压能力;(3)具有重组基因的高效扩增和表达能力,外源蛋白的整合稳定;(4)具有产物胞外分泌功能,并且很少分泌自身的内源蛋白,便于下游产物分离纯化;(5)能以悬浮培养方式或在无血清培养基中达到高密度培养。
且培养体积能达到1000L以上,可以大规模生产。
2、CHO细胞表达疫苗(1)乙肝疫苗CHO细胞表达疫苗的种类不多,多数处于研究阶段。
目前只有CHO表达乙肝疫苗已投入生产,这是除酵母表达乙肝疫苗以外,唯一已用于人类使用的基因工程亚单位疫苗。
cho高效瞬时表达方法

cho高效瞬时表达方法
CHO细胞高效瞬时表达方法是一种用于瞬时转染真核细胞的方法,该方法使用一种重组的腺病毒或质粒载体将外源基因瞬时转染入CHO细胞。
这种方法的优点是转染效率高,能够实现大规模的基因表达和生产,并且可以在短时间内完成实验。
CHO细胞高效瞬时表达方法的具体步骤包括:
1.准备重组质粒或腺病毒载体:将目的基因克隆到质粒或腺病毒载体中,并进行测序验证。
2.转染CHO细胞:将重组质粒或腺病毒载体与CHO细胞混合,通过特定的转染试剂将其导入细胞中。
3.筛选阳性克隆:在转染后的一段时间内,通过特定的筛选方法,如抗生素筛选或荧光激活细胞分选(FACS),从众多的细胞中筛选出阳性克隆。
4.扩大培养:将筛选出的阳性克隆进行扩大培养,以获得更多的目的基因产物。
5.收集产物:在目的基因产物积累到一定量后,收集产物并进行纯化和质量检测。
CHO细胞高效瞬时表达方法的应用范围广泛,可以用于抗体、重组蛋白、siRNA等生物制品的生产和研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CHO Cell
CHO-K1
野生型宿主 细胞
CHO-S
GS基因表达系统 瑞士的Lonza公司
宿主细胞:CHO-K1SV 质粒:PEE12.4(Amp抗性,GS标记 基因,¥2000) 筛选试剂:MSX(氨基亚砜蛋氨酸)
DHFR基因表达系统 Life Technology公司
Freedom CHO-S Kit
宿主:CHO-S Cell (cGMP-banked) 培液:CD-FortiCHO Medium 限制性内切酶: AvrII/BstZ17I ,EcoRV /Pacl 线性化酶:NruI 转化:Neon® electroporation Transfection 筛选试剂:Puromycin/MTX 筛选方法:两轮加压筛选 单克隆筛选:有限稀释法
使用广泛的有BGH polyA site,转录 终止作用强于SV40.
表 达 盒
抗体基因表达盒的组织形式 已较为固定,但其中各元件 的选择仍有值得探讨的地方
PcDNA3.3/Poptiv ec载体系统
常用的较早的商业化载 体系统
适用于DHFR缺陷细胞, 但是有报道CHO (DHFR-)细胞,很难驯 化,生长也不好。
重组质粒Poptivec-target整合到宿 主菌染色体组上后的阳性菌可在不含 GHT的培养基中生长。
进一步用G418和MTX筛选,在MTX浓度 选择压力下,dhfr基因与其共转染的 目的基因一起扩增,提高目的蛋白表 达。
GS系统
瑞士的Lonza公司
Sigma、药明康德等公司都在自己 构建载体使用(只要知道载体的几 个原件可以自己全部合成)
CHO Classification
补充:
1980年CHO-K1经化学突变得到CHO-DXB11 (一个等位基因缺失)
1983年的电离辐射经诱变株CHO-DG44
(两个等位基因缺失)
由于CHO-DXB11 DHFR缺陷不彻底,很快被完全无DHFR活性
的CHO-DG44取代
注释:
ATCC (American Type Culture Collection) 美国菌种保藏中心 ECACC( European Collection of Authenticated Cell Cultures) 欧洲细胞株/微生物保藏中心
CHO表达载体组成
原核基因序列
大肠杆菌复 制子及抗生 素抗性基因
在原核细胞 中大量扩增 和制备
真核基因序列
在哺乳动物中 有效的转录启 动子、增强子 元件、终止子 PolyA序列
在CHO细胞 中大量表达目 的蛋白
筛选标记
抗生素类筛 选标(Neo) 细胞代谢类 筛选标记 (MTX MSX)
筛选出稳定 表达较多抗 体的细胞株
核糖体进入位点
启动子下游有真核的 核糖体进入位点,通 常为GCCGCC A/GCCAUGG+4的 共有序列
IRES具有较强的起始 翻译的能力,研究发 现,某些动物的基因 前存在类似IRES的序 列,可以独立启动翻 译,并且翻译效率很 高,可称之为翻译型 增强子
转录终止信号和 PolyA加尾信号
影响mRNA的有效 合成和稳定性,提 高胞浆中能进行有 效翻译的 mRNA浓 度,提高表达水平。
CHO细胞表达抗体
基因工程抗体表达体系
酵母 细胞
昆虫 细胞
哺乳动物 细胞
CHO 细胞 骨髓瘤细胞
CHO(Chinese hamster ocary)
CHO细胞生物技术产业化的首选细胞系 目前70%以上的治疗性抗体蛋白都是由CHO细胞产生的 对蛋白质进行糖基化,其糖型与人类基本一致 不易传播人类病毒,比其他哺乳细胞基因组更容易进行改造和扩增 遗传背景清楚、转染效率高、可长期稳定传代并稳定表达有功能活性抗体 利于抗体纯化:非分泌型细胞,本身很少分泌内源性蛋白;可用无血清培养
整合位点 基因剂量 转录 翻译 加工组装 分泌 其他
相应策略
弱化选择标致基因;染色体定位筛选 弱化的可扩增选择标志基因 强启动子、增强子、强转录终止信号、适宜的抗体基因结构 翻译型增强子,适宜的抗体基因结构 轻重链表达平衡,宿主细胞修饰 适宜的抗体分泌前导肽,适宜的抗体基因结构 选择适宜的宿主细胞、宿主细胞修饰,尽量去除非生产性克隆
宿主细胞:CHO-s® Cells (cGMP-
banked) 质粒:pCHO1.0(嘌呤霉素和DHFR标 记基因,¥10000) 筛选试剂:Puromycin/MTX(氨甲喋 呤)
抗体真核高效表达策略
作用环节
抗体mRNA的转录、转 录效率与mRNA的稳定 性是其中最重要的因素
因此,抗体的表达量很 大程度上由质粒载体的 各表达调控元件及组织 方式决定
GS系统
新近发展的更有效的 系统
具有更高的扩增效率, 但细胞长期连续培养 时,生长状况不佳。
DHFR系统
DHFR系统表达水平虽 较GS系统低,但细胞 生长稳定
PcDNA3.3/Poptivec载体系统
将右图质粒共转染CHO(DHFR-)
宿主菌须在含有GHT(甘氨酸、次黄 嘌呤、胸腺嘧啶)的培养基中生长
表达载体结构组成
骨架序列 选择性标志基因 表达盒 特殊的调控序列
选择标志基因
共扩增基因
(DFHR和GS)
当环境中存在高浓度 (MTX 、MSX)时,标记 基因可自发在染色体上扩 增拷贝数,连带其上下游 的序列一起扩增,共扩增 序列可达上千个bp,拷贝 数可增加几百到几千倍。
非扩增基因 (neo)
对目的基因的拷贝数 没有影响,如主要用 于构建瞬时表达载体。
启动子
启动子和相应的增强 子是最关键的元件 真核启动子含有TATA 盒(确定转录起始位 点)和下游富含GC的 序列(决定转录起始 频率)
常用的CHO细胞表达 启动子的转录活性依 次 为 CMV 启 动 子 > SV40 启动子> LTR启 动子
DG44
DHFR缺陷型 宿主细胞
DUXB11
PcDNA3.3/Poptivec 载体系统 Life Technology公司
宿主细胞:DG44 质粒:共转染PcDNA3.3(Neo抗 性基因,¥2000)和Poptivec (DHFR标记基因,¥3500) 筛选试剂:G418(遗传霉素)/MTX (氨甲喋呤)
宿主细胞:CHO-K1 质粒:PEE12.4 筛选试剂:MSX(氨基亚砜蛋氨酸)
1992年,Bebbington等首次使用GS基因细胞系统表达重组抗体
PEE12.4
PEE12.4 4 12.4
GS(谷氨酰Байду номын сангаас合成酶)筛选原理
L-谷氨酸+氨+ATP GS L-谷氨酰胺+ADP+Pi
DHFR系统